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Abstract: This study presents a high performance elliptic curve cryptoprocessor architecture over GF(2™). The
proposed architecture exploits parallelism at the projective coordinate level to perform parallel field
multiplications. Comparisons between the Projective, Jacobian and Lopez-Dahab coordinate systems using
sequential and parallel designs are presented. Results show that parallel designs gives better area-time
complexity (AT”) than sequential designs by 44-252% which leads te a wide range of design tradeoffs. The
results also show that the Projective coordinate system gives the best AT®in parallel designs with the least
number of multiplications levels when using 4 multipliers.
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INTRODUCTION

Recently, Elliptic Curves Cryptosystems (ECC)
(Koblitz, 1987, Menezes, 1993) has attracted many
researchers and has been included in many standards
(ANSI, 1998, IEEE, 2000, NIST, 2000; SEC, 2000a;
SEC, 2000b). ECC is evolving as an attractive alternative
to other public-key schemes such as RSA by offering the
smallest key size and the highest strength per bit.
Extensive research has been done on the underlying math,
security strength and efficient implementations. Among
the different fields that can underlie elliptic curves, prime
fields GF{p) and binary fields GF(2%) have shown to be
best suited for cryptographic applications. In particular,
binary fields allow for fast computation in software as
well as m hardware. Small key sizes and computational
efficiency make ECC not only applicable to hosts
processing security protocols over wired networks, but
also to small wireless devices such as cell phones, PDAs
and Smartcards.

Inversion operations, which are needed in point
addition over Elliptic Curves are the most expensive
operation over Fimte Fields (Blake, 1999; Gutub, 2002;
2003a, b). The approach adopted in the hiterature 1s to
represent elliptic curve points in projective coordinate
systems in order to replace the inversion operations with
repetitive multiplications (Blake, 1999; Gutub, 2002;
2003a,b). Recently, several ECC processors have been
proposed in the literature based on projective coordinate
representation. There are many projective coordinate
systems to choose from. In exiting architectures, the

selection of a projective coordinate is based on the
number of arithmetic operations, mainly multiplications.
This is to be expected due to the sequential nature of
these architectures where a single multiplier 1s used.

For high performance servers, such sequential
architectures are too slow to meet the demand of
increasing number of users. For such servers, high-speed
crypto processors are becoming crucial. One solution for
meeting this requirement is to exploit the inherent
parallelism within Elliptic curve point operations in
projective coordinate systems. Recently, ECC processor
architectures have been proposed where the choice of the
projective coordinate system used also depends on its
inherent parallelism (Gutub 2003a,b). Since multiplication
1s the most dominant operation and most time consuming
when computing pomt operations in projective
coordinate, three multipliers that can work in parallel are
used in the architectures (Gutub 2003ab). These
architectures give better area-time complexity (AT”) than
the architectures that are based 1 a single multiplier. The
lower bound on the requirements of resources, area-time,
is usually included in the performance metric (area) x
{time)™, 0 < & < 1, where the choice of & determines the
relative importance of area and time. Such lower bounds
have been obtained for several problems, for example,
discrete Fourier transform, matrix multiplication, binary
addition and others (Thompson, 1980). Once the lower
bound on the chosen performance metric 18 known,
the designer attempts to devise an algorithm and a
corresponding design which is optimal for a range of
values of area and time. Even though a design might be
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optimal for a certain range of values of area and time, it is
nevertheless of some interest to obtain a design for
minimum values of time. In order to make a more
meaningful comparison of the cost effectiveness of the
proposed designs, AT® measure is used which is a better
measure of how fast a design can compute the result.

In this study we are proposing an alternative parallel
design using normal basis representation which 15 more
suitable for hardware unplementations. In addition, the
complexity and parallelism in several homogenous and
heterogeneous projective coordinate systems are given.

GF(2") ARITHMETIC BACKGROUND

The finite GF(2%) field has particular importance in
cryptography since it leads to particularly efficient
hardware implementations. Elements of the field are
represented in terms of a basis. Most implementations use
either a Polynomial Basis or a Normal Basis (Lidl, 1994).
For the implementation described m this paper, a normal
basis 1s chosen since 1t leads to more efficient hardware
immplementations. Normal basis 18 more suitable for
hardware implementations than polynomial basis since
operations are mainly comprised of rotation, shifting and
exclusive-OR  operations which can be efficiently
implemented in hardware. A normal basis of GF(2™) is a
basis of the form

(B. B~ B', B,

B¥=1y where p ¢ GF(2™)

In a normal basis, an element A € GF(2%) can be
uniquely represented i the form

m—1

A= af’

i=1
where a, € 0, 1}.

