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Abstract. Elliptic curve cryptography (ECC) is popularly defined either over GF(p) or GF(2k). This research modifies a GF(p) 
multiplication algorithm to make it applicable for GF(2k). Both algorithms, the GF(p) and GF(2k) one, are designed in 
hardware to be compared. The GF(2k) multiplier is found faster and small. This GF(2k) multiplier is further improved to 
benefit in speed, it gained more than 40% faster speed with the cost of 5% more area. This multiplier is adjusted to have the 
area flexibility feature, which is used as the basic block in modeling a complete projective coordinate ECC coprocessor.  
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1 Introduction 

Cryptography is a well-recognized technique for 
information protection. It is used effectively to protect 
sensitive data such as passwords that are stored in a 
computer, as well as information being transmitted through 
different communication media. Encryption is the 
transformation of data into a form, which is very hard to 
retransform back by anyone without a secret decryption 
key. Even if someone steals the encrypted information, he 
cannot benefit from it. 

Depending on the encryption/decryption key, crypto- 
systems can be classified into two main categories: secret 
key cryptosystems and public key cryptosystems. The 
secret key cryptosystems uses one key for both encryption 
and decryption. Public key cryptosystems, however, use 
two different keys, one for encryption and the other for 
decryption. Secret key cryptosystems is used for encryption 
and decryption of messages, while, public key 
cryptosystems is used for digital signature and key 
exchange schemes. Although public key systems can be 
used for message encryption and decryption, it is found to 
be very slow. This made it practical to be used for digital 
signature and key exchange scheme more than encryption 
and decryption of messages.  

In 1985, Koblitz and Miller independently proposed the 
Elliptic Curve Cryptosystem (ECC) [1,2,3,4,5,6,7,8,9], a 
method based on the Discrete Logarithm problem over the 
points on an elliptic curve. Since that time, ECC has 
received considerable attention from mathematicians 
around the world, and no significant breakthroughs have 
been made in determining weaknesses in the algorithm. 
Although critics are still skeptical as to the reliability of 
this method, several encryption techniques have been 
developed recently using these properties. The fact that the 
problem appears so difficult to crack means that key sizes 
can be reduced in size considerably, even exponentially 
[2,5,8], especially when compared to the key size used by 
other cryptosystems. This made ECC become a challenge 
to the RSA, one of the most popular public key methods 
known. ECC is showing to offer equal security to RSA but 
with much smaller key size. In addition to their simplicity 

and smaller size, ECC are more likely to be adopted in the 
future, especially in systems with limited processing and 
storage resources such as those incorporating mobile 
devices [2]. 

In order to use ECC, an elliptic curve must be defined 
over a specific finite field. Some finite field representations 
may lead to more efficient implementations than others, in 
hardware or in software. The elliptic curve arithmetic can 
be optimized depending on the type of finite field. The 
most popular finite fields used in ECC are Galois Fields, 
GF(p) and GF(2k) [1,2,3,5,10]. In this research, these two 
finite fields are compared. The number of arithmetic 
operations in GF(p) is found to be less than GF(2k), but 
each operation in GF(p) consumes much more time and 
area than GF(2k). This made up working with GF(2k) 
seams to be more efficient than GF(p). 

A basic operation in the ECC arithmetic is modular 
multiplication. This research adjust a GF(p) multiplication 
algorithm to make it applicable for GF(2k). Both 
algorithms are modeled in hardware to be compared and 
analyzed. The GF(2k) multiplier hardware is found to be 
faster and smaller. It is further modified and speeded up 
with a very small cost of area. The GF(2k) multiplier 
hardware is designed with a re-configurable area dependant 
way, such that the hardware is area flexible, it can be 
designed according to what area is available.  

The flow of this paper is as follows; the following 
section will give some background on the elliptic curve 
theory and some efficient implementation study of ECC.  
Then, the GF(p) multiplication algorithm will be modified 
for GF(2k) which made up the basic multiplier hardware. 
After that, a complete ECC coprocessor model is proposed.  

