Intel® Processor Identification
and the CPUID Instruction

Application Note 485

July 2004

Document Number: 241618-027




INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining
applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel, Pentium, Celeron, Intel NetBurst, Intel Xeon, Pentium 1l Xeon, Pentium Il Xeon, Intel SpeedStep, OverDrive, MMX,Intel486, Intel386,
IntelDX2, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright © 1993—2004, Intel Corporation

2 Application Note



intal

Contents

10

11

[0 o [N Tox 7o o [ PP 9
11 (6T oT0 Eo1 (ST U] o] o Lo ] o APPSO U PP PRTPIN 9
Detecting the CPUID INSIIUCHION .........uuuiiiiiii et e e e e e e e e 11
Output of the CPUID INSIIUCHION ...evvieeeiiciiieiiee e et ee e e e s er e e e e e s s e e e e e e e snnnnaeees 13
3.1 VENAOT ID SHNG ..eeiiiitiieee ittt e et e e e sbre e e e snrbeeee e 13
3.2 PrOCESSOr SIGNALUIE .......uuiiiiiiee e ccciieeee e e e e s s s e e e e e e s et e e e e e e s s e nanrreaeeeaeeesaaanns 17
3.3 FEAIUIE FIAGS ..ottt 22
3.4 Extended FEature FIAgS ...ttt et e e e 25
35 SYSENTER/SYSEXIT — SEP Features Bit..........ccccoveeiiiiee e 26
3.6 Cache Size, Format and TLB INfOrmation...........ccccceveeiiiiee i 26
3.7 Pentium® 4 Processor, Model 0 OUtput EXAMPIE .....vveveveeeeeeeeeeeeeeeeeeeeserenenees 28
Processor Serial NUMDET ........oiiii e e e e e s nnareeeees 31
4.1 Presence of Processor Serial NUMDEr .........cuuiiiiiiiiiie e 31
4.2 Forming the 96-bit Processor Serial NUMbBer.........cccccoovviiiiiiii e 32
Brand ID and Brand StriNQ .........ooooi ittt e e e e e 33
5.1 2] =TT I PRSPPI 33
5.2 Brand SErNG......coiueieiiiiiie e 33
USAQE GUIEINES....ciieii ettt e e e e e e s e e e e e e e s s e anrbe e e e e e e e s ssnnnnbaneeeeeeas 35
Proper Identification SEQUENCE..........c.uuuiiiiiee e e e eraeer e e 37
Usage Program EXamPIES ... 39
Alternate Method of Detecting FEAtUIES ...........ueiiiiiiiiiiiieiie e 41
DENOIMAIS AT ZEIO.....utiiee i iiiiie ettt ettt et e e e st e e e et b e e e e snba e e e e anbbe e e e sntbeeeeanbeeeeeannes 43
(@] o1 eV i] a0 I (=To [V LT o VoY SR 45

Application Note 3



Figures

Tables

Figure 1. Flag Register EVOIULION...........cuiiiiiiiiiiiiiiie et e et e e e s nnreee e e e 11
Figure 2. CPUID INStruCtion OULPULS .....eevieei e e e e e s st e e e e e s st en e e e e e s snnnnneneeeee s 14
Figure 3. EDX Register after RESET ......cccciiiiiiiiiiiiiiee st eee e e st ee e e e e e s ssnnnnenee e e 17
Figure 4. Processor Signature Format on Intel386™ ProCesSOors......cccccvveeevviicvvrveeeeeeenn. 19
Figure 5. Flow of Processor get _cpu_type ProCcedure .........cccoceveeineeenieennne e 38
Figure 6. Flow of Processor Identification Extraction Procedure..........ccccccccoevcuvvvieeeneennn. 39
Table 1. Information Returned by the CPUID INStrUCLION ..........cccuuiiiiiiiieiiiiiiieeeee e 15
Table 2. Processor Type (Bit PoSitions 13 and 12) .........ceiiiiiiiiiiiiiiiiieie e 18
Table 3. INtel386™ ProceSSOr SINATUIES .........ceiiiiaiiiiiiieiee et e e e e e e e e e e 19
Table 4. Intel486™ and Subsequent Processor Signatures.............eeeeeeeeiniiiiiineeeeeeeennnnns 20
Table 5. Feature Flag Values Reported in the EDX Register.........ccccooeiiiiiiiiiiieiienninns 22
Table 6. Feature Flag Values Reported in the ECX Register.........cccccoeiiiiiiiiiieiieniins 24
Table 7. Extended Feature Flag Values Reported in the EDX Register ........ccccccceeeinnees 25
Table 8. DeSCIPLOr FOIMALS ...ttt e e e e e e e e e e e e 26
Table 9. Descriptor DECOUE VAIUES .......coiiiiiiiiiiiii ettt e e e 27

