

Exploit Kashida Adding to Arabic e-Text for High Capacity Steganography

Ahmed Al-Nazer
Saudi Aramco, Dhahran

Saudi Arabia
ahmed.nazer@aramco.com

Adnan Gutub

King Fahd University of Petroleum & Minerals,
Dhahran, Saudi Arabia
gutub@kfupm.edu.sa

Abstract—Steganography is the ability to hide information in a
cover media such as text, and pictures. An improved approach
is proposed to embed secret into Arabic text cover media using
Kashida, an Arabic extension character. The proposed
approach is maximizing the use of Kashida to hide more
information, represented in binary bits, in Arabic text cover
media. A stego system has been developed based on this
approach. After sufficient testing and evaluation, our system
shows promising performance in terms of capacity.

Keywords—text steganography, text watermarking, text hiding,
Arabic text, maximizing capacity, Kashida

I. INTRODUCTION

Steganography is defined as “the art and science of
writing hidden messages in such a way that no one apart
from the sender and intended recipient even realizes there is
a hidden message” [1]. The advantage of steganography is
that the messages do not attract attention to themselves, to
senders and to receivers [1].

Steganography works as we hide information in un-
used and redundant bits in any cover media such as pictures
and sound files. Hiding such bits in text is more challenging
because we have less un-used bits but the result is more
appreciated since it has less size and it is easier to transfer
over the network [4,5].

Different human being languages have different
characteristics and properties. Text steganography as it is
hiding a secret inside text has dependencies on the language
used as cover media. In Arabic language, there are 28
different characters. Arabic characters are joined when
writing words contain more than one character. Depending
on the joined characters, an extension character (Kashida)
may be embedded between two Arabic characters.

There are two purposes of using the extension character
(Kashida) in Arabic text. One is to decorate the Arabic text
format so that it looks better and more convenient. Second
is to justify the Arabic writings within lines. It is similar to
English where spaces are used for justifying the text in
lines. The advantage of using Kashida in Arabic text

formatting and justifying the lines does not affect the
writing contents [2].

In this paper, a new approach is proposed to maximize
the use of Kashida between joined Arabic characters. This
approach is based on putting Kashida wherever possible in
the join between different Arabic characters. This work
enhances previous work done using Kashida for
Steganography or Watermarking [6, 7, 8]. This method has
been developed as a stego system for Arabic e-text called
MSCUKAT (Maximizing Steganography Capacity Using
Kashida in Arabic Text).

The rest of this paper is organized as follows. First,
brief background information about Arabic characters
properties is presented. Then, a review of work related to
utilizing Kashida in Arabic text steganography. Next, the
proposed approach is described in details. Afterwards,
evaluation and testing results are reported and comparison
to the previous work is analyzed. Finally, a conclusion will
summarize the findings.

II. BACKGROUND

In [2], the paper proposes a new watermarking

technique to hide a secret by utilizing the extension
character in Arabic language (Kashida) with the pointed
Arabic letters to hide a secret. To hide the secret bits, the
authors proposed using Kashida with pointed letters to
represent ‘one’ while Kashida with un-pointed letters to
represent ‘zero’. This method is under secrecy feature
coding methods.

The results of applying this technique give a good
performance in capacity while security is still under low
precision. A comparison between the result of this
technique and previous work done by Shirazi will give a
clear idea about the increased capacity. A recommended
future work is to use Kashida alone and this is our part in
the project. Our approach is extending this approach in [2,
6] by extending the Arabic text using Kashida whenever
possible in the text as performed differently in [7,8]. For

that, we have defined the rules where Kashida can fit in the
text.

III. PROPOSED APPROACH

The objective of the project is to build a steganography
schema and tool that utilize the extension character
(Kashida) in Arabic language to hide a secret. As part of the
project, a study is done to know which Arabic letters can be
extended and to define the rules for MSCUKAT to embed
Kashida in Arabic text. In this study, we make sure that
whenever we add Kashida it does not affect the look of the
text.

The idea and motivation of this project is to maximize
the capacity by utilizing all possible location for Kashida in
the Arabic letters.

There are 28 letters in Arabic language. Some letters
have more than one format. For example, the letter { ا } has
6 formats { ا, ئ, إ, ؤ, أ, آ }.

Kashida can come before certain letter formats and after
certain letter formats. In both cases, Kashida can’t start a
word and can’t end a word, i.e. Kashida can’t come in the
beginning of a word and can’t come in the end of a word.

We can put Kashida after all Arabic letters if it is not last
letter and it is not from the letters: { أ ، و ، د، ذ ، ر ، ز}, in
addition to the {ة} format of the letter {ت}.

For example, let’s take the word “آـمـال”. We saw here
we could put two Kashidas in 4 letters word. We could not
put after the last letter {ل} and after {أ}.