2 Elliptic Curves and Their Implementations 
Elliptic curves are known so because they are described 

by cubic equations, similar to those used in ellipsis 
calculations. The general form for elliptic curve equation 
is:  y2 + axy + by = x3 + cx2 + dx + e. There is also a 
single element named the point at infinity or the zero point 
denoted ‘ϕ’. The point at infinity is computed as the sum of 
any three points on an elliptic curve that lie on a straight 
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line. If a point on the elliptic curve is to be added to 
another point on the curve or to itself, some special 
addition rules are applied depending on the finite field 
used. For more details on the elliptic curve theory, the 
reader is advised to look through [2,5,7,9].  

A finite field is a set of elements that have a finite order 
(number of elements). The order of Galois Field (GF) is 
normally a prime number or a power of a prime number. 
There are many ways of representing the elements of the 
finite field. Some representations may lead to more 
efficient implementations of the field arithmetic in 
hardware or in software. The elliptic curve arithmetic is 
more or less complex depending on the finite field where 
the elliptic curve is applied. GF(p) and GF(2k) are 
considered in this research because of their popularity in 
ECC [1,2,3,5,15,16,17].  

The basic element of an elliptic curve cryptosystem is 
the calculation of the point kP, where kP = P+P. . .+P (k-
times). Designing an efficient ECC hardware coprocessor 
depends tremendously on the type of finite field used. Most 
ECC hardware researches [4,6,8], show that the ECC 
implementations defined over GF(2k) are more suitable 
than GF(p), especially when embedded into restricted area, 
such as smart cards. The simplicity of GF(2k) in hardware 
comes from the possibility of doing arithmetic without 
carry propagation. ECC, however, is not restricted to smart 
cards. There can be some hardware applications where 
GF(p) can be more appropriate to use than GF(2k) [3]. 

The following subsections are going to compare the 
elliptic curve point addition in the two finite fields: GF(p) 
and GF(2k). The comparison is targeted towards finding 
out if GF(p) can possibly be faster than GF(2k). This study 
will compare the number of the most-time-consuming 
operations in both finite fields. The costly arithmetic 
operations are assumed to be multiplication, inversion 
(division), and squaring. Addition, subtraction, and 
multiplication by small constants are not expensive [1,9], 
so their cost is neglected.  

2.1  Comparing GF(p) and GF(2k) 

The addition of two different points on the elliptic 
curve is computed as shown in Table 1. The number of 
operations, as observed, is found to be the same in both 
fields (neglecting the addition, subtraction, and 
multiplication of small numbers [1,9]). Lambda requires 
one inversion and one multiplication in order to be 
calculated. Computing ‘x3’ needs only one squaring of 
lambda. The value of ‘y3’ is figured with one 
multiplication operation of lambda. The number of 
operations in both fields is the same: one inversion, one 
squaring, and two multiplication calculations. 
 

(x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2
GF(p) GF(2k) 

λ = (y2 – y1)/(x2 – x1) 
x3 = λ2 – x1 – x2 
y3 = λ(x1 – x3) – y1

λ = (y2 + y1)/(x2 + x1) 
x3 = λ2 + λ + x1 + x2 + a
y3 = λ(x1 + x3) +  x3 + y1

Table 1 addition of two different points on the elliptic curve 
 
The addition of a point to itself (doubling a point) on 

the elliptic curve is computed as shown in Table 2. 
Computing lambda in GF(p) requires an inversion, a 

multiplication, and a squaring of x1, while it needs an 
inversion and a multiplication in GF(2k). Calculating ‘x3’ in 
both fields want the same operation of squaring lambda. 
Computing ‘y3’ in GF(p) requires only one multiplication, 
while it needs a multiplication and a squaring operations in 
GF(2k). The number of operations is found to be the same 
in both fields: an inversion, two squaring, and two 
multiplication calculations [1,9].  

