
 1

 1

Area Flexible GF(2k) Elliptic Curve Cryptography Coprocessor

ADNAN ABDUL-AZIZ GUTUB

Computer Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, SAUDI ARABIA

gutub@kfupm.edu.sa

Abstract. Elliptic curve cryptography (ECC) is popularly defined either over GF(p) or GF(2k). This research modifies a GF(p)
multiplication algorithm to make it applicable for GF(2k). Both algorithms, the GF(p) and GF(2k) one, are designed in
hardware to be compared. The GF(2k) multiplier is found faster and small. This GF(2k) multiplier is further improved to
benefit in speed, it gained more than 40% faster speed with the cost of 5% more area. This multiplier is adjusted to have the
area flexibility feature, which is used as the basic block in modeling a complete projective coordinate ECC coprocessor.

Keywords. Elliptic Curve Cryptography, modular multiplication, area flexible multiplier, projective coordinates arithmetic

1 Introduction

Cryptography is a well-recognized technique for
information protection. It is used effectively to protect
sensitive data such as passwords that are stored in a
computer, as well as information being transmitted through
different communication media. Encryption is the
transformation of data into a form, which is very hard to
retransform back by anyone without a secret decryption
key. Even if someone steals the encrypted information, he
cannot benefit from it.

Depending on the encryption/decryption key, crypto-
systems can be classified into two main categories: secret
key cryptosystems and public key cryptosystems. The
secret key cryptosystems uses one key for both encryption
and decryption. Public key cryptosystems, however, use
two different keys, one for encryption and the other for
decryption. Secret key cryptosystems is used for encryption
and decryption of messages, while, public key
cryptosystems is used for digital signature and key
exchange schemes. Although public key systems can be
used for message encryption and decryption, it is found to
be very slow. This made it practical to be used for digital
signature and key exchange scheme more than encryption
and decryption of messages.

In 1985, Koblitz and Miller independently proposed the
Elliptic Curve Cryptosystem (ECC) [1,2,3,4,5,6,7,8,9], a
method based on the Discrete Logarithm problem over the
points on an elliptic curve. Since that time, ECC has
received considerable attention from mathematicians
around the world, and no significant breakthroughs have
been made in determining weaknesses in the algorithm.
Although critics are still skeptical as to the reliability of
this method, several encryption techniques have been
developed recently using these properties. The fact that the
problem appears so difficult to crack means that key sizes
can be reduced in size considerably, even exponentially
[2,5,8], especially when compared to the key size used by
other cryptosystems. This made ECC become a challenge
to the RSA, one of the most popular public key methods
known. ECC is showing to offer equal security to RSA but
with much smaller key size. In addition to their simplicity

and smaller size, ECC are more likely to be adopted in the
future, especially in systems with limited processing and
storage resources such as those incorporating mobile
devices [2].

In order to use ECC, an elliptic curve must be defined
over a specific finite field. Some finite field representations
may lead to more efficient implementations than others, in
hardware or in software. The elliptic curve arithmetic can
be optimized depending on the type of finite field. The
most popular finite fields used in ECC are Galois Fields,
GF(p) and GF(2k) [1,2,3,5,10]. In this research, these two
finite fields are compared. The number of arithmetic
operations in GF(p) is found to be less than GF(2k), but
each operation in GF(p) consumes much more time and
area than GF(2k). This made up working with GF(2k)
seams to be more efficient than GF(p).

A basic operation in the ECC arithmetic is modular
multiplication. This research adjust a GF(p) multiplication
algorithm to make it applicable for GF(2k). Both
algorithms are modeled in hardware to be compared and
analyzed. The GF(2k) multiplier hardware is found to be
faster and smaller. It is further modified and speeded up
with a very small cost of area. The GF(2k) multiplier
hardware is designed with a re-configurable area dependant
way, such that the hardware is area flexible, it can be
designed according to what area is available.

The flow of this paper is as follows; the following
section will give some background on the elliptic curve
theory and some efficient implementation study of ECC.
Then, the GF(p) multiplication algorithm will be modified
for GF(2k) which made up the basic multiplier hardware.
After that, a complete ECC coprocessor model is proposed.

2 Elliptic Curves and Their Implementations
Elliptic curves are known so because they are described

by cubic equations, similar to those used in ellipsis
calculations. The general form for elliptic curve equation
is: y2 + axy + by = x3 + cx2 + dx + e. There is also a
single element named the point at infinity or the zero point
denoted ‘ϕ’. The point at infinity is computed as the sum of
any three points on an elliptic curve that lie on a straight

 2

 2

line. If a point on the elliptic curve is to be added to
another point on the curve or to itself, some special
addition rules are applied depending on the finite field
used. For more details on the elliptic curve theory, the
reader is advised to look through [2,5,7,9].

