
King Fahd University of Petroleum & Minerals

Computer Science & Engineering
Using Multiple Diacritics in Arabic Script

 for Steganography
By:

Aleem Khalid Alvi

Yousef Salem Elarian

Submitted to Dr. Adnan A. Gutub

Computer Engineering Department

KFUPM

for the course of

Applied Cryptosystems: Techniques and Architectures

COE 509
April, 2007

Table of Contents

31.
Abstract

2.
Introduction
3
3.
Background on Arabic Script
4
4.
Related Work
4
5.
Approach
5
6.
Evaluation
7
7.
Conclusion
8
8.
Acknowledgement
8
9.
References
8
Appendix A
10
Appendix B
12

1. Abstract

Steganography techniques are concerned with hiding the existence of data in other cover media. Today, text steganography has become particularly popular. This paper presents a new idea for using Arabic text in steganogrphy. The main idea is to superimpose multiple invisible instances of Arabic diacritic marks over each other. This is possible because of the way in which diacritic marks are displayed on screen and printed to paper. Two approaches and several scenarios are proposed. The main advantage is in terms of the arbitrary capacity. The approach was compared to other similar methods in terms of overhead on capacity. It was shown to exceed any of these easily, provided the correct scenario is chosen.
Index Terms— Arabic; capacity; diacritic marks; steganography; text hiding.
2. Introduction
Since ancient times, people and nations seek to keep some information secure. Stenography is the approach of hiding the very existence of secret messages, hence securing them. Stenography has gained much importance today, in the era of communications and computation. Figure 1 point out a classification tree of steganography.

[image: image5.png]| stoganography |

Covered ciphers ‘

Open ciphers
ot |[mges || o | [somagane
l—‘—l Misspellings Phonetics

Visual H Text

Data Linguistic

oo |

Figure 1 The classification tree of steganography [‎1].
The first category in the classification divides stenography according to the cover message type. We are proposing two approaches that would fit the text and image classes, according to these categorizations. The linguistic categorization exploits the computer-coding techniques to hide information [‎1]. Semagrams hide information through the use of signs and symbols. According to this second classification, we fit the text and visual semagrams class.

In the following section, we present some background information on Arabic script. In the next section, we review work related to Arabic script steganography. Next, the Aproach section is devoted to describe our two approaches and compare them to each others. Afterwards, we show the results of some testing. Finally, we conclude, acknowledge and provide a list of references.
3. Background on Arabic Script

The Arabic alphabet has Semitic origins derived from the Aramaic writing system. Arabic diacritic marks decorate consonant letters to specify (short) vowels [‎3]. Those marks, shown in Figure 1, normally come over/beneath Arabic consonant characters. Arabic readers are trained to deduce these [‎4][‎5]. Vowels occur pretty frequently in languages. Particularly in Arabic, the nucleus of every syllable is a vowel [‎6]. Inside the computer, these are represented as characters [‎7]. The use of diacritics is an optional, not very common, practice in modern standard Arabic, except for holly scripts.
Dots and connectivity are two inherent characteristics of Arabic characters. Both features were deployed in Arabic steganography. We describe them here for the convenience of Sections ‎4 and ‎6. Dots is used as a collective name for single, double, and triple points, the zigzag shapes called Hamzahs, and Maddahs. These come over or beneath otherwise identical glyphs to differentiate among them. Out of the Arabic basic alphabet of 28 letters, 15 have from one to three points [‎8], four letters can have a Hamzah, and one, ALEF, can be adorned by the elongation stroke, the Maddah [‎9]. Ancient Arabs used to omit and deduce dots in the same manner standard Arabic treats diacritics today.

In general, an Arabic character connects to the subsequent character unless it is one of the non-connectable characters, or the end of word has been reached. An Arabic character appears disconnected to its precedent if such precedent character is non-connectable or a space. Table 3, in Appendix A, shows the Arabic character set along with the shapes they can take depending on their connectivity position.
[image: image1.png]n

Figure 1. Arabic diacritic marks.
4. Related Work

Little has been proposed for Arabic script steganography. Two inherent properties of Arabic writing, however, have been proposed: dots and connectability. Dots are interesting for their frequent occurrences in Arabic text. A first proposal of their use tackled the character design itself [‎10]. A more practical way, suggested in [‎11], reveals their need for new fonts by introducing kashidah’s (or tatweel, which is the Arabic extension redundant character used for justifying or beautifying the text) before/after such characters. A small drop in capacity occurs due to restriction of script on kashidah usage in some places and due to the extra-kashidahs which increase the overall size of text. Two suggestions to the work of [‎11] might achieve better capacity. An extreme case scenario would be to simply insert a kashidah after an extendible character to represent a binary bit regardless of the pointness-property of previous character. The second suggestion would be to use Hamzated characters along with dotted ones.