GF(2™) operations using normal basis are performed
as follows:

Addition and subtraction: Addition and subtraction are
performed by a sumple bit-wise exclusive-OR (XOR)

operation.

Squaring: Squaring is simply performed by a rotate left
operation.

Multiplication: vA, B € GF(2"), where

A=Y ap”

and

743

m—1

B = 1=0 b1821 i

the product C = A*B, is given by:

C=A*B=Y"" ¢p*

1=0

then multiplication is defined in terms of a
multiplication table A; {0, 1}
Ck = 1m:701 :1]:701 ;\'1_|a1+kbj+k (21)

An Optimal Normal Basis (ONB) (Mullin et of., 1988)
is one with the minimum number of terms in (2.1), or
equivalently, the minimum possible number of nonzero A,
This value is 2m-1 and since it allows multiplication with
minimum complexity, such a basis would normally lead to
more efficient hardware implementations.

Inversion: February 16, 2006 Inverse of a ¢ GF(2%),
denoted as a~', is defined as follows.

Aa~'=1 mod 2™

Most inversion algorithms used are derived from
Fermat's Little Theorem:
ml_y

-1 -2

—a :(az )2

for all a=0 1n GF(2™).
ELLIPTIC CURVES

Here we present a brief introduction to elliptic
curves. Let GF(2™) be a finite field of characteristic two. A
non-supersingular elliptic curve E over GF(2™) 1s defined
to be the set of solutions (x, y) € GF(2™ X GF(2") to the
equation,

yhxy = xax* b,

where a and b € GF(2™), b=0, together with the pomt
at infimity denoted by O. It 13 well known that E forms a
commutative fimte group, with O as the group identity,
under the addition operation known as the tangent and
chord method. Explicit rational formulas for the addition
rule involve several arithmetic operations (adding,
squaring, multiplication and mnversion) m the underlying
finite field. In affine coordinate system, the elliptic group
operation 1s given by the following.

LetP = (x,, y,) € E; then-P = (x| x,+y,). ForallP € E,
O+P=P+0 =P. If Q = (x,, v,) € Eand Q#-P, then P+Q =
(X3, ¥3),
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where
X3 :(YI +YZ )2 + YI + YZ

+X,+ X%, +a
X1+X2 X1+X2

+
ygz(u) NGRS S R
X1+X2

PO and

, b
X3:X1+7
z

X

y, =% 4 (% + 20K, + X,
X'1

ifP=0Q.

Computing P+Q is called elliptic curve point addition
1f P#Q and 15 called elliptic curve pomnt doubling if P = Q.
Scalar multiplication 1s the basic operation for ECC. Scalar
multiplication in the group of points of an elliptic curve is
the analogous of exponentiation in the multiplicative
group of mtegers modulo a fixed mteger m. Computing dP
can be done with the straightforward double-and-add
approach based on the binary expression of d = (d,,,...,dy)
where d;, is the most significant bit of d However,
several scalar multiplication methods have been proposed

i the literature. A good survey 1s presented by Gordon
(1998).

PROJECTIVE COORDINATE SYSTEMS IN GF2™)

The projective coordinate systems are to eliminate
the need for performing inversion. For elliptic curve
defined over GF(2™. many different forms of formulas are
found (Blake, 1999, Lopez, 1998) for peint addition and
doubling. The projective coordinate system (Pr), so

Table 1: Multiplications within different coordinate systems

called homogeneocus coordinate system, takes the form
(x,y) = (X/Z,Y/Z), while the Jacobian coordinate system
takes the form (x,y) = (X/Z%,Y/Z*) and the Lopez-Dahab
coordinate system takes the form (x,y) = (X/Z,Y/Z%).
Table 1 demonstrates only the multiplications needed in
the Projective, Jacobian and Lopez-Dahab coordinate
system since other field arithmetic operations requires
negligible time as compared to multiplication. This 1s
because of the nature of normal basis over GF(2™) which
performs addition and subtraction simply by an XOR
operation and performs squaring by a single rotation.