We have studied Arabic letters to see their applicability
to add Kashida. Based on our study, we define the letters
that can come after Kashida which are the following table.
Also we have studied the letters that can come before
Kashida as part of our MSCUKAT technique. The
following table shows also those letters.

The following table shows the Arabic letters and their
applicability to be extended. It shows the 28 Arabic letters
followed by 35 letter formats. Then, it shows if Kashida
comes before the letter with an example. Finally, it shows if
Kashida comes after the letter with an example again.

Although the letter (ل) can accept Kashida after the
letter, there are four exceptions. They happen when the
letter (ل) is followed directly by one format of the letter (أ).
Those letter formats are (ا ,إ ,أ ,آ). In Arabic language, those
two letters () and () when followed by each other, they are
written in well known look: (لا، لأ، لإ، لآ). Arabic reader does
not see it convenient if Kashida came between. Hence, we
exclude Kashida to come between those letters.

Based on the above study, we put Kashida where it is
applicable and the bit representation of the secret has value
of 1. A programming language (C#) with Dot Net
Framework 2.0 is used for encoding and decoding the secret
message.

Table 1: Arabic Letters and Their Applicability for
Kashida before and after the letter

Arabic
Letter

Letter
Format

Num.
Rep.

Applicable
for Kashida
Before letter

Applicable
for Kashida
After letter

 No آـ Yes ـآ 1570 آ
 No أـ Yes ـأ 1571 أ
 No ؤـ Yes ـؤ 1572 ؤ
 No إـ Yes ـإ 1573 إ
 Yes ئـ Yes ئـ 1574 ئ

 أ

ـا Yes ـا 1575 ا No
 Yes بـ Yes ـب 1576 ب ب

 No ةـ Yes ـة 1577 ة

 Yes تـ Yes ـت 1578 ت ت
 Yes ثـ Yes ـث 1579 ث ث
 Yes جـ Yes ـج 1580 ج ج
 Yes حـ Yes ـح 1581 ح ح
 Yes خـ Yes ـخ 1582 خ خ
 No دـ Yes ـد 1583 د د
 No ذـ Yes ـذ 1584 ذ ذ
 No رـ Yes ـر 1585 ر ر
 No زـ Yes ـز 1586 ز ز
 Yes سـ Yes ـس 1587 س س
 Yes شـ Yes ـش 1588 ش ش
 Yes صـ Yes ـص 1589 ص ص
 Yes ضـ Yes ـض 1590 ض ض
 Yes طـ Yes ـط 1591 ط ط
 Yes ظـ Yes ـظ 1592 ظ ظ
 Yes عـ Yes ـع 1593 ع ع
 Yes غـ Yes ـغ 1594 غ غ
 Yes فـ Yes ـف 1601 ف ف
 Yes قـ Yes ـق 1602 ق ق
 Yes آـ Yes ـك 1603 ك ك
 Yes لـ Yes ـل 1604 ل ل
 Yes مـ Yes ـم 1605 م م
 Yes نـ Yes ـن 1606 ن ن
 Yes هـ Yes ـه 1607 ه ه
 No وـ Yes ـو 1608 و و

 Yes ىـ Yes ـى 1609 ى

 Yes يـ Yes ـي 1610 ي ي

The cover media which is represented in an Arabic text
is taken from text files so the program will take the Arabic
text and embed a secret message in it using MSCUKAT
technique. Moreover, the secret can be read from a text file
and then converted to binary representation. The program is
able to extract the secret from the cover media that has an
embedded secret. The following image is a snapshot of the
MSCUKAT application.

Figure 1: Snapshot of the MSCUKAT application

IV. EXPERIMENTAL RESULTS

In the evaluation phase of MSCUKAT, we compare the
previous approach done in [2] which is focusing on adding
Kashida after dotted letters in Arabic text. The main factor
we compare is the capacity. We define the capacity as
number of applicable places that we can add Kashida in the
cover media to hide a secret.

For example, if we have cover with size 100 letters and
we have a secret of 16 bits. We observe that we can hide the
16 bits using Kashida where it is applicable in the first 80
letters of the cover media. Hence the capacity of the cover
media is 80 to hide that secret. The percentage of the
capacity is 16/80 = 20%.

For dotted letters, we implemented the algorithm in [2]
and we have selected to put Kashida after dotted letter if we
want to hide 1 and put Kashida after non-dotted letter if we
want to hide 0.

The data used in the experiment is taken from 15
Khotbas, Friday’s speeches, of Ibn Othaimeen, Islamic
scholar, with different length for each [3].

Based on the experiments we did, we observe that using
MSCUKAT is giving much more capacity than using
Kashida with dotted letters.

We have two experiments. The first one, we make the
secret constant (352 bits) and we change the cover media.
The following table shows the results.