Aabed et al. [‎12] make use of the redundancy in diacritics to hide information. By omitting some diacritics, meaningful streams in them can be kept. This paper shares the base idea and extends it to the usage of multiple instances of diacritic marks, benefitting from the display characteristics of such marks.

5. Approach
The idea emerges from the way how computers display/print Arabic diacritic marks. For many fonts, when the code of a diacritic mark is encountered, the image of the corresponding stroke is rendered to the screen/printer without changing the location of the cursor. Such displaying without displacing leads to the possibility of typing multiple instances of extra-diacritics, all being almost invisible. A computer program aware of their presence and meaning, however, can detect and interpret them. We emphasize on the word almost when qualifying the invisibility of extra diacritics. This fact is because the multiple typing of a diacritic character might have an effect on the display/printing according o the font used. In fact, fonts range from making all diacritics completely invisible to revealing them all in an apparent unfolded manner. In between are two interesting the cases: the one of revealing only the first diacritic mark, and hiding extra strokes, and the one of darkening the diacritics with extra strokes.
Two main approaches can exploit the ideas above: The textual and the image approaches. Each approach has its advantages in terms of the typical steganography metrics security, capacity, and robustness manifests itself [‎11][‎13]. Tradeoffs between the metrics in the approaches are discussed after their presentation.

The textual approach chooses a font that hides extra (or maybe all) diacritic marks completely. It, then, uses any encoding scenario to hide secret bits in an arbitrary number of repeated but invisible diacritics. Clearly, a softcopy of the file is needed to retrieve the hidden information (by special software or simply by changing the font).
There are several scenarios to make use of this approach. One extreme scenario of this method achieves a capacity of virtually infinity: The whole message can be hidden in a single diacritic mark by hitting (or generating) a number of extra-keystrokes equal to the binary number representing the message. This number might be huge! One solution can be to perform the previous scenario on a block of limited number of bits. One scenario can be analogous to the run-length encoding (RLE) compression approach: We repeat the first, third, fifth, etc... diacritics in text as much as the number of consecutive, say, ones emerging in the secret message stream. Similarly, the even-ordered diacritics are repeated equivalent times to the number of the consecutive zeros in the text. Two variations of the first scenario and one of the second scenario are presented in the example of Table 1.
Table 1The encodings of the binary value 110001 according to the two scenarios of the first approach.
	Scenario
	Approach
	Extra diacritics

	1st scenario (stream)
	Repeat the first diacritic 49 times. (49 = (110001)b).
	49.

	1st scenario

block size=2
	Repeat the first diacritic 3 times (3 = (11)b), the second one 0 times (0 = (00)b), and the third one 1 time (1 = (01)b).
	3 + 0 + 1 = 4.

	2nd scenario (RLE start=1)
	Repeat the first diacritic 2 times (2 = number of 1’s in (11)b), the second one 3 times (3 = number of 0’s in (000)b), and the third one 1 time (for 1).
	(2-1) + (3-1) + (1-1) = 3.

The image approach, on the other hand, selects one of the fonts that were found to slightly darken the multiple instances of diacritics. Figure 2 shows the brightness levels of up to five repetitions of a diacritic. (The less the brightness level the more the darkness is.) This approach can convert the document into image form to survive printing. This step is necessary because the printing technology, unlike the displaying technology, doesn’t darken extra diacritic instances of text, even when the display does. This unfortunate fact reduces the possible number of repetition of a diacritic to the one that can survive a printing-and scanning process (up to 4 as the first diacritic in Figure 2 suggests). These limitations force us to stick to the 1st encoding scenario with a small block size (up to 2 bits if scanning and image processing tools are in aid). More catastrophically, yet, the size of the image containing text is, typically by orders, larger than that of the text it represents!
	[image: image2.png]