A finite field is a set of elements that have a finite order
(number of elements). The order of Galois Field (GF) is
normally a prime number or a power of a prime number.
There are many ways of representing the elements of the
finite field. Some representations may lead to more
efficient implementations of the field arithmetic in
hardware or in software. The elliptic curve arithmetic is
more or less complex depending on the finite field where
the elliptic curve is applied. GF(p) and GF(2k) are
considered in this research because of their popularity in
ECC [1,2,3,5,15,16,17].

The basic element of an elliptic curve cryptosystem is
the calculation of the point kP, where kP = P+P. . .+P (k-
times). Designing an efficient ECC hardware coprocessor
depends tremendously on the type of finite field used. Most
ECC hardware researches [4,6,8], show that the ECC
implementations defined over GF(2k) are more suitable
than GF(p), especially when embedded into restricted area,
such as smart cards. The simplicity of GF(2k) in hardware
comes from the possibility of doing arithmetic without
carry propagation. ECC, however, is not restricted to smart
cards. There can be some hardware applications where
GF(p) can be more appropriate to use than GF(2k) [3].

The following subsections are going to compare the
elliptic curve point addition in the two finite fields: GF(p)
and GF(2k). The comparison is targeted towards finding
out if GF(p) can possibly be faster than GF(2k). This study
will compare the number of the most-time-consuming
operations in both finite fields. The costly arithmetic
operations are assumed to be multiplication, inversion
(division), and squaring. Addition, subtraction, and
multiplication by small constants are not expensive [1,9],
so their cost is neglected.

2.1 Comparing GF(p) and GF(2k)

The addition of two different points on the elliptic
curve is computed as shown in Table 1. The number of
operations, as observed, is found to be the same in both
fields (neglecting the addition, subtraction, and
multiplication of small numbers [1,9]). Lambda requires
one inversion and one multiplication in order to be
calculated. Computing ‘x3’ needs only one squaring of
lambda. The value of ‘y3’ is figured with one
multiplication operation of lambda. The number of
operations in both fields is the same: one inversion, one
squaring, and two multiplication calculations.

(x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2
GF(p) GF(2k)

λ = (y2 – y1)/(x2 – x1)
x3 = λ2 – x1 – x2
y3 = λ(x1 – x3) – y1

λ = (y2 + y1)/(x2 + x1)
x3 = λ2 + λ + x1 + x2 + a
y3 = λ(x1 + x3) + x3 + y1

Table 1 addition of two different points on the elliptic curve

The addition of a point to itself (doubling a point) on

the elliptic curve is computed as shown in Table 2.
Computing lambda in GF(p) requires an inversion, a

multiplication, and a squaring of x1, while it needs an
inversion and a multiplication in GF(2k). Calculating ‘x3’ in
both fields want the same operation of squaring lambda.
Computing ‘y3’ in GF(p) requires only one multiplication,
while it needs a multiplication and a squaring operations in
GF(2k). The number of operations is found to be the same
in both fields: an inversion, two squaring, and two
multiplication calculations [1,9].

In point operations of both finite fields GF(p) and
GF(2k) (adding two points and doubling a point), the
number of operations is found to be the same. However,
the time required to complete each operation differ much in
each field.

(x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0
GF(p) GF(2k)

λ = (3(x1)2 + a) /(2y1)
x3 = λ2 – 2x1
y3 = λ(x1 – x3) – y1

λ = x1
 + (y1)/(x1)

x3 = λ2 + λ + a
y3 = (x1)2 + (λ + 1) x3

Table 2 doubling a point on the elliptic curve

Crutchley [5] in his master thesis have made a time
comparison between GF(p) and GF(2k). His result shows
that the multiplication process in GF(p) is the only faster
operation than GF(2k). All other operations are reported to
be slower in GF(p) than in GF(2k). It seems that his
conclusions are generated from a software implementation
of the operations. Hardware multipliers are found to be
faster in GF(2k) than in GF(p), as studied in a following
section.

Calculating the inverse is the most expensive operation.
Designs replace the inversion by several multiplication
operations by representing the elliptic curve points as
projective coordinate points [1,4,7,9].