ECC CRYPTO-PROCESSOR ARCHITECTURE

Generic ECC Crypto-processor architecture with
Multi-multipliers: The basic idea 15 based on the
parallelism  of  projective  coordinate  systems
multiplications proposed by Gutub (2003a, b). Three
multipliers were employed to provide parallelism to
provide better (AT?. The study reperted by Gutub
(2003a, b) was represented in polynomial basis and
squaring was considered to be a multiplication, which can
be negligible m normal basis. This makes a big difference
1n the number of multiplication cycles as 13 discussed in
the next section. The proposed generic crypto-processor
architecture uses 2-4 multipliers, a cyclic shift register to
perform squaring, an XOR unit for field addition and a
register file. Only one cyclic shift register and XOR unit is
used since both squaring and field addition requires only
one clock cycle and hence it can be reused several times
while a single multiplication operation 1s computed. Each
of these arithmetic units can get operands from the
register file and store the result in the register file. The
controller generates control signals for all the arithmetic
uruts and the register file (Fig. 1).

Projective coordinate (Pr) Jacobian coordinate ()

Lopez-Dahab coordinate

Addition Doubling Addition Daoubling Addition Daoubling
A=X,7, 1M A=X7Z IM A=XZ? M Z,=X,Z;? 1M Ap=TY,%Z? IM 7;=7X? 1M
B=X.7Z, 1M B=bZ4X* IM B=X,Z? IM A=0bZ? 1M A =Y,22 1M X=X, %bZ* 1M
C=A+B C=AX* 1M C=A+B B=XtA Bi=X.7Z, 1M Y5=bZ*Z4Xs(aZ+ Y2 +bZ % 3M
D=Y,7, 1M D=Y,Z, IM D=TY,Z} M X, =B B,=X,7, 1M
E=Y,Z, 1M E=X>*D+A E=Y,Z} M C=ZTY, 1M C=AgtA,
F=D+E Z;= A2 1M F=D+E D =7Z;+X,+C D =Ry+B;
G=C+F X;=AB 1M G=Z,C 1M E=DX; 1M E=Z,7; 1M
H=Z7Z7, 1M Y,=C+BE 1M H=FX,+GY, 2M Y,=X/"Z;+E 1M F=DE 1M
1= C+aHC*HHFG 5M Z,=GZ, 1M Z;=F
X;=CI 1M I1=Ft+Z, G=D¥F+aEH M
Z,=HC? 1M X,= aZ,~F+(C% 3M H=CF 1M
Y= GI+CYFX,+CY,] 4M Y=IX+HG 2M X;= CtH+G
I=D"BE+X; 2M
I=D*A+X; 1M
Yy =HI+Z,J 2M
Total 16M ™ 15M 5M 14M 5M
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Fig. 1: The proposed architecture

(a) adding two points {b) doubling a poimt

Fig. 2: Data flow graphs for projective coordmate (2
Multipliers)
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Methodology used to find the number of multipliers:
Since multiplication 1s the dominant operation in elliptic
curve point operations in projective coordinate systems
and since the computation time of multiplication is much
higher than field squaring and addition, the emphasis in
this paper 1s to speed up the computations of point
operations in projective by performing more than one
multiplication operation at any one time.
The approach adopted m this study 1s:

Analyzing the dataflow of point operations for each
projective coordinate system in the following manner:
Find the critical path which has the lowest number of
the multiplication operations,

Find the maximum number of multipliers that are
needed to meet this critical path

Varying the number of multipliers from one to the
number of multipliers specified by the critical path to
find the following:

Find the best schedule of each dataflow using the
specified number of multipliers

Find the AT*

The critical paths of the projective, Jacobian and
Lopez-Dahab coordinate systems are listed in Table 2
for both the point addition and doubling. From Table 2,
we can see that the total number of multiplications
needed with the projective coordinate system is 16 and 7
for point addition and doubling, respectively. This means
that using one multiplier gives an average of (16/2)+7 = 15
multiplications cycles since, on average, we perform
doubling for all the bits in the key and perform point
addition only for half of the key bits.