In point operations of both finite fields GF(p) and 
GF(2k) (adding two points and doubling a point), the 
number of operations is found to be the same. However, 
the time required to complete each operation differ much in 
each field. 
 

(x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0 
GF(p) GF(2k) 

λ = (3(x1)2 + a) /(2y1) 
x3 = λ2 – 2x1 
y3 = λ(x1 – x3) – y1

λ = x1
 + (y1)/(x1) 

x3 = λ2 + λ + a 
y3 = (x1)2 + (λ + 1) x3

Table 2 doubling a point on the elliptic curve 
 

Crutchley [5] in his master thesis have made a time 
comparison between GF(p) and GF(2k). His result shows 
that the multiplication process in GF(p) is the only faster 
operation than GF(2k). All other operations are reported to 
be slower in GF(p) than in GF(2k). It seems that his 
conclusions are generated from a software implementation 
of the operations. Hardware multipliers are found to be 
faster in GF(2k) than in GF(p), as studied in a following 
section. 

Calculating the inverse is the most expensive operation. 
Designs replace the inversion by several multiplication 
operations by representing the elliptic curve points as 
projective coordinate points [1,4,7,9]. 

2.2  Projective Coordinates in GF(p) 

The projective coordinates are used to eliminate the 
need for performing inversion. For elliptic curve defined 
over GF(p), two different forms of formulas are found 
[1,9] for point addition and doubling. One form projections 
(x,y)=(X/Z2,Y/Z3) [9], while the second projects 
(x,y)=(X/Z,Y/Z)  [1].  
  The two forms procedures for projective point addition 
of P+Q (two elliptic curve points) is shown below: 

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q 

(x,y)=(X/Z2,Y/Z3) (X,Y,Z)  (x,y)=(X/Z,Y/Z) (X,Y,Z) 
λ1 = X1Z2

2 2M λ1 = X1Z2 1M 
λ2 = X2Z1

2 2M λ2 = X2Z1 1M 
λ3 = λ1 - λ2  λ3 = λ2 - λ1  
λ4 = Y1Z2

3 2M λ4 = Y1Z2 1M 
λ5 = Y2Z1

3 2M λ5 = Y2Z1 1M 
λ6 = λ4 - λ5  λ6 = λ5 - λ4  
λ7 = λ1 + λ2  λ7 = λ1 + λ2  
λ8 = λ4 + λ5  λ8 =λ6

2 Z1Z2-λ3
2λ7 5M 

Z3 = Z1Z2λ3 2M Z3 = Z1Z2λ3
3 2M 

X3 = λ6
2 - λ7λ3

2 3M X3 = λ8λ3 1M 
λ9 = λ7λ3

2 – 2X3  λ9 = λ3
2 X1Z2 - λ8 1M 

Y3 = (λ9λ6 - λ8λ3
3)/2 3M Y3 = λ9λ6 - λ3

3 Y1Z2 2M 
 -----  ----- 
 16 M  15M 
 

Similarly, the two forms of formulas for projective point 
doubling is shown below: 



 3

 3

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3) 

(x,y)=(X/Z2, Y/Z3)  (X,Y,Z) (x, y) = (X/Z, Y/Z)  (X,Y,Z) 
λ1 = 3X1

2 + aZ1
4 4M λ1 = 3X1

2 + aZ1
2 2M 

Z3 = 2Y1Z1 1M λ2 = Y1Z1 1M 
λ2 = 4X1 Y1

2 2M λ3 = X1Y1λ2 2M 
X3 = λ1

2
 - 2λ2 1M λ4 = λ1

2 - 8λ3 1M 
λ3 = 8Y1

4 1M X3 = 2λ4λ2 1M 

λ4 = λ2 - 2X3  Y3=λ1(4λ3-λ4)–8(Y1λ2)2 3M 

Y3 = λ1λ4 -λ3 1M Z3 = 8 λ2
3 2M 

 ------  ----- 
 10M  12M 
 

The squaring calculation over GF(p) is very similar to 
the multiplication computation. They both are noted as M 
(multiplication). It is worth noting that any EC crypto 
processor must implement the procedures of projective 
coordinates efficiently since they are the core steps of the 
point operation algorithm of ECC. 