2.2 Projective Coordinates in GF(p)

The projective coordinates are used to eliminate the
need for performing inversion. For elliptic curve defined
over GF(p), two different forms of formulas are found
[1,9] for point addition and doubling. One form projections
(x,y)=(X/Z2,Y/Z3) [9], while the second projects
(x,y)=(X/Z,Y/Z) [1].
 The two forms procedures for projective point addition
of P+Q (two elliptic curve points) is shown below:

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q

(x,y)=(X/Z2,Y/Z3) (X,Y,Z) (x,y)=(X/Z,Y/Z) (X,Y,Z)
λ1 = X1Z2

2 2M λ1 = X1Z2 1M
λ2 = X2Z1

2 2M λ2 = X2Z1 1M
λ3 = λ1 - λ2 λ3 = λ2 - λ1
λ4 = Y1Z2

3 2M λ4 = Y1Z2 1M
λ5 = Y2Z1

3 2M λ5 = Y2Z1 1M
λ6 = λ4 - λ5 λ6 = λ5 - λ4
λ7 = λ1 + λ2 λ7 = λ1 + λ2
λ8 = λ4 + λ5 λ8 =λ6

2 Z1Z2-λ3
2λ7 5M

Z3 = Z1Z2λ3 2M Z3 = Z1Z2λ3
3 2M

X3 = λ6
2 - λ7λ3

2 3M X3 = λ8λ3 1M
λ9 = λ7λ3

2 – 2X3 λ9 = λ3
2 X1Z2 - λ8 1M

Y3 = (λ9λ6 - λ8λ3
3)/2 3M Y3 = λ9λ6 - λ3

3 Y1Z2 2M
 ----- -----
 16 M 15M

Similarly, the two forms of formulas for projective point
doubling is shown below:

 3

 3

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3)

(x,y)=(X/Z2, Y/Z3) (X,Y,Z) (x, y) = (X/Z, Y/Z) (X,Y,Z)
λ1 = 3X1

2 + aZ1
4 4M λ1 = 3X1

2 + aZ1
2 2M

Z3 = 2Y1Z1 1M λ2 = Y1Z1 1M
λ2 = 4X1 Y1

2 2M λ3 = X1Y1λ2 2M
X3 = λ1

2
 - 2λ2 1M λ4 = λ1

2 - 8λ3 1M
λ3 = 8Y1

4 1M X3 = 2λ4λ2 1M

λ4 = λ2 - 2X3 Y3=λ1(4λ3-λ4)–8(Y1λ2)2 3M

Y3 = λ1λ4 -λ3 1M Z3 = 8 λ2
3 2M

 ------ -----
 10M 12M

The squaring calculation over GF(p) is very similar to
the multiplication computation. They both are noted as M
(multiplication). It is worth noting that any EC crypto
processor must implement the procedures of projective
coordinates efficiently since they are the core steps of the
point operation algorithm of ECC.

2.3 Projective Coordinates in GF(2k)

For elliptic curve defined over GF(2k), to eliminate the
need for performing inversion, its coordinates (x, y) are to
be projected to (X, Y, Z). Similar in principle to GF(p)
projective coordinates, two different forms of formulas are
found [9,18] for point addition and doubling. One form
projects (x,y)=(X/Z2,Y/Z3) [9], while the second projects
(x,y)=(X/Z,Y/Z) [18].
 The two forms procedures for projective point addition
of P+Q (two elliptic curve points) is shown below:

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q
(x,y)=(X/Z2,Y/Z3) (X,Y,Z) (x,y)=(X/Z,Y/Z) (X,Y,Z)
A = X1Z2

2 2M A = X1Z2 1M
B = X2Z1

2 2M B = X2Z1 1M
C = A+B C = A+B
D = Y1Z2

3 2M D = Y1Z2 1M
E = Y2Z1

3 2M E = Y2Z1 1M
F = D+E F = D+E
G = Z1C 1M G= C+F
H = FX2+GY2 2M H= Z1Z2 1M
Z3 = GZ2 1M I=C3+aHC2+HFG 6M
I =F+Z3 X3 = CI 1M
X3= aZ3

2+IF+C3 5M Z3 = HC3 1M
Y3= IX3+HG2 3M Y3=GI+C2[FX1+CY1] 5M
 ----- -----
 20 M 17M

Similarly, the two forms of formulas for projective point
doubling are shown below:

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3)
(x,y)=(X/Z2, Y/Z3) (X,Y,Z) (x, y) = (X/Z, Y/Z) (X,Y,Z)
Z3=X1Z1

2 2M A=X1Z1 1M
A = bZ1

2 1M B= bZ1
4+X1

4 5M
B = X1+A C= AX1

4 1M
X3 = B4 2M D=Y1Z1 1M
C = Z1Y1 1M E=X1

2+D+A
D=Z3+X1

2+C 1M Z3=A3 2M
E = DX3 1M X3=AB 1M
Y3 = X1

4Z3+E 2M Y3= C+BE 1M
 ------ -----
 10M 12M

The squaring calculation over GF(2k) is assumed very
similar to the multiplication computation. They are both
denoted as M (multiplication) in the above. Since the
number of additions is taken to be, on the average, half the
number of bits, it can be clearly seen form the above tables
that the projective coordinate (x,y) = (X/Z2,Y/Z3) has on the

average 20 multiplication iteration, while the projection
(x,y) = (X/Z,Y/Z) has on the average 20.5 multiplications.
Clearly, the former would be the projection of choice for
sequential implementation. However, as will be discussed
later, the projection (x,y) = (X/Z,Y/Z) has an advantage for
parallel implementation.