Table 10. Pentium® 4 Processor, Model 0 with 256-KB L2 Cache CPUID (EAX=2)
EXample RetUIN VAIUES .......oouiiiiiiiiiii ettt 29
Table 11. Brand ID, CPUID (EAX=1) Return Values in EBX (bits 7 through 0) ............... 34
Table 12. Processor Brand String FEAUIE ............eviiiiiiiiiiiieiee e 34
Application Note



Revision History

Revision

Description

Date

-001

Original Issue.

05/93

-002

Modified Table 4, Intel486™ and Pentium® Processor Signatures.

10/93

-003

Updated to accommodate new processor versions. Program examples
modified for ease of use, section added discussing BIOS recognition for
OverDrive® processors and feature flag information updated.

09/94

-004

Updated with Pentium Pro and OverDrive processors information. Modified
Table 1, Table 3, and Table 5. Inserted Table 6, Table 8, Table 9. Inserted
Sections 3.4. and 3.5.

12/95

-005

Added Figures 1 and 3. Added Footnotes 1 and 2. Modified Figure 2. Added
Assembly code example in Section 4. Modified Tables 3, 5 and 7. Added two
bullets in Section 5.0. Modified cpuid3b.ASM and cpuid3b.C programs to
determine if processor features MMX™ technology. Modified Figure 6.0.

11/96

-006

Modified Table 3. Added reserved for future member of P6 family of
processors entry. Modified table header to reflect Pentium Il processor family.
Modified Table 5. Added SEP bit definition. Added Section 3.5. Added
Section 3.7 and Table 9. Corrected references of P6 family to reflect correct
usage.

Modified cpuid3a.asm, cpuid3b.asm and cpuid3.c example code sections to
check for SEP feature bit and to check for, and identify, the Pentium 1|
processor. Added additional disclaimer related to designers and errata.

03/97

- 007

Modified Table 2. Added Pentium Il processor, model 5 entry. Modified
existing Pentium Il processor entry to read “Pentium Il processor, model 3".
Modified Table 5. Added additional feature bits, PAT and FXSR. Modified
Table 7. Added entries 44h and 45h.

Removed the note “Do not assume a value of 1 in a feature flag indicates that
a given feature is present. For future feature flags, a value of 1 may indicate
that the specific feature is not present” in section 4.0.

Modified cpuid3b.asm and cpuid3.c example code section to check for, and
identify, the Pentium Il processor, model 5. Modified existing Pentium 11
processor code to print Pentium Il processor, model 3.

01/98

- 008

Added note to identify Intel® Celeron® processor, model 5 in section 3.2.
Modified Table 2. Added Celeron processor and Pentium® OverDrive®
processor with MMX™ technology entry. Modified Table 5. Added additional
feature bit, PSE-36.

Modified cpuid3b.asm and cpuid3.c example code to check for, and identify,
the Celeron processor.

04/98

-009

Added note to identify Pentium Il Xeon™ processor in section 3.2. Modified
Table 2. Added Pentium Il Xeon processor entry.

Modified cpuid3b.asm and cpuid3.c example code to check for, and identify,
the Pentium Il Xeon processor.

06/98

-010

No Changes

Application Note




Revision Description Date

-011 Modified Table 2. Added Celeron processor, model 6 entry. 12/98

Modified cpuid3b.asm and cpuid3.c example code to check for, and identify,
the Celeron processor, model 6.

-012 Modified Figure 1 to add the reserved information for the Intel386 processors. | 12/98
Modified Figure 2. Added the Processor serial number information returned
when the CPUID instruction is executed with EAX=3. Modified Table 1. Added
the Processor serial number parameter. Modified Table 2. Added the Pentium
Il processor and Pentium Il Xeon processor. Added Section 4 “Processor
serial number”.