(a)
	[image: image3.png]1.60E+07

1.40E+07

1.20E+07

1.00E+07

8.00E+06

6.00E+06

4.00E+06

2.00E+06

0.00E+00

b

-

® 1 Harakah

m 2 Harakahs
i 3 HArakahs
M 4 Harakahs

m 5 Harakahs

(b)

Figure 2 The image approach. (a) The image of diacritics, from a single instance in the first row up to 5 repetitions in the fifth `2, 3, 4 and 5 times each (presented from the leftmost to the rightmost column of each diacritic).
Table 2 Comparison between the two approaches in terms of capacity, robustness and security.

	Approach
	Capacity
	Robustness
	security

	Text + softcopy
	High, up to infinity in 1st scenario.
	Not robust to printing.
	Invisible, but in the code.

	Image + softcopy
	Very low, due to image overhead.
	Robust to printing.
	Slightly visible. Sizeable.

	Image + hardcopy
	Moderate, 1st scenario, blocks of 2.
	Robust to printing.
	Slightly visible.

Notes on the capacity, robustness and security of each approach are summarized in Table 2. The image approach has two entries: one assuming a softcopy of the document image is distributed and the other one assuming a printed version is. It’s worth mentioning that to increase security it’s best to transform the text or image into a common format, such as PDF, for example. This act not only hides some information regarding the original type and size of files, but also prevents from accidental or intentional font changes, which can have catastrophic impact on text messages.

The text approach is not, generally, robust to printing. However, it is capable of achieving arbitrary high capacities. The file size might deteriorate the security level, however, if this approach is abused. The image approach is, to some extent, robust to printing. The softcopy version has a very low capacity. Its security is also vulnerable since text isn’t usually sent in images. The hardcopy version of the image approach tries to achieve robustness with good security. Capacity has its special meaning to a hardcopy. It should consider the number of characters in a printed page rather than the number of bits. It should also be considered for watermarking.
6. Evaluation

We compare the capacity of our approach to the dots approach [‎9] and to the Kashidah approach [‎10]. First, we need to note that in our, as well as the Kashidah approach, hiding a bit is equivalent to inserting a character (a diacritic mark in our case and a Kashidah in the Kashidah method). The dots approach doesn’t suffer such increase in size due to hidden message embedding. In fact, the dotted approach can be viewed as an ideal (hence, unpractical) case for the Kashidah method.

Since there are several scenarios to implement all approaches, we count the number of usable characters per approach, independent from the scenario or the secret message to be embedded. For this goal to be realistic, we find utterances in the Corpus of Contemporary Arabic (CCA), by Al-Sulaiti [‎13]. The corpus is reported to have 842,684 words from 415 diverse texts, mainly from websites. For the diacritic approach, the overhead is easy to estimate. Besides, it needs a diacratized text to experiment on. Hence, we use the not-heavily-diacratized sentence in Figure 4 to extract results.

إِنَّ الحَمْدَ لِلهِ. نَحْمَدُهُ وَنَسْتَعِيْنَهُ وَنسْتَغْفِرُهُ. وَنَعُوْذُ بِاللهِ مِنْ شُرُوْرِ أَنْفُسِنَا وَسَيِّئَاتِ أَعْمَالِنَا. مَنْ يَهدِهِ اللهُ فَلا مُضِلَّ لَهُ. وَمَنْ يُضْلِلْ فَلا هَادِىَ لَهُ.
 وأشْهَدُ أن لا إِله إِلا الله وَحدَهُ لا شَريكَ لَه وأَشْهَدُ أَنَّ مُحَمَداً عَبْدُهُ ورَسُولَهُ.
Figure 3 A moderately diacratized text used to find utterances of bit-baring units in our method.

We use p for the ratio of characters capable of baring a secret bit of a given level, and q for the ratio of characters capable of baring the opposite level. In the case of the dots approach, dotted characters may contribute to p while undotted characters may contribute to q. For the Kashidah method, we study two cases: the case of inserting Kashidahs before, and the case of inserting them after, the required character. We count extendible characters before/after dotted characters for p and those before/after undotted characters for q. For both methods, we keep characters with Hamzahs in a separate class r so as to be added to p or q, whichever is more convenient. The last column assumes equiprobability between (p+r) and q. In our case, a diacritic mark can bare a secret zero or a secret one, hence p = q and r = 0.