2.4 Remarks

As can be observed from before, the number of
multiplication processes for adding and doubling two EC
points in GF(p) is found to be different than GF(2k).
Furthermore, this number is different depending on the
specific procedure used in the field, i.e. (X/Z,Y/Z) or
 (X/Z2,Y/Z3). Comparison of the number of operations to
chose the proper finite field is not accurate because
operations in GF(p) require completely different
calculation time than GF(2k).

The following section will implement two modulo
multiplication hardware for both fields GF(p) and GF(2k).
The two hardware designs will be compared depending on
speed and area to compute ECC arithmetic computations.

3 Modular Multiplication Hardware

The straightforward approach to compute modular
multiplication is by performing multiplication followed by
reduction [2,7]. The multiplication can be computed
through several addition operations. Then, the reduction is
performed through several subtractions, by subtracting the
modulus several times until the result is less than the
modulus. This approach is inefficient and suffers from very
low speed. It can, however, be improved by merging
modulo subtraction with the multiplication-add operations
[11], as Algorithm 1.

Algorithm 1:

Define k: number of bits in x; xi: the ith bit of x
Input: x,y, and n; where x,y < n;
Output: P = xy mod n

1. P := 0;
2. For i = k-1 down to 0;
3. {
4. P:= 2P;
5. If P ≥ n Then P:= P – n ;
6. If xi = 1 Then
7. {P := P + y;
8. If P ≥ n Then P:= P – n};
9. }
10. End;

Algorithm 1 is developed for GF(p). In order to use this
algorithm for GF(2k), the carry propagation is not needed
any more. All the addition and subtraction operations are
replaced by exclusive-OR (XOR) computations. The ‘if’
statement in Step 8 of Algorithm 1 is not required, because
the result of XOR-ing P with y can not be more than the
modulus. Algorithm 1 can be modified to be used for
GF(2k) as shown in Algorithm 2.

Algorithm 2:

Define k: number of bits in x; xi: the ith bit of x
Input: x,y, and f(x); where x,y,f(x) ∈ GF(2k)
Output: P = xy mod f(x)

 4

1. P := 0;
2. For i = k-1 down to 0;

 4

3. {
4. P:= 2P;
5. If Pk =1 Then P:= P⊕ f(x) ;
6. If xi = 1 Then P := P⊕ y;
7. }
8. End;

These two algorithms are implemented in hardware in
the following subsections. The purpose of the
implementations is for proper multiplication comparison
between GF(p) and GF(2k) finite fields.

3.1 GF(p) Modular Multiplication Hardware

Algorithm 1 for GF(p) modulo multiplication is found
to be very suitable for VLSI implementation [11]. It has a
bounding ‘for’ loop, which includes iterative modulo
multiplication reduction operations. The bounding loop can
be designed in hardware as a controller that will control the
number and processes of the iterations. The modulo
multiplication reduction is implemented in hardware with
three adders and three multiplexors connected as shown in
Figure 1. There are no registers in the design, the small
boxes shown are only to show the correct mapping of bit-
flow. The adder can function as a subtractor if one of its
inputs is inverted. The complete process of x.y mod n will
need k clock cycles, if each modulo reduction iteration is
performed in one clock cycle.

The multiplication of P by two (as in step 4 of
Algorithm 1) is performed by a shift to the bits of P toward
the left. The multiplexors: Mux-1, and Mux-3, are
controlled by the subtractor’s output-carry-bit. Therefore,
the complete subtractions are to be made for the Mux to
give the output. Assume ‘k’ is the number of bits we are
working with. The simplest adder, carry ripple adder, is
constructed from k-1 full adders (FA) and one half adder
(HA) [12,13]. Each FA is built of two XOR gates, two
AND gates, and one OR gate [12]. The HA is constructed
of an XOR gate, and an AND gate. The subtractor is
different than the adder with the addition of k NOT gates.
If we use the NOT gate as our gate reference, as described
in [14], each XOR gate is equivalent to three gates, and
each AND and OR gate is the same as two gates [14]. The
Adder’s area will be equivalent to 12k-7 gates. The
subtractor will have an area similar to 13k-7 gates.

Each multiplexor is made of 2k AND gates, k OR gates
and one NOT gate [13]. The area of the multiplexor is
equivalent to 6k+1 NOT gates. The complete hardware
shown in Figure 1 is constructed of the following gates:

(6k-3) XOR+(12k-3)AND+(6k-3)OR+(2k+3)NOT,
which is equivalent to 56k-18 NOT gates. For the reason of
comparison, assume the delay is constant for different
gates. The longest path in the adder and the subtractor is
found to be through 2k gates, because of the carry
propagation. The multiplexor’s delay is through three
gates. The complete GF(p) hardware longest path is found
to be through three adders and three multeplexors, which
made it to be through 6k+9 gates.