Modified cpuid3a.asm, cpuid3b.asm and cpuid3.c example code to check for
and identify the Pentium Il processor and the Pentium Il Xeon processor.

-013 Modified Figure 2. Added the Brand ID information returned when the CPUID | 10/99
instruction is executed with EAX=1. Added section 5 “Brand ID". Added Table
10 that shows the defined Brand ID values.

Modified cpuid3a.asm, cpuid3b.asm and cpuid3.c example code to check for
and identify the Pentium Il processor, model 8 and the Pentium Il Xeon
processor, model 8.

-014 Modified Table 4. Added Celeron processor, model 8 03/00

-015 Modified Table 4. Added Pentium 11l Xeon processor, model A. Modified Table | 05/00
9, Added the 8-way set associative 1M, and 8-way set associative 2M cache
descriptor entries.

-016 Revised Figure 2 to include the Extended Family and Extended Model when 11/00
CPUID is executed with EAX=1.

Added section 6 which describes the Brand String.

Added section 10 Alternate Method of Detecting Features and sample code .
Added the Pentium 4 processor signature to Table 4.

Added new feature flags (SSE2, SS and TM) to Table 5.

Added new cache descriptors to Table 9.

Removed Pentium Pro cache descriptor example.

-017 Modified Figure 2 to include additional features reported by the Pentium 4 02/01
processors.

Modified Table 9 to include additional Cache and TLB descriptors defined by
the Intel® NetBurst™ microarchitecture.

Added Section 10 and program Example 5 which describes how to detect if a
processor supports the DAZ feature.

Added Section 11 and program Example 6 which describes a method of
calculating the actual operating frequency of the processor.

-018 Changed the second 66h cache descriptor in Table 7 to 68h. 06/01
Added the 83h cache descriptor to Table 7.

Added the Pentium Il processor, model B, processor signature and the Intel
Xeon processor, processor signature to Table 4.

Modified Table 4 to include the extended family and extended model fields.

Modified Table 1 to include the information returned by the extended CPUID
functions.

Application Note



Revision Description Date
-019 Changed to use registered trademark for Intel® Celeron® throughout entire Y
document.
Modified Table 11 to include new Brand ID values supported by the Intel®
processors with Intel NetBurst® microarchitecture.
Added Hyper-Threading Technology Flag to Table 5 and Logical Processor
Count to Table 1.
Modified cpuid3b.asm and cpuid3.c example code to check for and identify
Intel® processors based on the updated Brand ID values contained in Table
11.
-020 Modified Table 9 to include new Cache Descriptor values supported by the 03/02
Intel processors with Intel NetBurst microarchitecture.
Modified Table 11 to include new Brand ID values supported by the Intel
processors with Intel NetBurst microarchitecture.
Modified cpuid3b.asm and cpuid3.c example code to check for and identify
Intel® processors based on the updated Brand ID values contained in Table
11.
-021 Modified Table 4 to include additional processors that return a processor 05/02
signature with a value in the family code equal to OFh.
Modified Table 9 to include new Cache Descriptor values supported by
various Intel processors.
Modified Table 11 to include new Brand ID values supported by the Intel
processors with Intel NetBurst microarchitecture.
Modified cpuid3b.asm and cpuid3.c example code to check for and identify
Intel processors based on the updated Brand ID values contained in Table 11.
-022 Modified Table 9 with correct Cache Descriptor descriptions. 11/02
Modified Table 5 with new feature flags returned in EDX.
Added Table 6 the feature flags returned in ECX.
Modified Table 4, broke out the processors with family ‘F' by model numbers.
-023 Modified Table 4, added the Intel® Pentium® M processor. 03/03
Modified Table 5 with new feature flags returned in EDX.
Modified Table 6 the feature flags returned in ECX.
Modified Table 9 with correct Cache Descriptor descriptions.
-024 Corrected feature flag definitions in Table 6 for bits 7 and 8. 11/03

Application Note




Revision Description Date

-025 Modified Table 1 to add Deterministic Cache Parameters function (CPUID 01/04
executed with EAX=4), MONITOR/MWAIT function (CPUID instruction is
executed with EAX=5), Extended L2 Cache Features function (CPUID
executed with EAX=80000006), Extended Addresses Sizes function (CPUID
is executed with EAX=80000008).

