
FAST ELLIPTIC CURVE CRYPTOGRAPHIC PROCESSOR
ARCHITECTURE BASED ON THREE PARALLEL GF(2k)
BIT LEVEL PIPELINED DIGIT SERIAL MULTIPLIERS

Adnan Abdul-Aziz Gutub

Computer Engineering Department

King Fahd University of Petroleum and Minerals
Dhahran 31261, SAUDI ARABIA
Email: gutub@ccse.kfupm.edu.sa

ABSTRACT

Unusual processor architecture for elliptic curve
encryption is proposed in this paper. The architecture
exploits projective coordinates (x=X/Z, y=Y/Z) to convert
GF(2k) division needed in elliptic point operations into
several multiplication steps. The processor has three
GF(2k) multipliers implemented using bit-level pipelined
digit serial computation. It is shown that this results in a
faster operation than using fully parallel multipliers with
the added advantage of requiring less area. The proposed
architecture is a serious contender for implementing data
security systems based on elliptic curve cryptography.

1. INTRODUCTION

In 1985 Niel Koblitz and Victor Miller proposed the
Elliptic Curve Cryptosystem (ECC) [1-9], a method
based on the Discrete Logarithm problem over the points
on an elliptic curve. Since that time, ECC has received
considerable attention from mathematicians around the
world, and no significant breakthroughs have been made
in determining weaknesses in the algorithm. Although
critics are still skeptical as to the reliability of this
method, several encryption techniques have been
developed recently using these properties. The fact that
the problem appears so difficult to crack means that key
sizes can be reduced in size considerably, even
exponentially [2,5,8], especially when compared to the
key size used by other cryptosystems. This made ECC
become a challenge to the RSA, one of the most popular
public key methods known. ECC is showing to offer
equal security to RSA but with much smaller key size [2].

Several crypto processors have been proposed in the
literature recently [4,7,15]. A common feature of these
processors is that they eliminate the need for an inversion
circuit. It is well known that adding two points over an
elliptic curve would require a division operation, and
hence an inversion. Calculating the inverse is the most

expensive operation over GF(2k) [16,17]. To eliminate
the need for performing inversion in GF(2k), designs
replace the inversion by several multiplication operations
by representing the elliptic curve points as projective
coordinate points [1,4,7,9,15,18]. This approach is also
adopted in the processor proposed in this paper.

The different crypto-processor designs differ mainly
in the architecture of the basic GF(2k) multiplier. Clearly
it is impractical to use bit-parallel multipliers for large
word length, i.e. k > 512. In [4] a nd x md digit multiplier
is used to implement the multiplication over GF(2k),
where k > nd and md. While in [7] a digit serial multiplier
was adopted. A similar approach was used in the elliptic
curve processor over GF(qm) in [15]. There are two basic
drawbacks with the existing processors. The first is that
digit serial multiplication is not as efficient as sub-digit
pipelined digit serial computation [13,14]. The second is
that none of the existing designs exploit the inherent
parallelism in the computation of the elliptic curve point
operations. In this paper a new elliptic curve crypto
processor architecture is proposed that takes an
advantage of both of these aspects. It is strongly believed
that these two aspects would lead to an even better trade
off between the area and time of computation.

2. ENCRYPTION AND DECRYPTION

It will be assumed that the reader is familiar with the
arithmetic over elliptic curve. For a good review the
reader is referred to [9]. There are many ways to apply
elliptic curves for encryption/decryption purposes. In it
most basic form, users randomly chose a base point (x,
y), lying on the elliptic curve E. The plaintext (the
original message to be encrypted) is coded into an elliptic
curve point (xm, ym). Each user selects a private key ‘n’
and compute his public key P = n(x, y). For example,
user A’s private key is nA and his public key is PA = nA(x,
y).

For any one to encrypt and send the message point
(xm, ym) to user A, he/she needs to choose a random
integer k and generate the cipher text:

Cm = {k(x, y) , (xm, ym)+ kPA }.
The cipher text pair of points uses A’s public key, where
only user A can decrypt the plaintext using his private
key.