Figure 1: GF(p) modulo reduction hardware

3.2 GF(2k) Modular Multiplication Hardware

Algorithm 2, is a modification of Algorithm 1 to make
it suitable for GF(2k). It has a similar bounding ‘for’ loop
the same as Algorithm 1, which make the controller of
GF(2k) the same as GF(p). The GF(2k) modulo
multiplication reduction hardware is shown in Figure 2. It
requires only two multiplexors and two k-parallel XOR
gates. Mux-1 and Mux-2 are to perform the ‘if’
comparisons of step 5 and 6 in Algorithm 2. The number of
gates used in this hardware is 2k XOR+4k AND+2k OR+2
NOT, which is equivalent to 18k-2 NOT gates.

As mentioned before, the addition operation of GF(p) is
replaced by bit-wise XOR-ing which does not have any
carry propagation. This made the area and speed of GF(2k)
multiplication more practical to be used. Referring to the
same assumption of constant delay for different gates, the
longest path for the GF(2k) hardware shown in Figure 2 is
found to be of only 7 gates.

More elaboration on the hardware shown in Figure 2 is
performed to make it modified to be even faster. This
modified design is shown in Figure 3. Its speed is
accomplished with the cost of some more hardware area.
The longest path is made shorter and is found to be through
only 4 gates instead of 7. This modified scheme requires

P

n

y

xi

result

k

k

k

k

y

Adder

LSB 0

k

P
0 MSB

k k+1 k+1

n

Subtractor-1

Mux-1 1
0

Subtractor-2

Mux-3 0
1

MSB
(ignored)

Mux-2 0
1

xi

2P

k+1

2P-n 2P

Carry-out-bit

2P n

Carry-out-bit

 5

three k-parallel XOR gates and a 4×1-multiplexor. The
4×1-multiplexor, as mentioned in [12], is made up of
4k AND + k OR + 2 NOT gates. The GF(2k) modified
hardware area is found to be equivalent to 19k+2 NOT
gates.

 5

 k

P

k+1

f(x)

k
y

xi

k
result

LSB 0

XOR

k+1

2P

k+1

MSB

1
 Mux-1
0

MSB
(ignored)

k+1

XOR

k

y

 0
Mux-2

 1

xi

k

Figure 2: GF(2k) modulo reduction hardware

Figure 3: modified GF(2k) modulo reduction hardware

3.3 Discussion

In order to compare the different hardware designs
described before, their areas and delays are listed in
Table 5. The table is expressed into the number of bits ‘k’
used. Note that the multiplication in GF(2k) requires a fixed

amount of time. While multiplication in GF(p) depends on
the number of bits used. If the numbers, for example, are
expressed into 300-bits, the longest path in GF(p) is found
to be through 1809 gates. This long path makes the design
very slow when compared to the fixed longest path of
GF(2k). The hardware area of GF(p) is found to be around
three times larger than GF(2k).

Modulo
Multiplication

Hardware Design

Area (equivalent
to NOT gates)

Delay
(longest

path # gates)
GF(p) (Figure 1) 56k-18 6k+9
GF(2k) (Figure 2) 18k-2 7
GF(2k) (Figure 3) 19k+2 4

Table 5 comparing the three multipliers

The main problem of GF(p) hardware designs,

compared with GF(2k), is due to the carry propagation
issue. This problem have been tried out to be solved by
several methods. However, none of theses techniques can
have the speed nor the area of GF(2k) [12]. These reasons
made the motivation to choose working with GF(2k)
instead of GF(p) for ECC hardware design.

3.4 Different Implementations of Algorithm 2
Referring to Algorithm 2 for GF(2k) multiplication, the

loop can be unfolded differently to design different
multipliers. It can use any of the two modules of the
modulo reduction designs shown in Figures 2 or 3. The
area difference between the designs of Figure 2 and 3 is not
much, Figure 3 is 5% larger than Figure 2. However, the
speed of the hardware shown in Figure 3 is 43% faster than
the one shown in Figure 2. The speed difference makes the
choice of the hardware of Figure 3 to be the practical
module to be used.

Algorithm 2 can be unfolded and implemented in
several ways. A fully parallel way, where the number of
reduction modules is the same as the number of bits, is
described in the next subsection. Partially parallel methods
will be introduced later.

Fully Parallel Hardware

Completely unfolding Algorithm 2 will give a fully
parallel modulo multiplier. It is assumed that it performs its
computation in one clock cycle. This parallel hardware is
shown in Figure 4.