Modified Table 1 and Table 5 to reinforce no PSN on Pentium® 4 family
processors.

Modified, added the Intel® Pentium® 4 processor and Intel® Celeron®
processor on 90nm process.

Modified Table 6 to add new feature flags returned in ECX.

Modified Table 9 to include new Cache Descriptor values supported by
various Intel processors.

Modified Table 11 to include new Brand ID values supported by the Intel
processors with Intel NetBurst microarchitecture.

Modified cpuid3b.asm and cpuid3.c example code to check for and identify
Intel processors based on the updated Brand ID values contained in Table 11.

Modified features.cpp, cpuid3.c, and cpuid3a.asm to check for and identify
new feature flags based on the updated values in Table 6.

-026 Corrected the name of the feature flag returned in EDX[31] (PBE) when the 05/04
CPUID instruction is executed with EAX setto a 1.

Modified Table 1 to indicate CPUID function 80000001h now returns extended
feature flags in the EAX register.

Added the Intel® Pentium® M processor (family 6, model D) to Table 4.
Added section 3.4 Extended Feature Flags and Table 7.
Modified Table 6 to add new feature flags returned in ECX.

Modified Table 9 to include new Cache Descriptor values supported by
various Intel processors.

Modified Table 11 to include new Brand ID values supported by the Intel
processors with P6 family microarchitecture.

Modified cpuid3b.asm and cpuid3.c example code to check for and identify
Intel processors based on the updated Brand ID values contained in Table 11.

Modified features.cpp, cpuid3.c, and cpuid3a.asm to check for and identify
new feature flags based on the updated values in Table 6.

-027 Corrected the register used for Extended Feature Flags in Table 7 07/04

8

Application Note



In

1

tal

Introduction

Introduction

1.1

Application Note

Asthe Intel® Architecture evolves with the addition of new generations and models of processors
(8086, 8088, Intel286, Intel386™, Intel486™, Pentium® processors, Pentium® OverDrive®
processors, Pentium® processors with MMX ™ technology, Pentium® OverDrive® processors with
MMX™ technology, Pentium® Pro processors, Pentium® |1 processors, Pentium® || Xeon™
processors, Pentium® 11 Overdrive® processors, Intel® Celeron® processors, Mobile Intel®
Celeron® processors, Pentium® 111 processors, Mobile Intel® Pentium® 111 Processor - M,
Pentium® 111 Xeon™ processors, Pentium® 4 processors, Mobile Intel® Pentium® 4 processor —
M, Intel® Pentium® M Processor, Intel® Xeon™ processors and Intel® Xeon™ processor MP), it
isessential that Intel provide an increasingly sophisticated means with which software can
identify the features available on each processor. This identification mechanism has evolved in
conjunction with the Intel Architecture as follows:

1. Originaly, Intel published code sequences that could detect minor implementation or
architectural differences to identify processor generations.

2. Later, with the advent of the Intel 386 processor, Intel implemented processor signature
identification that provided the processor family, model, and stepping numbers to software,
but only upon reset.

3. Asthelntel Architecture evolved, Intel extended the processor signature identification into
the CPUID instruction. The CPUID instruction not only provides the processor signature, but
also provides information about the features supported by and implemented on the Intel
processor.

The evolution of processor identification was necessary because, asthe Intel Architecture
proliferates, the computing market must be able to tune processor functionality across processor
generations and models that have differing sets of features. Anticipating that this trend will
continue with future processor generations, the Intel Architecture implementation of the CPUID
instruction is extensible.

This application note explains how to use the CPUID instruction in software applications, BIOS
implementations, and various processor tools. By taking advantage of the CPUID instruction,
software developers can create software applications and tools that can execute compatibly across
the widest range of Intel processor generations and models, past, present, and future.