2.3  Projective Coordinates in GF(2k) 

For elliptic curve defined over GF(2k), to eliminate the 
need for performing inversion, its coordinates (x, y) are to 
be projected to (X, Y, Z). Similar in principle to GF(p) 
projective coordinates, two different forms of formulas are 
found [9,18] for point addition and doubling. One form 
projects (x,y)=(X/Z2,Y/Z3) [9], while the second projects 
(x,y)=(X/Z,Y/Z)  [18].  
  The two forms procedures for projective point addition 
of P+Q (two elliptic curve points) is shown below: 

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q 
(x,y)=(X/Z2,Y/Z3) (X,Y,Z)  (x,y)=(X/Z,Y/Z) (X,Y,Z) 
A = X1Z2

2 2M A = X1Z2 1M 
B = X2Z1

2 2M B = X2Z1 1M 
C = A+B  C = A+B  
D = Y1Z2

3 2M D = Y1Z2 1M 
E = Y2Z1

3 2M E = Y2Z1 1M 
F = D+E  F = D+E  
G = Z1C 1M G= C+F  
H = FX2+GY2 2M H= Z1Z2 1M 
Z3 = GZ2 1M I=C3+aHC2+HFG 6M 
I =F+Z3  X3 = CI 1M 
X3= aZ3

2+IF+C3 5M Z3 = HC3 1M 
Y3= IX3+HG2 3M Y3=GI+C2[FX1+CY1] 5M 
 -----  ----- 
 20 M  17M 
 
Similarly, the two forms of formulas for projective point 
doubling are shown below: 

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3) 
(x,y)=(X/Z2, Y/Z3)  (X,Y,Z)    (x, y) = (X/Z, Y/Z)  (X,Y,Z) 
Z3=X1Z1

2 2M A=X1Z1 1M 
A = bZ1

2 1M B= bZ1
4+X1

4 5M 
B = X1+A  C= AX1

4 1M 
X3 = B4 2M D=Y1Z1 1M 
C = Z1Y1 1M E=X1

2+D+A  
D=Z3+X1

2+C 1M Z3=A3 2M 
E = DX3 1M X3=AB 1M 
Y3 = X1

4Z3+E 2M Y3= C+BE 1M 
 ------  ----- 
 10M  12M 
 

The squaring calculation over GF(2k) is assumed very 
similar to the multiplication computation. They are both 
denoted as M (multiplication) in the above. Since the 
number of additions is taken to be, on the average, half the 
number of bits, it can be clearly seen form the above tables 
that the projective coordinate (x,y) = (X/Z2,Y/Z3) has on the 

average 20 multiplication iteration, while the projection 
(x,y) = (X/Z,Y/Z)  has on the average 20.5 multiplications.   
Clearly, the former would be the projection of choice for 
sequential implementation. However, as will be discussed 
later, the projection (x,y) = (X/Z,Y/Z) has an advantage for 
parallel implementation.  

2.4  Remarks 

As can be observed from before, the number of 
multiplication processes for adding and doubling two EC 
points in GF(p) is found to be different than GF(2k). 
Furthermore, this number is different depending on the 
specific procedure used in the field, i.e. (X/Z,Y/Z) or 
 (X/Z2,Y/Z3). Comparison of the number of operations to 
chose the proper finite field is not accurate because 
operations in GF(p) require completely different 
calculation time than GF(2k). 

The following section will implement two modulo 
multiplication hardware for both fields GF(p) and GF(2k). 
The two hardware designs will be compared depending on 
speed and area to compute ECC arithmetic computations. 