Table 2: Comparison between MSCUKAT and Kashida
with Dotted Letters with fixed secret

MSCUKAT Dotted Letters

Cover
Media
Lengt
h

Capacity Per % Capacity Per %

1 2,357 861 40.88 1,653 21.29
2 2,503 845 41.66 1,785 19.72
3 2,905 977 36.03 1,649 21.35
4 2,990 909 38.72 1,741 20.22
5 3,137 962 36.59 1,681 20.94
6 3,337 997 35.31 1,883 18.69
7 3,591 924 38.10 1,677 20.99
8 3,656 933 37.73 1,622 21.70
9 3,689 873 40.32 1,639 21.48
10 3,713 930 37.85 1,751 20.10
11 3,747 894 39.37 1,784 19.73
12 3,794 921 38.22 1,606 21.92
13 3,893 855 41.17 1,603 21.96
14 4,040 932 37.77 1,728 20.37
15 5,567 880 40.00 1,623 21.69

Average 39.00 21.00

Using MSCUKAT gives an average of 39% capacity,

that is mean we can utilize 39% of the cover media to hide a
certain secret of length 352 bits. On the other hand, using
Kashida with dotted letters gives an average of 21%
capacity to hide the same secret. Clearly, using MSCUKAT
is giving 186% better than using Kashida with dotted
letters. The following chart visualizes the above table.

Figure 2: Comparison between MSCUKAT and Kashida

with Dotted Letters with fixed secret

In the second experiment, we fix the cover-media with
length 5567 characters (Last Khotba) and we change the
secret. We have selected 8 different secrets; each one of
them represents part of Surat AlFatiha, the first Sura in
Holy Quran. Then, we covert each part to its bit-
representation to be hided inside the fixed cover-media. The
following table shows the result of this experiment.

Table 3: Comparison between MSCUKAT and Kashida

with Dotted Letters with fixed cover-media

MSCUKAT Dotted Letters

Secret
Lengt
h

Capacity Per % Capacity Per %

1 208 540 38.52 996 20.88
2 224 580 38.62 1,090 20.55
3 352 880 40.00 1,623 21.69
4 336 846 39.72 1,623 20.07
5 336 846 39.72 1,647 20.40
6 352 880 40.00 1,680 20.95
7 352 880 40.00 1,647 21.37
8 464 1,168 39.73 2,178 21.30

Average 39.50 20.90

We observe that in the two experiments we have similar

average capacity for both MSCUKAT and dotted-letters.
MSCUKAT is giving better capacity. Whether we fix the
secret and change the cover media or we fix the cover
media and change the secret, we have similar results.

In the second experiment, we observe that having same-
length secrets with different bits affect the capacity. This
effect is taking place event if we have the same cover-
media.

The following graph represents the second experiment
results which are located in Table-3.

Figure 3: Comparison between MSCUKAT and Kashida

with Dotted Letters with fixed cover media

Although the size of embedded secret in the cover media
will not change, the observed limitation of the capacity of
using Kashida with dotted letters affect the ability to hide a
long secret in a limited size cover media. It means if we
have a long secret, there is high probability that Kashida
with dotted letters will not survive. This implies an
advantage of using MSCUKAT that it gives us more
possibility to hide longer secrets.

Moreover, we have studied the input secret that we can
embed in a cover media. We want to analyze the number of
1s in the secret and its percentage compared to the size of
the secret. This will open a future work to better utilize the
cover media to have more capacity. The following table
shows our findings.

Table 4: Percentage of 1s in a secret

Length

(string)
Length
(bits)

Number
of 1s

Per %

1 2,357 38,000 10,304 27.12
2 2,503 40,048 10,595 26.46
3 3,337 53,392 14,104 26.42
4 3,747 59,952 15,773 26.31
5 3,893 62,288 16,718 26.84

Average 27.00

Based on the above table, we have only 27% average

number of ones in the secret. It means that the other 73%
are zeros and hence we only utilize 27% of the capacity to
add Kashida. This also gives us a hint that the file size will
not be increasing much, it will increase 27% of the capacity
to add Kashida if we utilize the full capacity. The following
bar chart visualizes the table.

Figure 4: Percentage of 1s in a secret

V. CONCLUSION & FUTURE WORK

A study was done on characteristics of Arabic letters
and how Kashida will affect its look. The results of the
study help us to answer some questions like: “Is it proper to
use Kashida whenever possible?” “How many places in an
Arabic text I can embed Kashida (percentage)?”

Based on the proposed approach, a new system has
been developed. It enables us to embed a chosen secret after
it is converted to bit presentation and gives the result as
cover media of text and a secret inside it. The system is also
able to read the cover media and extract the secret which is
in bit representation. Then, conversion of those bits will
return back the secret in its original format.