Update Support

Y ou can abtain new Intel processor signature and feature bits information from the developer’s
manual, programmer’ s reference manual or appropriate documentation for a processor. In
addition, you can receive updated versions of the programming examples included in this
application note; contact your Intel representative for more information, or visit Intel’s website at
http://devel oper.intel.com/.



http://developer.intel.com/

Introduction

10 Application Note



Detecting the CPUID Instruction

2 Detecting the CPUID Instruction

The Intel486 family and subsequent Intel processors provide a straightforward method for
determining whether the processor's internal architecture is able to execute the CPUID instruction.
This method usesthe ID flag in bit 21 of the EFLAGS register. If software can change the value
of thisflag, the CPUID instruction is executable' (see Figure 1).

Figure 1. Flag Register Evolution

8086 Flags Register

286 Flags Register

21
R

Intel386™ Processor Eflags Register
ID

Intel486™ Processor Eflags Register
ID

Pentium® and subsequent 1A32 Processor Eflags
Register

Notes:

1) R -Intel Reserved

2) ID - CPUID Presence bit

The POPF, POPFD, PUSHF, and PUSHFD instructions are used to access the Flagsin Eflags
register. The program examples at the end of this application note show how you use the
PUSHFD instruction to read and the POPFD instruction to change the value of the ID flag.

Only in some Intel486™ and succeeding processors. Bit 21 in the Intel386™ processor’ s Eflag register cannot be
changed by software, and the Intel 386 processor cannot execute the CPUID instruction. Execution of CPUID on a
processor that does not support this instruction will result in an invalid opcode exception.

Application Note 11



Detecting the CPUID Instruction

12 Application Note



In

3

tal

Output of the CPUID Instruction

Output of the CPUID Instruction

3.1

The CPUID instruction supports two sets of functions. The first set returns basic processor
information. The second set returns extended processor information. Figure 2 summarizes the
basic processor information output by the CPUID instruction. The output from the CPUID
instruction is fully dependent upon the contents of the EAX register. This means, by placing
different valuesin the EAX register and then executing CPUID, the CPUID instruction will
perform a specific function dependent upon whatever value isresident in the EAX register (see
Table 1). In order to determine the highest acceptable value for the EAX register input and
CPUID functions that return the basic processor information, the program should set the EAX
register parameter value to “0” and then execute the CPUID instruction as follows:

MOV EAX, OOH
CPUID

After the execution of the CPUID instruction, areturn value will be present in the EAX register.
Always use an EAX parameter value that is equal to or greater than zero and less than or equal to
this highest EAX “returned” value.

In order to determine the highest acceptable value for the EAX register input and CPUID
functions that return the extended processor information, the program should set the EAX register
parameter value to “80000000h” and then execute the CPUID instruction as follows:

MOV EAX, 80000000H
CPUID

After the execution of the CPUID instruction, areturn value will be present in the EAX register.
Always use an EAX parameter value that is equal to or greater than 80000000h and less than or
equal to this highest EAX “returned” value. On current and future | A-32 processors, bit 31 in the
EAX register will be clear when CPUID is executed with an input parameter greater then highest
value for either set of functions, and when the extended functions are not supported. All other bit
values returned by the processor in response to a CPUID instruction with EAX set to avalue
higher than appropriate for that processor are model specific and should not be relied upon.

Vendor ID String

In addition to returning the highest value in the EAX register, the Intel Vendor-1D string can be
simultaneously verified aswell. If the EAX register contains an input value of 0, the CPUID
instruction also returns the vendor identification string in the EBX, EDX, and ECX registers (see
Figure 2). These registers contain the ASCII string:

Genuinelntel

While any imitator of the Intel Architecture can provide the CPUID instruction, no imitator can
legitimately claim that its part is a genuine Intel part. So, the presence of the “Genuinelntel” string
is an assurance that the CPUID instruction and the processor signature are implemented as
described in this document. If the “ Genuinelntel” string is not returned after execution of the
CPUID instruction, do not rely upon the information described in this document to interpret the
information returned by the CPUID instruction.