3 Modular Multiplication Hardware 

The straightforward approach to compute modular 
multiplication is by performing multiplication followed by 
reduction [2,7]. The multiplication can be computed 
through several addition operations. Then, the reduction is 
performed through several subtractions, by subtracting the 
modulus several times until the result is less than the 
modulus. This approach is inefficient and suffers from very 
low speed. It can, however, be improved by merging 
modulo subtraction with the multiplication-add operations 
[11], as Algorithm 1.  

Algorithm 1: 

Define k: number of bits in x;   xi: the ith bit of x  
Input:  x,y, and n; where x,y < n;   
Output: P = xy mod n 
 
1. P := 0; 
2. For i = k-1 down to 0;  
3.  { 
4.  P:= 2P; 
5.  If P ≥ n Then P:= P – n ; 
6.  If xi = 1 Then 
7.   {P := P + y; 
8.   If P ≥ n Then P:= P – n}; 
9.  } 
10. End; 
 

Algorithm 1 is developed for GF(p). In order to use this 
algorithm for GF(2k), the carry propagation is not needed 
any more. All the addition and subtraction operations are 
replaced by exclusive-OR (XOR) computations. The ‘if’ 
statement in Step 8 of Algorithm 1 is not required, because 
the result of XOR-ing P with y can not be more than the 
modulus. Algorithm 1 can be modified to be used for 
GF(2k) as shown in Algorithm 2.  

Algorithm 2: 

Define k: number of bits in x; xi: the ith bit of x  
Input:  x,y, and f(x); where x,y,f(x) ∈ GF(2k)   
Output: P = xy mod f(x) 
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1. P := 0; 
2. For i = k-1 down to 0;  

 4

3.  { 
4.  P:= 2P; 
5.  If Pk =1 Then  P:= P⊕ f(x) ; 
6.  If xi = 1  Then P := P⊕ y; 
7.  }  
8. End; 
 

These two algorithms are implemented in hardware in 
the following subsections. The purpose of the 
implementations is for proper multiplication comparison 
between GF(p) and GF(2k) finite fields. 

3.1  GF(p) Modular Multiplication Hardware 

Algorithm 1 for GF(p) modulo multiplication is found 
to be very suitable for VLSI implementation [11]. It has a 
bounding ‘for’ loop, which includes iterative modulo 
multiplication reduction operations. The bounding loop can 
be designed in hardware as a controller that will control the 
number and processes of the iterations. The modulo 
multiplication reduction is implemented in hardware with 
three adders and three multiplexors connected as shown in 
Figure 1.  There are no registers in the design, the small 
boxes shown are only to show the correct mapping of bit-
flow. The adder can function as a subtractor if one of its 
inputs is inverted. The complete process of x.y mod n will 
need k clock cycles, if each modulo reduction iteration is 
performed in one clock cycle. 

The multiplication of P by two (as in step 4 of 
Algorithm 1) is performed by a shift to the bits of P toward 
the left. The multiplexors: Mux-1, and Mux-3, are 
controlled by the subtractor’s output-carry-bit. Therefore, 
the complete subtractions are to be made for the Mux to 
give the output. Assume ‘k’ is the number of bits we are 
working with. The simplest adder, carry ripple adder, is 
constructed from k-1 full adders (FA) and one half adder 
(HA) [12,13]. Each FA is built of two XOR gates, two 
AND gates, and one OR gate [12]. The HA is constructed 
of an XOR gate, and an AND gate. The subtractor is 
different than the adder with the addition of k NOT gates. 
If we use the NOT gate as our gate reference, as described 
in [14], each XOR gate is equivalent to three gates, and 
each AND and OR gate is the same as two gates [14]. The 
Adder’s area will be equivalent to 12k-7 gates. The 
subtractor will have an area similar to 13k-7 gates.        