This GF(2k) parallel multiplier is made of four registers
and k-modulo reduction modules, assuming k is the number
of bits of x and y. All registers are for holding k-bits except
one, which is for f(x), holding k+1 bits. The register
holding the value of x is mapping each bit to a different
modulo reduction unit. The registers holding the bits of y
and f(x) broadcast their bits to all modulo reduction
modules. The longest path in this GF(2k) parallel multiplier
is found to be through 4k gates. This longest path will
define the length of the clock cycle needed.

The area of this design includes the register’s area. The
k-bit register is constructed of k D-Flip-Flops (DFF), where
each DFF is made of six NAND gates as described in [14].
This makes all four registers to be made of 24k+6 NAND

 k

P

k+1

f(x)

k

y

xi

k

result

LSB 0

XOR

k+1

2P
k+1

MSB

k

MSB (ignored)

k

y

XOR

y
00

01

10

11

xi

XOR

 6

gates. Each NAND gate is equivalent to a NOT gate [13],
which makes the registers area of 24k+6 NOT gates. All
the modulo reduction hardware area is equivalent to
19k2+2k NOT gates. The complete GF(2k) fully parallel
multiplier hardware is found to have an area equivalent to
19k2+26k+6 NOT gates. This area is very huge to
implement. In order to design a feasible implementation a
partially parallel hardware is developed.

 6

Figure 4: unfolded GF(2k) parallel multiplier

Partially Parallel Hardware

The data flow graph shown in Figure 4 can be
implemented in hardware in several ways, depending on
the size of the hardware to be implemented. For example, if
the area available for the modular multiplier is equivalent
to 50k NOT gates, only two reduction units can fit in this
area. This means that this hardware will need k/2 clock
cycles to complete a modulo multiplication process. For
this research, the ECC coprocessor is investigated, and
depending on it the proper partial parallel hardware is
designed.

4 ECC Coprocessor
The GF(2k) partially parallel modular multiplier

described before is used as the basic unit in an ECC
coprocessor. Assume P is an elliptic curve point used for
ECC. The ECC algorithm used for calculating nP from P is
the binary method, since it is known to be efficient and
practical to implement in hardware [2,5,7,9,10]. This
binary method algorithm is shown below as Algorithm 3.

Algorithm 3:

Define k: number of bits in n; ni: the ith bit of n
Input: P (a point on the elliptic curve).
Output: Q = nP (another point on the elliptic curve).

1. if nk-1 = 1, then Q:=P else Q:=0;
2. for i = k-2 down to 0;
3. { Q := Q+Q ;
4. if ni = 1 then Q:= Q+P ; }
5. return Q;

The binary method algorithm scans the binary bits of n
and doubles the point Q k-times. Whenever, a particular bit
of n is found to be one, an extra operation is needed. This
extra operation is Q+P. Adding two elliptic curve points
and doubling a point are to be performed in the projective
coordinates system to avoid the inversion operation. The
data flow graph for doubling a point is shown in Figure 5.
It is made of ten multipliers and four k-bit XOR gates.
Figure 6 shows the data flow graph for adding two elliptic
curve points. The hardware of this design if implemented
as shown in Figure 6 is made of twenty multipliers and
seven k-bit XOR gates.

It is found to be unpractical to implement the elliptic
curve point operations as shown in the Figures 5 or 6 for
the different GF(2k) projective coordinate procedure forms.

Figure 5: data flow graphs for the elliptic curve point

operations of projecting (x,y) to (X/Z,Y/Z)

The area of both figures is very large and the clock cycle
will be inefficient. This made the idea of designing
hardware models with a less number of small multipliers

(a) adding two points (b) doubling a point

 H F

 C

C

Y2Z1 X2Z1 X1Z2

A

Y2 Z1 X2 Z1 X1 Z2 X1 Z1 X1 Z1

A+B

 E B

 Y1Z2 Z1Z2 C2

Z2

Y1
C

 X3 Z3 Y3 Z3 X3 Y3

Z2

Z1

E+D

F+C

 E D

 F C
 H C2

 HC2 C3 FG

G
C2 C

 CY1 aHC2 HFG

Y1 a H

C3+aHC2

C3

C3+aHC2+HFG

HFG

IC GI X1F

I
F

X1 G

FX1+CY1

CY1

HC3 JC2

J
C2 H C3

GI+JC2

GI

 X1Z1 X1
2 Z1

2

A

Y1

Z1

A

A+D

D

X1
2

X1
2+A+D

A
E b

X1
4+ bZ1

4

X1
4

B

C

E

 A3 AB EB

A

C

C+BE

 Y1Z1 X1
4 Z1

4

 A2 AX1
4 bZ1

4

.

.

.

 0
k

P

GF(2k) modulo reduction hardware

GF(2k) modulo reduction hardware

k

.

.

.

