Threshold voltage of MOS transistor:

- The threshold voltage of a MOS transistor (Vth is V_{GS} required to strongly invert the surface of the substrate under the gate.) is calculated like that of a MOS structure with one slight modification in Q_B.

$$Q_B = \sqrt{2qN_{\text{sub}}\varepsilon_{\text{sub}} | 2\phi_F - V_{SB} |}$$

Where V_{SB} is the source to bulk voltage.

- For circuit analysis:

$$V_{th} = V_{T0} + \gamma(\sqrt{|2\phi_F - V_{SB}|} - \sqrt{|2\phi_F|})$$

Where γ is called body effect coefficient $= \frac{\sqrt{2qN_{\text{sub}}\varepsilon_{\text{sub}}}}{C_{ox}}$

V_{T0} = the threshold voltage with $V_{SB} = 0$ i.e. with out the body effect.

Depletion mode Versus Enhancement mode MOSFET:

- If a MOSFET is on (i.e. in strong inversion) at zero bias then it is a depletion Mode MOSFET (it is normally ON).

 - We actually have to apply a $V_{GS} < V_{th}$ to turn off the NMOS or a $V_{GS} > V_{th}$ for PMOS.

- If a MOSFET is normally off \Rightarrow it is enhancement mode

 - Then for NMOS we have to apply a $V_{GS} > V_{th}$ to turn it ON or a $V_{GS} < V_{th}$ to turn a PMOS ON.

| Depletion NMOS \Rightarrow | $V_{th} \leq 0$ | Enhancement NMOS \Rightarrow | $V_{th} > 0$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Depletion PMOS \Rightarrow</td>
<td>$V_{th} \geq 0$</td>
<td>Enhancement PMOS \Rightarrow</td>
<td>$V_{th} < 0$</td>
</tr>
</tbody>
</table>
Poly Gate MOSFET:

The gate of MOS transistors is usually made with polycrystalline Si, that is heavily doped (either P or N type).

- In this case Φ_G depends on the type of poly Si

- For N-type poly \rightarrow the Fermi level is in the conduction band \rightarrow
 \[\Phi_G = E_O - E_F = \chi_S \]

 \[
 \begin{align*}
 E_F & \quad \Phi_G = \chi_S \\
 E_O & \quad E_C
 \end{align*}
 \]

The flat-band voltage V_{FB}:

\[
V_{FB} = \Phi_G - \Phi_S = \chi_S - \left[\chi_S + \frac{E_g}{2q} - \phi_F \right] \rightarrow
\]

\[
V_{FB} = -\frac{E_g}{2q} + \phi_F
\]

- For P-type poly \rightarrow the Fermi level is in the Valence band \rightarrow
 \[\Phi_G = E_O - E_F = \chi_S + E_g \]

Hence:

\[
V_{FB} = \chi_s + \frac{E_g}{2q} - \left[\chi_s - \frac{E_g}{2q} - \phi_F \right] \rightarrow
\]

\[
V_{FB} = \frac{E_g}{2q} + \phi_F
\]
Ex1) An MOS transistor is made with a P-type substrate \((N_a = 10^{16} \text{ cm}^{-3})\) and a heavily doped P-type poly Si gate.
\(C_{ox} = 2 \text{ fF/µm}^2\). Calculate \(V_{th}\) and specify the type of the transistor.

\[V_{th} = V_{FB} + 2\phi_F - \frac{Q_B}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}\]

\[\phi_F = -V_T \ln \frac{N_a}{n_i} = -0.025 \ln \frac{10^{16}}{10^{10}} = -0.345\]

\[V_{FB} = \Phi_G - \Phi_S = \chi_s + E_g - [\chi_s + \frac{E_g}{2q} - \phi_F]\]

\[= -0.345 + 0.55 = 0.19 \text{ V}\]

\[Q_B = \sqrt{2q N_{sub} \varepsilon_{sub}} |2\phi_F| = \sqrt{1.6 \times 10^{-19} \times 2 \times 10^6 \times 8.85 \times 10^{-14} \times 12}\]

\[= -4.8 \times 10^{-8} \text{ c/cm}^2\]

\[V_{th} = 0.19 + 0.69 + 4.8 \times 10^{-8} = 1.12 \text{ V}\]

\[\rightarrow \text{ the type is enhancement NMOS}\]

Ex2) For the same transistor in [Ex1], if the Gate poly is N-type &
\(Q_{ox} = 5 \times 10^{-8} \text{ c/cm}^2\). Calculate \(V_{th}\) and specify the type of the transistor.

Sol:
This is an NMOS transistor, since the type of substrate is p-type.

\[\Phi_{FB} = \Phi_N - \Phi_S = \chi_n - E_n + [\chi_n + \frac{E_n}{2q} - \phi_F]\]

\[= -0.345 + 0.55 = 0.19 \text{ V}\]

\[Q_{ox} = 5 \times 10^{-8} \text{ c/cm}^2\]
\[\phi_F = -0.345 \text{ V}, \]

\[V_{FB} = \phi_s - [\phi_s + \frac{E_g}{2q} - \phi_F] \]

\[V_{FB} = -0.89 \text{ V}, \quad Q_B \text{ is the same}. \]

\[V_{th} = -0.89 + 0.69 + \frac{4.8 \times 10^{-8}}{2 \times 10^{-7}} - \frac{5 \times 10^{-8}}{2 \times 10^{-7}} \approx -0.21 \text{ V} \]

\[\text{the type is Depletion NMOS} \]

Ex3)

For example 2, what is the type of the doping and its concentration required to make \(V_{th} = +0.8 \text{ V} \)?

Sol.:

We want to increase \(V_{th} \) by about 1 V (i.e. make it harder to invert)

\[\Rightarrow \text{ we need to make it more P-type} \Rightarrow \text{i.e. increase Na} \]

- By how much should we increase Na?

Na affects \(\phi_F \): \(|\phi_F| \propto \ln \text{Na} \)

Na also affects \(V_{FB} \): \(V_{FB} \propto \ln \text{Na} \)

Na affects \(Q_B \propto \sqrt{\text{Na}} \). This is a bigger dependency

Ignore effects of Na on \(\phi_F \) and \(V_{FB} \) =>

we need to increase \(\frac{Q_B}{C_{OX}} \) by 1 volt

\[\frac{Q_B}{C_{OX}} \approx 0.23 \text{ V} \]

we need it to be = 1.23 V \[\Rightarrow \]
\[Q_B = 1.23 \text{ Cox} = 2.46 \times 10^{-7} \text{ c/cm}^2 \]

\[= \sqrt{2} q N_{\text{sub}} \varepsilon_{\text{sub}} |2 \phi_F| = N_a = 2.58 \times 10^{17} \text{ c/cm}^2 \]

we already have \(10^{16} \) => we need to add \(2.58 \times 10^{17} - 10^{16} = 2.48 \times 10^{16} \text{ cm}^{-3} \) more acceptors.