Each multiplexor is made of 2k AND gates, k OR gates 
and one NOT gate [13]. The area of the multiplexor is 
equivalent to 6k+1 NOT gates. The complete hardware 
shown in Figure 1 is constructed of the following gates:  

(6k-3) XOR+(12k-3)AND+(6k-3)OR+(2k+3)NOT, 
which is equivalent to 56k-18 NOT gates. For the reason of 
comparison, assume the delay is constant for different 
gates. The longest path in the adder and the subtractor is 
found to be through 2k gates, because of the carry 
propagation. The multiplexor’s delay is through three 
gates. The complete GF(p) hardware longest path is found 
to be through three adders and three multeplexors, which 
made it to be through 6k+9 gates. 

 

 
Figure 1: GF(p) modulo reduction hardware 

 

3.2  GF(2k) Modular Multiplication Hardware 

Algorithm 2, is a modification of Algorithm 1 to make 
it suitable for GF(2k). It has a similar bounding ‘for’ loop 
the same as Algorithm 1, which make the controller of 
GF(2k) the same as GF(p). The GF(2k) modulo 
multiplication reduction hardware is shown in Figure 2. It 
requires only two multiplexors and two k-parallel XOR 
gates. Mux-1 and Mux-2 are to perform the ‘if’ 
comparisons of step 5 and 6 in Algorithm 2. The number of 
gates used in this hardware is 2k XOR+4k AND+2k OR+2 
NOT, which is equivalent to 18k-2 NOT gates. 

As mentioned before, the addition operation of GF(p) is 
replaced by bit-wise XOR-ing which does not have any 
carry propagation. This made the area and speed of GF(2k) 
multiplication more practical to be used. Referring to the 
same assumption of constant delay for different gates, the 
longest path for the GF(2k) hardware shown in Figure 2 is 
found to be of only 7 gates. 

More elaboration on the hardware shown in Figure 2 is 
performed to make it modified to be even faster. This 
modified design is shown in Figure 3. Its speed is 
accomplished with the cost of some more hardware area. 
The longest path is made shorter and is found to be through 
only 4 gates instead of 7. This modified scheme requires 
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three k-parallel XOR gates and a 4×1-multiplexor. The 
4×1-multiplexor, as mentioned in [12], is made up of 
4k AND + k OR + 2 NOT gates. The GF(2k) modified 
hardware area is found to be equivalent to 19k+2 NOT 
gates. 
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Figure 2: GF(2k) modulo reduction hardware 
 
 

 
Figure 3: modified GF(2k) modulo reduction hardware 

 

3.3  Discussion 

In order to compare the different hardware designs 
described before, their areas and delays are listed in 
Table 5. The table is expressed into the number of bits ‘k’ 
used. Note that the multiplication in GF(2k) requires a fixed 

amount of time. While multiplication in GF(p) depends on 
the number of bits used. If the numbers, for example, are 
expressed into 300-bits, the longest path in GF(p) is found 
to be through 1809 gates. This long path makes the design 
very slow when compared to the fixed longest path of 
GF(2k). The hardware area of GF(p) is found to be around 
three times larger than GF(2k).  
 

Modulo 
Multiplication  

Hardware Design 

Area (equivalent  
to NOT gates) 

Delay 
(longest  

path # gates) 
GF(p) (Figure 1) 56k-18 6k+9 
GF(2k) (Figure 2) 18k-2 7 
GF(2k) (Figure 3) 19k+2 4 

 
Table 5 comparing the three multipliers 

     
The main problem of GF(p) hardware designs, 

compared with GF(2k), is due to the carry propagation 
issue. This problem have been tried out to be solved by 
several methods. However, none of theses techniques can 
have the speed nor the area of GF(2k) [12]. These reasons 
made the motivation to choose working with GF(2k) 
instead of GF(p) for ECC hardware design. 

 

3.4  Different Implementations of Algorithm 2 
Referring to Algorithm 2 for GF(2k) multiplication, the 

loop can be unfolded differently to design different 
multipliers. It can use any of the two modules of the 
modulo reduction designs shown in Figures 2 or 3. The 
area difference between the designs of Figure 2 and 3 is not 
much, Figure 3 is 5% larger than Figure 2. However, the 
speed of the hardware shown in Figure 3 is 43% faster than 
the one shown in Figure 2. The speed difference makes the 
choice of the hardware of Figure 3 to be the practical 
module to be used. 