Table 3. Ratios of the usable characters for hiding both binary levels of the three studied approaches.

	Approach
	p
	q
	r
	(p+r+q)/2

	Dots
	0.2764
	0.4313
	0.0300
	0.3689

	Kashidah-Before
	0.2757
	0.4296
	0.0298
	0.3676

	Kashidah-After
	0.1880
	0.2204
	0.0028
	0.2056

	Diacritics
	0.3633
	0.3633
	0
	0.3633

The figures in Table 3 are quite near. As pointed out previously, the dots approach is actually the ideal unpractical case for the Kashidah method. Hence, we discuss our and the Kashidah methods in depth, here. In a first glance, our approach might seem to outperform the Kashidah method for the restrictions on inserting a Kashidah are more than those on inserting a diacritic: Almost every character can bare a diacritic on it. (Although some rare times two diacritics are there, and some other rare times none is put). However, deeper tests reveal an inherent overhead to diacritics: they never come alone; but above/beneath another character. Hence, a somehow stable overhead of 2 bytes per secret-baring position is found in our approach.

The advantage of our work, however, is that each usable character can bare multiple secret bits with 1 character as overhead. Although this same overhead can be claimed in the Kashidah method, it can’t really be applied for Kashidah becomes too long and noticeable.

7. Conclusion

This paper presents the two text and image approaches to hide information in Arabic diacritics for steganographic use. It presents a variety of scenarios that may achieve up to arbitrary capacities. Sometimes tradeoffs between capacity, security and robustness imply that a particular scenario should be chosen. The overhead of using diacritics was, experimentally, shown very comparable to related works. The advantage of the method, however, is that such overhead decreases if more than one diacritical secret bit is used at once.

8. Acknowledgement

Thanks to King Fahd University of Petroleum and Minerals (KFUPM) for its support to this research work.

9. References
1. Dmitri V., Digital Security and Privacy for Human Ruman Rights Defenders, The International Foundation for Human Right Defenders, Manual, Feb. 2007.
2. Wikipedia, the free encyclopedia. [Online] [Accessed 2006 April]. Available from URL: http://en.wikipedia.org/wiki/.
3. Amin A. Off-line Arabic character recognition: The state of the art. Pattern Recognition 1998; 31(5): 517-30.
4. Romeo-Pakker K, Miled H, Lecourtier Y. A new approach for Latin/Arabic character segmentation. IEEE 1995; 874-7.
5. Al-Anzi FS. Stochastic models for automatic diacritics generation of Arabic names. Computers and the Humanities 2004 38: 469-481.
6. El-Imam YA. Phonetization of Arabic: rules and algorithms. Computer Speech and Language 2004; 18: 339–73.
7. Abandah G, Khundakjie F. Issues Concerning Code System for Arabic Letters. Dirasat Engineering Sciences Journal, April 2004. 31 (1): 165-77.
8. Abandah G, Khedher M. Printed and handwritten Arabic optical character recognition –initial study. A report on research supported by the Higher Council of Science and Technology. Amman, Jordan, 2004, August.

9. Khorsheed MS. Off-line Arabic character recognition –a review. Pattern analysis & applications 2002; 5:31–45.
10. Shirali-Shahreza MH, Shirali-Shahreza M. A New Approach to Persian/Arabic Text Steganography. Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2006), Honolulu, HI, USA, July 10-12, 2006, pp. 310-315.

11. Gutub AA. A novel Arabic text steganography method using letter points and extensions. [Still not published.]

12. Owaidah S, Shafei AbdelRahman, Aabed M. A new approach to steganography using diacritic marks. [In a class comment.]

13. Johnson NF, Jajodia S. Exploring Steganography: Seeing the Unseen. IEEE Computer, 1998. 31 (2):26-34.

14. Al-Sulaiti L. Designing and developing a corpus of contemporary Arabic [dissertation]. The University of Leeds; 2004, March.