To decrypt the cipher text Cm, the first point in the
pair of Cm, k(x, y), is multiplied by A’s private key to
get the point: nA (k(x,y)). Then this point is subtracted
from the second point of Cm, the result will be the
plaintext point (xm,ym). The complete decryption
operations are:

((xm, ym) + kPA) - nA (k(x, y))
= (xm, ym) + k (nA (x, y)) - nA (k(x, y))
= (xm, ym)

The most time consuming operation in the encryption and
decryption procedure is finding the multiples of the base
point, (x,y). The algorithm used to implement this is
discussed in the next section.

3. POINT OPERATION ALGORITHM

The ECC algorithm used for calculating nP from P is the
binary method, since it is known to be efficient and
practical to implement in hardware [2,5,7,9,10]. This
binary method algorithm is shown below:
Define k: number of bits in n and ni: the ith bit of n
Input: P (a point on the elliptic curve).
Output: Q = nP (another point on the elliptic curve).

1. if nk-1 = 1, then Q:=P else Q:=0;
2. for i = k-2 down to 0;
3. { Q := Q+Q ;
4. if ni = 1 then Q:= Q+P ; }
5. return Q;

Basically, the binary method algorithm scans the binary
bits of n and doubles the point Q k-times. Whenever, a
particular bit of n is found to be one, an extra operation is
needed. This extra operation is Q+P.

As can be seen from the description of the above
binary algorithm, adding two elliptic curve points and
doubling a point are the most basic operations in each
iteration. As mentioned earlier, adding two points over
elliptic curve requires inversion [9]. As in the crypto
processor in [6], inversion is eliminated using projective
coordinates as discussed in the next section.

4. POINT OPERATIONS OVER PROJECTIVE
COORDINATES

Elimination of inversion is achieved by projecting the
coordinates (x,y) into (X,Y,Z), where x=X/Z, and y=Y/Z.
The projected elliptic curve equation is introduced in
[18]; it is detailed below to generate the data flow graphs
discussed afterward.
 The procedure for projective point addition of P+Q
(two elliptic curve points) is shown below:

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3);

where P ≠ ±Q

(x,y)=(X/Z,Y/Z) (X,Y,Z)

A = X1Z2 1M
B = X2Z1 1M
C = A+B
D = Y1Z2 1M
E = Y2Z1 1M
F = D+E
G= C+F
H= Z1Z2 1M
I=C3+aHC2+HFG 6M
X3 = CI 1M
Z3 = HC3 1M
Y3=GI+C2[FX1+CY1] 5M

 17

M

Similarly, the form of formulas for projective point
doubling is shown below:

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3)

(x, y) = (X/Z, Y/Z) (X,Y,Z)

A=X1Z1
 1M

B= bZ1
4+X1

4 5M
C= AX1

4 1M
D=Y1Z1 1M
E=X1

2+D+A
Z3=A3 2M
X3=AB 1M
Y3= C+BE 1M

 12M

The squaring calculation over GF(2k) is assumed very
similar to the multiplication computation. They are both
denoted as M (multiplication) in the above.

Figure 1a shows the data flow graph for adding two
elliptic curve points. The hardware of this design if
implemented as shown in Figures 1 would need
seventeen multipliers and seven k-bit XOR gates. The
complete data flow graph for doubling a point is shown
in Figure 1b. It is made of twelve multipliers and four k-
bit XOR gates.

Any elliptic curve crypto processor that uses
projective coordinates must implements the dataflow
graphs in Figures 1a and 1b iteratively.

5. PROPOSED CRYPTO ARCHITECTURE

The architecture of the new processor is shown in
Figure 2. Unlike existing designs which use a single

multiplier, the new architecture has three multipliers. The
reason for using more than one multiplier is discussed
fully in section 6. However, the reason for using no more
than three multiplier is now explained. As can be seen
from Figures 1a and 1b, the corresponding critical path
each dataflow diagram is effectively of 6 GF(2k)
multiplications and of 4 GF(2k) multiplications,
respectively. Here the time of GF(2k) addition is ignored
since it negligible compared to multiplication. Therefore,
the lower bound of the minimum computation time to
perform one elliptic point operation in the calculation of
nP is ten GF(2k) multiplications. It can be easily seen
from Figures 1a and 1b that performing three
multiplications in parallel will meet this lower bound.
Furthermore the utilization of the three multipliers is very
high almost the maximum. As can be seen from Figures
1a and 1b, all the three multipliers will be used in nine
out of the ten steps, and in only one out of the ten cycles
where a single multiplier is not used.