Based on the evaluation of the new system
MSCUKAT, we observe a huge advancement in terms of
capacity comparing to the pervious approach in [2] which
utilizes Kashida with dotted letters. Our experiments show
186% increase in capacity using MSCUKAT approach
compared to the previous approach, Kashida with dotted
letters. Moreover, the size of embedded secret in the cover
media will not change.

Future work can be carried out from our experiment to
enhance the way we embed Kashida in the text. Based on
our study, we conclude that we can have more capacity by
utilizing the places of adding Kashida.

ACKNOWLEDGMENT
We would like to thank King Fahd University of

Petroleum & Minerals (KFUPM) for supporting this work.

REFERENCES

[1] Steganography, from Online website of Wikipedia,
http://en.wikipedia.org/wiki/Steganography, last visited March
28, 2008

[2] Adnan Gutub, Lahouari Ghouti, Alaaeldin Amin, Talal
Alkharobi and Mohammad Ibrahim, “Utilizing Extension
Character ‘Kashida’ With Pointed Letters for Arabic Text
Digital Watermarking”, International Conference on Security
and Cryptography - SECRYPT, Barcelona, Spain, July 28 - 31,
2007

[3] Online, http://www.ibnothaimeen.com/all/Khotab.shtml
e-Library of Shaikh binothaimeen Charity Organaization,

[4] Adnan Gutub, Yousef Elarian, Sameh Awaideh, and Aleem
Alvi, "Arabic Text Steganography Using Multiple Diacritics",
WoSPA 2008 – 5th IEEE International Workshop on Signal
Processing and its Applications, University Of Sharjah,
Sharjah, U.A.E. 18 – 20 March 2008.

[5] Mohammed Aabed, Sameh Awaideh, Abdul-Rahman Elshafei,
and Adnan Gutub, “Arabic Diacritics Based Steganography”,
IEEE International Conference on Signal Processing and
Communications (ICSPC 2007), Pages: 756-759, Dubai, UAE,
24-27 November 2007.

[6] Adnan Gutub and Manal Fattani, “A Novel Arabic Text
Steganography Method Using Letter Points and Extensions”,
WASET International Conference on Computer, Information
and Systems Science and Engineering (ICCISSE), Pages: 28-
31, Vienna, Austria, May 25-27, 2007.

[7] Adnan Gutub, Fahd Al-Haidari, Khalid Al-Kahsah, and
Jameel Hamodi, "e-Text Watermarking: Utilizing 'Kashida'
Extensions in Arabic Language Electronic Writing", Journal
of Emerging Technologies in Web Intelligence (JETWI),
September 2009.

[8] Fahd Al-Haidari, Adnan Gutub, Khalid Al-Kahsah, and
Jameel Hamodi, "Improving Security and Capacity for Arabic
Text Steganography Using 'Kashida' Extensions", AICCSA-
2009 - The 7th ACS/IEEE International Conference on
Computer Systems and Applications, Pages: 396-399, Rabat,
Morocco, 10-13 May 2009.

Ahmed Ali Al-Nazer is currently a student at King Fahd
University of Petroleum & Minerals (KFUPM) and is pursuing his
Doctor of Philosophy (PhD) from College of Computer Sci &
Engineering. He received the Bachelor degree (BS) and Masters
degree (MS) in Computer Science also from KFUPM, Saudi
Arabia. Beside him as a researcher in the computing and IT field,
he is an experainace employee at Saudi Aramco, Dhahran.
Ahmad's late research activities and interests include computer
security and its relation to Arabic language.

Adnan Abdul-Aziz Gutub is an associate professor in Computer
Engineering at King Fahd University of Petroleum and Minerals
(KFUPM) in Dhahran, Saudi Arabia. He received his Ph.D. degree
(2002) in Electrical & Computer Engineering from Oregon State
University, USA. He has his BS in Electrical Engineering and MS
in Computer Engineering both from KFUPM, Saudi Arabia.
Adnan's research interests are in modeling, simulating, and
synthesizing VLSI hardware for crypto and security computer
arithmetic operations. He worked on designing efficient integrated
circuits for the Montgomery inverse computation in different finite
fields. He has some work in modeling architectures for RSA and
elliptic curve crypto operations. His interest in computer security
also involved steganography such as simple image based
steganography and Arabic text steganography.

Adnan has been awarded the UK visiting internship for 2
months of summer 2005 and summer 2008, both sponsored by the
British Council in Saudi Arabia. The 2005 summer research visit
was at Brunel University to collaborate with the Bio-Inspired
Intelligent System (BIIS) research group in a project to speed-up a
scalable modular inversion hardware architecture. The 2008 visit
was at University of Southampton with the Pervasive Systems
Centre (PSC) for research related to advanced techniques for
Arabic text steganography and data security.

Adnan Gutub filled many administrative academic positions in
KFUPM; currently, he is chairing the computer engineering
department (COE) at KFUPM in Dhahran, Saudi Arabia.