GF(2k) modulo reduction hardware

k

GF(2k) modulo reduction hardware

k k+1

f(x)

k
X k-1

 k-1 X

X

y 1

X0

 7

more suitable to do as will be clarified in the following
subsections.

 7

f(x)
k+1

X3

k

Start
Slct
Done

Y3

Z3

X1

Z1

Y1

a/b

Clk

X2

Z2

Y2

Reset

Figure 6: data flow graphs for the elliptic curve point

operations of projecting (x,y) to (X/Z2,Y/Z3)

4.1 General Elliptic Curve Point Operation Hardware

Reconsider Algorithm 3 described before, the two
operations to be repeated for k-iterations are doubling an
elliptic curve point and adding a point to another. It is
found that they cannot be performed in parallel (each of
these computations is to be performed separately). This
made the idea of designing a general point operation
hardware.

The general elliptic curve point operation hardware is
outlined in Figure 7. It is informed about the type of
computation to be done through a signal ‘Slct’. If ‘Slct’ is
high, the hardware is to do an elliptic curve doubling
operation. If ‘Slct’ is low, the hardware is to do addition of
two elliptic curve points. The hardware begins its operation
when ‘Start’ signal is raised. The ‘Start’ signal also
indicates to the hardware that all the input data values are
available so the controller will command the registers to
load them

The controller will then command the data flow to be
routed to perform the proper elliptic curve computation.

When the computation is complete a ‘Done’ flag is raised
indicating that the results are ready at the data output pins.

The controller guides the hardware to perform one of
the two operations, each at its appropriate time. The
routing of data is performed through multiplexors to direct
the data flow between the registers and the multipliers and
XOR operation module. The controller is to influence the
multiplexors selection signal and the registers loading
signal.

Figure 7: general elliptic curve point hardware outline

4.2 The ECC Coprocessor

Algorithm 3 is the main procedure to be implemented
in hardware for designing the ECC coprocessor. This
hardware requires nine k-bit registers and one k+1 bit
register for storing the modulus f(x). It contains, other than
the registers, three multiplexors, a counter, a state-machine,
and the general point operation hardware. The
computations are performed in the general point operation
hardware detailed in Figure 7. All components are
controlled by the main state machine. This state machine
resets its states at the beginning. It loads all the input data
values, then, the state machine checks if the most
significant bit of n (nk-1) has the value one it loads P into
register Q. If not, register Q keeps its original values of
zeros. Then, the elliptic curve point operations begin. It
starts with iteration number 1 and proceed until iteration k-
1. Iteration k-1 is the last one to process, where the result
should be ready after it.

4.3 Area Flexibility

The ECC coprocessor is designed to deal with numbers
that are in the order of k-bits. However, The size of the
hardware can be designed depending on the area available.
In other words, the ECC coprocessor is built of two types
of components, fixed size modules and flexible size ones.
All modules are fixed size ones except the multiplier,
which is completely flexible to the area available.
Depending on the area available the number of modulo
multiplication reduction modules are chosen. This flexible
size multiplier is described in depth before.

(a) adding two points (b) doubling a point

Y2 Z2

G G

C

Z2
2 Z1

2 Y2Z1

 Z2 Z1 Y2 Y1 Z1 X1 Z1

 Z2
3 X1Z2

2 X2Z1
2

Y1Z2
3 Z1C Y2Z1

3

 C

Z2 X1 X2

 A B

 A+B

 D G E

D+E

Y2G X2F Z2G

FX2+GY2

X2 F

 H

 Y1Z1 X1
2 Z1

2

C
C+X1

2

X1
2+Z3+C

 X1
4Z3 B2

X1
4Z3+E

 X1
4 X1Z1

2 bZ1
2

X1
2 X1 b

Z3

D

X1+A
B

 A X1

Z3

B4

X3

DX3

E

Y3

Y Z Y Z1 1 2 1

Z1
2

Z3F

F+Z3

 I

C2 IF Z3
2

Z3

C3 G2 aZ3
2

G a

C3+aZ3
2+IF

X3 HG2 IX3

 H G I

 HG2 + IX3 Y3

 8

5 Conclusion

We modified a GF(p) multiplication algorithm to make
suitable for GF(2k). Then, both multiplication algorithms
where modeled as hardware designs to compare them
thoroughly. The modified GF(2k) algorithm showed fixed
fast speed and smaller area relative to the GF(p) multiplier.
A further hardware improvement have been accomplished
to the GF(2k) multiplier to make it 40% faster with an area
cost of 5%.
 The GF(2k) multiplier was used to build an ECC
coprocessor. The point operation was processed in a
projective coordinate manner to avoid the lengthy
inversion computation. In fact, the inversion is needed only
at the beginning and at the end, two times only, which
made the assumption to compute it in software. This design
is attractive because of its simplicity and suitability to be
implemented in VLSI with today’s technology.