Figure 1. Data flow graphs for the elliptic curve point

operations of projecting (x,y) to (X/Z,Y/Z)

In the crypto processor presented here we also
propose to use bit-level pipelined GF(2k) digit serial
multipliers reported in [13,14]. It is significant to point
out that these multipliers are in fact faster and use less
area than their un-pipelined bit-parallel counterparts
[13,14]. Moreover, sub-digit pipelining of digit serial
computation leads to a much better performance than the
conventional digit serial structures as shown in Table 1
[13].

Figure 2. The elliptic curve point operations hardware

Bit-level digit serial computation is more suitable for

the elliptic curve crypto algorithm discussed above since
the computation of elliptic point doubling, addition and
the algorithm of computing multiples of the base point is
such that the multiplication of one stage must be
completed before starting the multiplication of the
subsequent stage. Therefore even if a pipelined bit-
parallel multipliers is used, the throughput of such a
multiplier can not be exploited since the next
multiplication operation can not commence until the
multiplication operations in the previous stage has
completed. As with regard to the GF(2k) modulo adder, it
is to be implemented in bit parallel fashion since the area
is not significant compared to the multiplier and
minimizing the addition time will reduce the overall
multiply-add cycle time.

Table 1. Comparison of Area and Time of the pipelined
digit-serial GF(2k) multiplier in [14] for different number

of sub-digit pipelining levels, K.

K Area:
AT(K)/AT(1)

Time:
T(K)/T(1)

1 1 1
2 1.3 2
4 1.4 4
8 1.9 8

6. COMPARISON WITH EXISTING DESIGN

(a) adding two points (b) doubling a point

 H F

 C

C

Y2Z1 X2Z1 X1Z2

A

Y2 Z1 X2 Z1 X1 Z2 X1 Z1 X1 Z1

A+B

 E B

 Y1Z2 Z1Z2 C2

Z2
Y1

C

 X3 Z3 Y3 Z3 X3 Y3

Z2
Z1

E+D

F+C

 E D

 F C

 H C2

 HC2 C3 FG

G

C2 C

 CY1 aHC2 HFG

Y1 a H

C3+aHC2

C3

C3+aHC2+HFG

HFG

IC GI X1F

I F

X1 G

FX1+CY1

CY1

HC3 JC2

J

C2 H C3

GI+JC2

GI

 X1Z1 X1
2 Z1

2

A

Y1

Z1

A

A+D

D

X1
2

X1
2+A+D

A E
 b

X1
4+ bZ1

4

X1
4

B

C

E

 A3 AB EB

A

C

C+BE

 Y1Z1 X1
4 Z1

4

 A2 AX1
4 bZ1

4

In existing designs, a single multiplier is used to perform
all the multiplications needed in Figures 1a and 1b. The
reason is that using more than one single multiplier is
perceived to be too expensive. However, using three
multipliers will lead to a better AT2.

Observe Table 2, our proposed design is compared
with an existing design demonstrated in [6]. The number
of registers needed in the proposed hardware is not that
much better than the existing one. However, the AT2 of
our design is the real achievement.

Table 2. Comparing the proposed design with the
conventional one.

Hardware Design Conventional Proposed
Number of

Multipliers (A)
1 3

Worst case No of
Cycles

17 + 12 = 29 6 + 4 = 10

Avg. No. of
Cycles (T)

12 + (17/2) =
20.5

4 + (6/2) = 7

Number of
Registers

12 11

Cost: AT2 420.25 147

7. CONCLUSION

A new GF(2k) elliptic curve crypto processor is proposed
in this paper. It does not need a GF(2k) inverter, because
the inverse operation is converted into successive
multiplication steps using projective coordinates. It
exploits the inherent parallelism in the computation of
doubling and adding points over an elliptic curve as well
as the sub-digit pipelined digit serial computation to
achieve a better trade-off between area and time.

8. ACKNOWLEDGMENT

The Author would like to thank Professor Mohammad K.
Ibrahim for his valuable suggestions and comments. The
Author also acknowledges the support provided to this
work from King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia.