 

Algorithm 2 can be unfolded and implemented in 
several ways. A fully parallel way, where the number of 
reduction modules is the same as the number of bits, is 
described in the next subsection. Partially parallel methods 
will be introduced later.  

Fully Parallel Hardware 

Completely unfolding Algorithm 2 will give a fully 
parallel modulo multiplier. It is assumed that it performs its 
computation in one clock cycle. This parallel hardware is 
shown in Figure 4.  

This GF(2k) parallel multiplier is made of four registers 
and k-modulo reduction modules, assuming k is the number 
of bits of x and y. All registers are for holding k-bits except 
one, which is for f(x), holding k+1 bits. The register 
holding the value of x is mapping each bit to a different 
modulo reduction unit. The registers holding the bits of y 
and f(x) broadcast their bits to all modulo reduction 
modules. The longest path in this GF(2k) parallel multiplier 
is found to be through 4k gates.  This longest path will 
define the length of the clock cycle needed. 

The area of this design includes the register’s area. The 
k-bit register is constructed of k D-Flip-Flops (DFF), where 
each DFF is made of six NAND gates as described in [14]. 
This makes all four registers to be made of 24k+6 NAND 
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gates. Each NAND gate is equivalent to a NOT gate [13], 
which makes the registers area of 24k+6 NOT gates. All 
the modulo reduction hardware area is equivalent to 
19k2+2k NOT gates. The complete GF(2k) fully parallel 
multiplier hardware is found to have an area equivalent to 
19k2+26k+6  NOT gates. This area is very huge to 
implement. In order to design a feasible implementation a 
partially parallel hardware is developed. 
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Figure 4: unfolded GF(2k) parallel multiplier 
 

Partially Parallel Hardware 

The data flow graph shown in Figure 4 can be 
implemented in hardware in several ways, depending on 
the size of the hardware to be implemented. For example, if 
the area available for the modular multiplier is equivalent 
to 50k NOT gates, only two reduction units can fit in this 
area. This means that this hardware will need k/2 clock 
cycles to complete a modulo multiplication process. For 
this research, the ECC coprocessor is investigated, and 
depending on it the proper partial parallel hardware is 
designed. 

4 ECC Coprocessor 
The GF(2k) partially parallel modular multiplier 

described before is used as the basic unit in an ECC 
coprocessor. Assume P is an elliptic curve point used for 
ECC. The ECC algorithm used for calculating nP from P is 
the binary method, since it is known to be efficient and 
practical to implement in hardware [2,5,7,9,10]. This 
binary method algorithm is shown below as Algorithm 3. 

Algorithm 3: 

Define k: number of bits in n; ni: the ith bit of n  
Input:  P (a point on the elliptic curve). 
Output:  Q = nP (another point on the elliptic curve). 
 

1.  if nk-1 = 1, then Q:=P else Q:=0; 
2.  for i = k-2 down to 0; 
3.   { Q := Q+Q ; 
4.      if ni = 1 then Q:= Q+P ; } 
5.  return Q; 
 

The binary method algorithm scans the binary bits of n 
and doubles the point Q k-times. Whenever, a particular bit 
of n is found to be one, an extra operation is needed. This 
extra operation is Q+P. Adding two elliptic curve points 
and doubling a point are to be performed in the projective 
coordinates system to avoid the inversion operation. The 
data flow graph for doubling a point is shown in Figure 5. 
It is made of ten multipliers and four k-bit XOR gates. 
Figure 6 shows the data flow graph for adding two elliptic 
curve points. The hardware of this design if implemented 
as shown in Figure 6 is made of twenty multipliers and 
seven k-bit XOR gates.  

It is found to be unpractical to implement the elliptic 
curve point operations as shown in the Figures 5 or 6 for 
the different GF(2k) projective coordinate procedure forms.  
 