15. Abuhaiba ISI. A discrete Arabic script for better automatic document understanding. The Arabian Journal for Science and Engineering 2003; 28(1B): 77-94.
Appendix A
Table 3. The Arabic characters.

	Character name
	Isolated form
	Connected to previous
	Connected both sides
	Connected to next

	HAMZA
	ء
	
	
	

	ALEF with maddah
	آ
	ـآ
	
	

	ALEF with hamzah
	أ
	ـأ
	
	

	ALEF with hamzah below
	إ
	ـإ
	
	

	WAW with HAMZA
	ؤ
	ـؤ
	
	

	YEH with HAMZA
	ئ
	ـئ
	
	

	ALEF
	ا
	ـا
	
	

	BEH
	ب
	ـب
	ـبـ
	بـ

	TEH MARBUTA
	ة
	ـة
	
	

	THE
	ت
	ـت
	ـتـ
	تـ

	THEH
	ث
	ـث
	ـثـ
	ثـ

	JEEM
	ج
	ـج
	ـجـ
	جـ

	HAH
	ح
	ـح
	ـحـ
	حـ

	KHAH
	خ
	ـخ
	ـخـ
	خـ

	DAL
	د
	ـد
	
	

	THAL
	ذ
	ـذ
	
	

	REH
	ر
	ـر
	
	

	ZAIN
	ز
	ـز
	
	

	SEEN
	س
	ـس
	ـسـ
	سـ

	SHEEN
	ش
	ـش
	ـشـ
	شـ

	SAD
	ص
	ـص
	ـصـ
	صـ

	DAD
	ض
	ـض
	ـضـ
	ضـ

	TAH
	ط
	ـط
	ـطـ
	طـ

	ZAH
	ظ
	ـظ
	ـظـ
	ظـ

	AIN
	ع
	ـع
	ـعـ
	عـ

	GHAIN
	غ
	ـغ
	ـغـ
	غـ

	FEH
	ف
	ـف
	ـفـ
	فـ

	QAF
	ق
	ـق
	ـقـ
	قـ

	KAF
	ك
	ـك
	ـكـ
	كـ

	LAM
	ل
	ـل
	ـلـ
	لـ

	MEEM
	م
	ـم
	ـمـ
	مـ

	NOON
	ن
	ـن
	ـنـ
	نـ

	HEH
	ه
	ـه
	ـهـ
	هـ

	WAW
	و
	ـو
	
	

	YEH
	ي
	ـي
	ـيـ
	يـ

	ALEF MAKSURA
	ى
	ـى
	
	

The first column displays the character name. The isolated forms, shown in the second column of Table 3, occur when a character happens to be not connected, neither to the preceding, nor to the following character. All characters have an isolated glyph. The third column in Table 3 lists the ending position which is connected to the previous but not to the subsequent character. Only HAMZA is absent from this column, for it is restricted not to connect to any previous character. The fourth column shows what is known as the medial position of a character. In this position, a character connects to both its precedent and subsequent. The entries of non-connectable characters are left blank in this and the fifth column. The fifth column shows how characters appear when they come initially, i.e. connected to the next character only.
Appendix B

Two masterpieces showing, besides the talent of their authors, the marvel of the Arabic script are produced below. Figure 4 is a poem in which each character comes in the isolated (not connected form). Figure 5 displays another poem where dotted and bare characters always interleave. It is a part of a longer piece of prose of the same tile. These two poems represent extreme cases for the dotted and the kashidah method.
[image: image4.png]034 ‘53,fla @l 1 ol o33l sloy 43 (63 (\) 154

o3,y ply 131 63 S RS S PRESTSRNTR B

Figure 4 Poetry verses where no characters can are connected [‎15].

	فطِنٌ مُغرِبٌ عَزوفٌ عَيوفُ
	سيّدٌ قُلَّـبٌ سَـبـوقٌ مُـبِـرٌّ

	نابِهٌ فاضِـلٌ ذكـيٌّ أَنـوفُ
	مُخلِفٌ مُتلِـفٌ أغَـرُّ فَـريدٌ

	بَ هِياجٌ وجلَّ خطْبٌ مَخوفُ
	مُفْلِقٌ إنْ أبـانَ طَـبٌّ إذا نـا

Figure 5 Poetry verses where one dotted and one bare character always interleave.