The dataflow of the projective coordinate system
using two multipliers are shown in Fig. 2, where a circle
represents a multiplication and rectangle represent either
field addition or squaring. As can be seen from Fig. 2,

using 2 multipliers makes the average number of
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Fig. 3: Data flow graphs for projective coordinate (4 Multipliers)

Table 2: Multiplication cycles for the coordinate systemns

Critical path Average No. of multiplication cycles
Coordinate system ADD DRI 1 multiplier 2 multipliers 3 multipliers 4 multipliers
Projective coordinate 4 2 15.0 8.0 6.0 4.0
Jacobian coordinate 5 2 12.5 7.0 5.0 4.5
Lopez-Dahab coordinate 4 3 12.0 6.5 5.5 5.0

multiplication cycles decreases to 8 and 4 for pomt
addition and doubling respectively. Which implies an
average of (8/2)+4 = 8 multiplications cycles only. This
dramatically speed up mecreases by employing more
multipliers until reaching the meaximum mumber of
multipliers that satisfies the critical path which means
adding more multipliers will increase the area only without

any enhancements in the speed up (Fig. 3). The same
procedure is applied to the JTacobian and Lopez-Dahab
coordinate systems. Table 2 summarizes the average
number of multiplications cycles required for point
operations using 1, 2, 3 and 4 multipliers.

Tt is worth noting that unlike the work reported by
Gutub (2003a, b) where polynomial basis is used, the
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architecture proposed here is based on using normal
basis. The advantage of using normal basis is that the
computation time of squaring becomes mneglgible
compared to multiplication. This makes a big difference in
the number of multiplication cycles as can be seen from
Table 2 and also has a significant impact on the utilization
of multipliers.

RESULTS AND DISCUSSION

In Fig. 4, comparisons between the different
coordinate system are shown. Four cases are covered in
these comparisons:

Single multiplier (Sequential),

Two, multipliers (Parallel),

Three multipliers (Parallel) as by (Gutub 2003a, b) and
Four multipliers (Parallel).

It i1s clear from Fig. 4 that with the projective
coordinate system, the enhancement in the AT*? increases
by employing more multipliers. The maximum number of
multipliers that can be reached that satisfies the critical
path was found to be 4 multipliers. The enhancements
using parallel designs with the Projective coordinate,
was found to be 76, 108 and 252% when using 2, 3
and 4 multipliers, respectively. However, the Projective
coordinate system was giving better AT® than both
Jacobian and Lopez-Dahab coordinate systems when
employing 4 multipliers, while it was giving worse results
by using less number of multipliers.

It can be also noticed that usmg 3 multipliers,
(Gutub, 2003a,b), was giving better result than using 4
multipliers with the Jacobian coordinate system ( Fig. 4).

2501

] Projective
B Jacobian
2001 [J Lopez-Dahab

—

h

[=]
1

Area-time (AT"2)

100

501

i

No. of Multipliers

0 T T

Fig. 4: Comparison between the different designs
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This shows clearly that adding more multipliers does not
necessarily mcrease performance.

The best AT’ result reported by ILopez-Dahab
coordinate system was found when using only two
multipliers (Fig. 4). The AT? when using 2 multipliers is
better than the one reported with the Projective
coordinate system but not better than the Tacobian
coordinate system using the same number of multipliers.
However, the best results reported in Fig. 4 where found
to be when using the Projective coordinate system with 4
multipliers. What is a more significant observation from
Fig. 4 1s that using the proposed architecture with
Projective coordinate system is not only faster for parallel
implementation but it also leads to a better AT (cost)
than other alternatives.

CONCLUSIONS

Tn this study we presented a high performance GF(2™)
elliptic curve cryptoprocessor. Parallelism was exploited
at the projective coordinate level using 2, 3 and 4
multipliers to perform parallel field multiplications
represented in normal basis. Comparisons between the
Projective, Jacobien and Lopez-Dahab coordinate systems
using sequential and parallel designs was also presented.
The results show that using parallel designs gives better
AT? than sequential designs by almost 44-252% which
gives the designers a wide large of design tradeoffs. The
results also show that the Projective coordinate system is
the best m parallel designs and gives the least
multiplications cycles using 4 multipliers and accordingly
the best AT”.
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