 
Figure 5: data flow graphs for the elliptic curve point 

operations of projecting (x,y) to (X/Z,Y/Z)  
 
The area of both figures is very large and the clock cycle 
will be inefficient. This made the idea of designing 
hardware models with a less number of small multipliers 
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more suitable to do as will be clarified in the following 
subsections. 
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Figure 6: data flow graphs for the elliptic curve point 

operations of projecting (x,y) to (X/Z2,Y/Z3) 
 

4.1  General Elliptic Curve Point Operation Hardware 

Reconsider Algorithm 3 described before, the two 
operations to be repeated for k-iterations are doubling an 
elliptic curve point and adding a point to another. It is 
found that they cannot be performed in parallel (each of 
these computations is to be performed separately). This 
made the idea of designing a general point operation 
hardware. 

The general elliptic curve point operation hardware is 
outlined in Figure 7. It is informed about the type of 
computation to be done through a signal ‘Slct’. If ‘Slct’ is 
high, the hardware is to do an elliptic curve doubling 
operation. If ‘Slct’ is low, the hardware is to do addition of 
two elliptic curve points. The hardware begins its operation 
when ‘Start’ signal is raised. The ‘Start’ signal also 
indicates to the hardware that all the input data values are 
available so the controller will command the registers to 
load them 

The controller will then command the data flow to be 
routed to perform the proper elliptic curve computation. 

When the computation is complete a ‘Done’ flag is raised 
indicating that the results are ready at the data output pins. 

The controller guides the hardware to perform one of 
the two operations, each at its appropriate time. The 
routing of data is performed through multiplexors to direct 
the data flow between the registers and the multipliers and 
XOR operation module. The controller is to influence the 
multiplexors selection signal and the registers loading 
signal.  
 

 

 
 

Figure 7: general elliptic curve point hardware outline 
 

4.2  The ECC Coprocessor 

Algorithm 3 is the main procedure to be implemented 
in hardware for designing the ECC coprocessor. This 
hardware requires nine k-bit registers and one k+1 bit 
register for storing the modulus f(x). It contains, other than 
the registers, three multiplexors, a counter, a state-machine, 
and the general point operation hardware. The 
computations are performed in the general point operation 
hardware detailed in Figure 7. All components are 
controlled by the main state machine. This state machine 
resets its states at the beginning. It loads all the input data 
values, then, the state machine checks if the most 
significant bit of n (nk-1) has the value one it loads P into 
register Q. If not, register Q keeps its original values of 
zeros. Then, the elliptic curve point operations begin. It 
starts with iteration number 1 and proceed until iteration k-
1. Iteration k-1 is the last one to process, where the result 
should be ready after it. 

4.3  Area Flexibility 

The ECC coprocessor is designed to deal with numbers 
that are in the order of k-bits. However, The size of the 
hardware can be designed depending on the area available. 
In other words, the ECC coprocessor is built of two types 
of components, fixed size modules and flexible size ones. 
All modules are fixed size ones except the multiplier, 
which is completely flexible to the area available. 
Depending on the area available the number of modulo 
multiplication reduction modules are chosen. This flexible 
size multiplier is described in depth before. 
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5 Conclusion 

We modified a GF(p) multiplication algorithm to make 
suitable for GF(2k). Then, both multiplication algorithms 
where modeled as hardware designs to compare them 
thoroughly. The modified GF(2k) algorithm showed fixed 
fast speed and smaller area relative to the GF(p) multiplier. 
A further hardware improvement have been accomplished 
to the GF(2k) multiplier to make it 40% faster with an area 
cost of 5%.     
 The GF(2k) multiplier was used to build an ECC 
coprocessor. The point operation was processed in a 
projective coordinate manner to avoid the lengthy 
inversion computation. In fact, the inversion is needed only 
at the beginning and at the end, two times only, which 
made the assumption to compute it in software. This design 
is attractive because of its simplicity and suitability to be 
implemented in VLSI with today’s technology. 
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