9. REFERENCES

[1] Miyaji A., “Elliptic Curves over FP Suitable for

Cryptosystems”, Advances in cryptology-
AUSCRUPT’92, Australia, December 1992.

[2] Stallings, W. “Cryptography and Network Security:
Principles and Practice”, Second Edition, Prentice
Hall Inc., New Jersey, 1999.

[3] Chung, Sim, and Lee, “Fast Implementation of Elliptic
Curve Defined over GF(pm) on CalmRISC with
MAC2424 Coprocessor”, Workshop on Cryptographic

Hardware and Embedded Systems, CHES 2000,
Massachusetts, August 2000.

[4] Okada, Torii, Itoh, and Takenaka, “Implementation of
Elliptic Curve Cryptographic Coprocessor over GF(2m)
on an FPGA”, Workshop on Cryptographic Hardware
and Embedded Systems, CHES 2000, Massachusetts,
August 2000.

[5] Crutchley, D. A., “Cryptography And Elliptic Curves”,
Master Thesis under Supervision of Prof. Gareth Jones,
submitted to the Faculty of Mathematics at University
of Southampton, England, May 1999.

[6] Orlando, and Paar, “A High-Performance
Reconfigurable Elliptic Curve Processor for GF(2m)”,
Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2000, Massachusetts, August 2000.

[7] Stinson, D. R., “Cryptography: Theory and Practice”,
CRC Press, Boca Raton, Florida, 1995.

[8] Paar, Fleischmann, and Soria-Rodriguez, “Fast
Arithmetic for Public-Key Algorithms in Galois Fields
with Composite Exponents”, IEEE Transactions on
Computers, Vol. 48, No. 10, October 1999.

[9] Blake, Seroussi, and Smart, “Elliptic Curves in
Cryptography”, Cambridge University Press: NY,
1999.

[10] Hankerson, Hernandez, and Menezes, “Software
Implementation of Elliptic Curve Cryptography Over
Binary Fields”, Workshop on Cryptographic Hardware
and Embedded Systems, CHES 2000, Massachusetts,
August 2000.

[11] G. A. Orton, M. P. Roy, P. A. Scott, L. E. Peppard, and
S. E. Tavares. “VLSI implementation of public-key
encryption algorithms”, Advances in Cryptology --
CRYPTO '86, volume 263 of Lecture Notes in
Computer Science, pages 277-301, 11-15 August 1986.
Springer-Verlag, 1987.

[12] Scott, Norman R., “Computer Number Systems and
Arithmetic”, Prentice-Hall Inc., New Jersey, 1985.

[13] Ibrahim, M. K., Almulhem, A., “Bit-Level Pipelined
Digit Serial GF(2m) Multiplier”, IEEE International
Symposium on Circuits and Systems, Sidney, Australia,
2001.

[14] Ibrahim, M. K., Junaid, A. K., Al-Abaji, R. H.,
Almulhem, A., “Trade-off analysis of a new sign digit
serial GF multiplier”, Fifth World Multi-conference on
Systemics, Cybernetics and Informatics SCI / ISAS
2001. Volume XIV, Part II, pages 52-56. July 2001,
Orlando, 2001.

[15] Orlando, and Paar, “A scalable GF(p) elliptic curve
processor architecture for programmable hardware”,
Cryptographic Hardware and Embedded Systems,
CHES 2001, May 14-16, 2001, Paris, France.

[16] Gutub, Adnan Abdul-Aziz, Tenca,A., and Koc,C.,
“Scalable VLSI architecture for GF(p) Montgomery
modular inverse computation”, IEEE Computer Society
Annual Symposium on VLSI, pages 53--58, Pittsburgh,
Pennsylvania, April 25-26, 2002.

[17] Gutub, Adnan Abdul-Aziz, Tenca,A.F., and Koc,C.,
“Scalable and Unified Hardware to Compute
Montgomery Inverse in GF(p) and GF(2^n)”,
Cryptographic Hardware and Embedded Systems -
CHES 2002, pages 485-500, August 13-15, 2002.

[18] Ernst, Klupsch, Hauck, and Huss, “Rapid Prototyping
for Hardware Accelerated Elliptic Curve Public-Key

Cryptosystems”, The IEEE 12th International
Workshop on Rapid System Prototyping, Monterey,
CL, June 25-27, 2001.