6 Acknowledgements

Thanks to Professor Mohammad K. Ibrahim for his
valuable comments and suggestions. Thanks also to
KFUPM for all the support to conduct research.

 8

References

[1] Miyaji A., “Elliptic Curves over FP Suitable for

Cryptosystems”, Advances in cryptology-
AUSCRUPT’92, Australia, December 1992.

[2] Stallings, W. “Cryptography and Network Security:
Principles and Practice”, Second Edition, Prentice Hall
Inc., New Jersey, 1999.

[3] Chung, Sim, and Lee, “Fast Implementation of Elliptic
Curve Defined over GF(pm) on CalmRISC with
MAC2424 Coprocessor”, Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2000,
Massachusetts, August 2000.

[4] Okada, Torii, Itoh, and Takenaka, “Implementation of
Elliptic Curve Cryptographic Coprocessor over GF(2m)
on an FPGA”, Workshop on Cryptographic Hardware
and Embedded Systems, CHES 2000, Massachusetts,
August 2000.

[5] Crutchley, D. A., “Cryptography And Elliptic Curves”,
MS Thesis Supervised by Gareth Jones, Faculty of
Math, University of Southampton, England, May 1999.

[6] Orlando, and Paar, “A High-Performance
Reconfigurable Elliptic Curve Processor for GF(2m)”,
Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2000, Massachusetts, August 2000.

[7] Stinson, D. R., “Cryptography: Theory and Practice”,
CRC Press, Boca Raton, Florida, 1995.

[8] Paar, Fleischmann, and Soria-Rodriguez, “Fast
Arithmetic for Public-Key Algorithms in Galois Fields
with Composite Exponents”, IEEE Transactions on
Computers, Vol. 48, No. 10, October 1999.

[9] Blake, Seroussi, and Smart, “Elliptic Curves in
Cryptography”, Cambridge Univ. Press: NY, 1999.

[10] Hankerson, Hernandez, and Menezes, “Software
Implementation of Elliptic Curve Cryptography Over
Binary Fields”, Workshop on Cryptographic Hardware
and Embedded Systems, CHES 2000, Massachusetts,
August 2000.

[11] Orton, Roy, Scott, Peppard, and Tavares. “VLSI
implementation of public-key encryption algorithms”,
Advances in Cryptology -- CRYPTO '86, pages 277-301,
11-15 August 1986. Springer-Verlag, 1987.

[12] Scott, Norman R., “Computer Number Systems and
Arithmetic”, Prentice-Hall Inc., New Jersey, 1985.

[13] Tocci, and Widmer, “Digital Systems: Principles and
Applications”, Prentice-Hall Inc., New Jersey, 2001.

[14] Ercegovac, Lang, and Moreno, “Introduction to Digital
System”, John Wiley & Sons, Inc., New York, 1999.

[15] Gutub and Tenca, “Efficient Scalable VLSI
Architecture for Montgomery Inversion in GF(p)”,
Integration, the VLSI Journal, Vol. 37, No. 2, 2004.

[16] Adnan Gutub, “Fast Elliptic Curve Cryptographic
Processor Architecture Based On Three Parallel GF(2k)
Bit Level Pipelined Digit Serial Multipliers”, IEEE 10th
International Conference on Electronics, Circuits and
Systems (ICECS 2003), pages 72-75, University of
Sharjah, United Arab Emirates, December 14-17, 2003.

[17] Adnan A. Gutub, “VLSI Core Architecture For GF(P)
Elliptic Curve Crypto Processor”, IEEE 10th
International Conference on Electronics, Circuits and
Systems (ICECS 2003), pages 84-87, University of
Sharjah, United Arab Emirates, December 14-17, 2003.

[18] Ernst, Klupsch, Hauck, and Huss,“Rapid Prototyping
for Hardware Accelerated Elliptic Curve Public-Key
Cryptosystems”, IEEE 12th Inter. Workshop on Rapid
System Prototyping, Monterey, CL, June 25-27, 2001.

	1 Introduction
	2 Elliptic Curves and Their Implementations
	2.1 Comparing GF(p) and GF(2k)
	2.2 Projective Coordinates in GF(p)
	2.3 Projective Coordinates in GF(2k)
	2.4 Remarks

	3 Modular Multiplication Hardware
	Algorithm 1:
	Algorithm 2:

	3.1 GF(p) Modular Multiplication Hardware
	3.2 GF(2k) Modular Multiplication Hardware
	3.3 Discussion
	3.4 Different Implementations of Algorithm 2
	Fully Parallel Hardware
	Partially Parallel Hardware

	4 ECC Coprocessor
	Algorithm 3:
	4.1 General Elliptic Curve Point Operation Hardware
	4.2 The ECC Coprocessor
	4.3 Area Flexibility

	5 Conclusion
	6 Acknowledgements
	References

