
C O E 3 0 5 L A B M A N U A L

 54

Controlling DC Motors

Objective
The aim of this lab experiment is to control a small DC motor.

Equipment
Flight 8086 training board, Application board, PC with Flight86 software, download
cable

Tasks to be Performed
 Running the motor in forward and reverse direction for a specified time

 Controlling the speed of the motor

Experiment

5

C O E 3 0 5 L A B M A N U A L

 55

5.1 DC Motor
The Application Board contains a small DC motor that can be operated in the forward
or reverse direction. The operation of this DC motor is controlled by bits 6 and 7 on
Port-A as shown in Table 5.1.

Table 5.1: Operation Modes of the DC Motor

Bit6 Bit7 Operation
0 0
0 1
1 0
1 1

Stop
Reverse Direction
Forward Direction

Stop

The following example shows you how to run the DC motor in the forward and
reverse direction for a specific time.

Example 4.1: Write a program to run the DC motor in the forward direction for
5 seconds, turn it off for 3 seconds, then run it in the revere direction for 5
seconds.

Set SW2-1 to SWITCH
Set SW2-2 to MOTOR
SW4-1, SW4-2, SW4-3, and SW4-4 OFF

MOV AL, 99h ; initialize the 8255 PPI chip
OUT 06h, AL ; A input, B output, C input
MOV DL, ? ; load a proper value for 5s delay
MOV AL, 40h ; forward direction
OUT 02h, AL
CALL Delay
MOV DL, ? ; load a proper value for 3s delay
MOV AL, 00h ; stop the motor
OUT 02h, AL
CALL Delay
MOV DL, ? ; load a proper value for 5s delay
MOV AL, 80h ; reverse direction
OUT 02h, AL
CALL Delay
MOV AL, 00h ; stop the motor
OUT 02h, AL
INT 5

; the delay procedure is left as an exercise

C O E 3 0 5 L A B M A N U A L

 56

5.3 Controlling the Speed of the DC Motor
When the DC motor is ON (forward/reverse), it operates in its maximum speed.
However, the speed of the motor can be controlled using pulse width modulation (PWM).

PWM is a common technique for speed control. A good analogy is bicycle riding. You
peddle (exert energy) and then coast (relax) using your momentum to carry you
forward. As you slow down (due to wind resistance, friction, road shape) you peddle to
speed up and then coast again. The duty cycle is the ratio of peddling time to the total
time (peddle+coast time). A 100% duty cycle means you are peddling all the time, and
50% only half the time.

PWM for motor speed control works in a very similar way. Instead of peddling, your
motor is given a fixed voltage value (turned on) and starts spinning. The voltage is then
removed (turned off) and the motor "coasts". By continuing this voltage on-off duty
cycle, motor speed is controlled.

The concept of PWM inherently requires timing. The 8253 PIT chip can be used to
generate PWM. In the beginning, the motor is turned on and Counter 0 is loaded with
the ON duration. When Counter 0 terminates, the motor is turned off and Counter 1
is loaded with the OFF duration. Now, when Counter 1 terminates, the process is
repeated from the beginning.

Example 4.2: Write a program to control the speed of the DC motor based on
the state of Bit0 of the DIP switch. If Bit0 = 0, the motor will run at maximum
speed. Otherwise, it will run at 50% of its duty cycle.

1
2
3
4
5
6
7

8
9
10
11

12
13
14
15

Set SW2-1 to SWITCH
Set SW2-2 to MOTOR
SW4-1, SW4-2, SW4-3, and SW4-4 OFF
COMSEG SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:COMSEG, DS:COMSEG, ES:COMSEG, SS:COMSEG
ORG 0100h
Start: ; set the external segment to point to the
 ; base of the Interrupt Vector Table (IVR)
 XOR AX,AX
 MOV ES,AX

 ;store the offset of ISR in the IVT
 MOV WORD PTR ES:[38*4],OFFSET IR6_ROUTINE
 ;store the segment of ISR in the IVT
 MOV WORD PTR ES:[38*4+2],CS

 ;store the offset of ISR in the IVT
 MOV WORD PTR ES:[39*4],OFFSET IR7_ROUTINE
 ;store the segment of ISR in the IVT
 MOV WORD PTR ES:[39*4+2],CS

C O E 3 0 5 L A B M A N U A L

 57

16
17
18
19

20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36

37
38
39
40
41

42

43
44
45
46
47

48
49
50
51
52

53
54

55
56
57
58

59
60
61

 ; initialize the 8255 PPI chip:
 ; A and C input ports, B output port
 MOV AL, 99h
 OUT 06h, AL

 ; initialize the 8259 PIC chip
 MOV AL, 17h
 OUT 10h, AL
 MOV AL, 20h
 OUT 12h, AL
 MOV AL, 03h
 OUT 12h, AL
 MOV AL, 3Fh
 OUT 12h, AL

 ; initialize 8253 PIT chip (00110000 = 30h)
 ; Counter0, load MSB then LSB, mode 0, binary
 MOV AL, 30h
 OUT 0Eh, AL
 ; initialize 8253 PIT chip (01110000 = 70h)
 ; Counter1, load MSB then LSB, mode 0, binary
 MOV AL, 70h
 OUT 0Eh, AL

 ; counter0 loaded with FFFFh
 MOV AL, 0FFh
 OUT 08h, AL ; first load low byte
 MOV AL, 0FFh
 OUT 08h, AL ; now load high byte

 STI ; enable 8086 maskable interrupts

 ; start of main program
 MOV AL, 40h ; turn on the motor
 OUT 02h, AL
again: JMP again ; wait for interrupt on IR6/IR7
 ; Counter0/Counter1 decrements to 0

; Interrupt Service Routine (ISR) for IR6
; this routine checks Bit0 of the DIP switch
; If Bit0 = 0 continue running the motor (max speed)
; If Bit0 = 1 stop the motor (50% duty cycle)
; the routine also reload Counter 1

IR6_ROUTINE:
 IN AL, 00h ; read DIP switch

 TEST AL, 01h ; check Bit0
 JZ continue ; if Bit0=0 then don't stop the motor
 MOV AL, 00h ; else stop the motor
 OUT 02h, AL

continue:
 ; counter1 loaded with FFFFh (50% duty cycle)
 MOV AL, 0FFh

C O E 3 0 5 L A B M A N U A L

 58

70
71
72
73

74
75

76
78
79
80

81
82
83
84
85

86

87
88

 OUT 0Ah, AL ; first load low byte
 MOV AL, 0FFh
 OUT 0Ah, AL ; now load high byte
 IRET

; Interrupt Service Routine (ISR) for IR7
; this routine turn on the motor and reload Counter 0

IR7_ROUTINE:

 MOV AL, 40h ; turn on the motor
 OUT 02h, AL

 ; counter0 loaded with FFFFh
 MOV AL, 0FFh
 OUT 08h, AL ; first load low byte
 MOV AL, 0FFh
 OUT 08h, AL ; now load high byte

 IRET

COMSEG ENDS
END start

Exercises
5.1. Modify Example 5.2 to allow the user to control the direction in addition to

the speed (Use Bit1 to control the direction).

5.2. Modify Example 5.2 to operate the motor at 4 different, for example 100%
duty cycle, 50% duty cycle, 25% duty cycle, and 5 % duty cycle. The speed
is selected based on the states of Bit0 and Bit1.