Application Note 13



Output of the CPUID Instruction

Figure 2. CPUID Instruction Outputs

Output of CPUID if EAX =0
31 0
— Highest Value  EAX | Highest Integer Value |
31 23 15 7 0
EBX u (75) n (6E)) e (65) G (47)
—3 Vendor ID EDX 1 (49) e (65) n (6E) i (69)
ECX | (6C) e (65) t (74) n (6E)
ASCII String (with Hexadecimal)
Output of CPUID if EAX =1
Processor 31 27 19 1513 11 7 3 0
Signature eax [ ] T T 11 1 T |
¢ t
Reserved (gray)
Extended Family
Extended Model
Processor Type
Family Code
Model Number
Stepping ID
31 23 15 7 0
L Misc. Info EBX| APICID | Count | Chunks | BrandID
Feature Flags ECX Bit Array (Refer to Table 6)
EDX Bit Array (Refer to Table 5)
Output of CPUID if EAX = 2
31 0
EAX | | |
Configuration EBX Cache and TLB Descriptors Bl
EDX I I I
Output of CPUID if EAX =3
31 0
Lower 64-bits EAX Reserved
of the 96-bit EBX Reserved
proF:(Tssorb ECX| Bits 31-00 of the 96 bit processor serial number
serial numboer EDX| Bits 63-32 of the 96 bit processor serial number

14

Application Note



intal

Output of the CPUID Instruction

Table 1. Information Returned by the CPUID Instruction

Initial EAX Value

Information Provided about the Processor

Basic CPUID Information

OH EAX: Maximum Input Value for Basic CPUID Information
EBX: “Genu”
ECX: ‘“ntel”
EDX  ‘“inel”
1H EAX: 32-bit Processor Signature (Extended Family, Extended Model,
Type, Family, Model and Stepping ID also bits 95-64 of the 96-bit
processor serial number when the PSN feature flag is set.
EBX: Bits 7-0:  Brand Index — Not supported if the value = 00h.
Bits 15-8: CLFLUSH line size. (Value returned * 8 = cache line size)
Valid only if CLFSH feature flag is set.
Bits 23-16: Count of logical processors.
Valid only if Hyper-Threading Technology flag is set
Bits 31-24: Processor local APIC physical ID
Valid for Pentium 4 and subsequent processors
ECX: Feature Flags (see Table 6)
EDX: Feature Flags (see Table 5)
2H EAX, EBX, ECX, EDX Cache and TLB Descriptors
3H EAX: Reserved
EBX: Reserved
ECX: Bits 31-0 represent bits 31-0 of the 96-bit processor serial number.
(Available only in Pentium Il processors when the PSN feature flag is
set; otherwise, the value in this register is reserved.)
EDX: Bits 31-0 represent bits 63-32 of the 96-bit processor serial number.
(Available only in Pentium Il processors when the PSN feature flag is
set; otherwise, the value in this register is reserved.)
NOTE: Processor serial number (PSN) is not supported in the Pentium 4

processor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature. If
the PSN Feature Flags equals “0”, the processor serial number
feature is either not supported, or disabled in the Pentium IlI
processor. Refer to Section 4.1 for details.

Application Note

15



Output of the CPUID Instruction

16

intal

Initial EAX Value

Information Provided about the Processor

Basic CPUID Information

4H

Deterministic Cache Parameters Function
EAX: Bits 4-0: Cache Type**
Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache
Bits 13-10: Reserved
Bits 25-14: Number of threads sharing this cache*
Bits 31-26: Number of processor cores on this die (Multicore)*
EBX: Bits 11-0: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*
ECX: Bits 31-0: S = Number of Sets*
EDX: Reserved

*  Add one to the value in the register file to get the number. For example, the
number of processor cores is EAX[31:26]+1.

**  Cache Types fields
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
31-4 = Reserved

NOTE: Deterministic Cache Parameters Function is available only when
IA32_CR_MISC_ENABLES.BOOT_NT4 (bit 22) is clear (Default)

5H

MONITOR/MWAIT Function

EAX Bits 15-0: Smallest monitor-line size in bytes (default is processor's
monitor granularity)

Bits 31-16: Reserved

EBX Bits 15-0: Largest monitor-line size in bytes (default is processor's
monitor granularity)

Bits 31-16: Reserved
ECX Reserved
EDX Reserved

NOTE: MONITOR/MWAIT Function is available only when
IA32_CR_MISC_ENABLES.BOOT_NT4 (bit 22) is clear (Default)

Application Note



Output of the CPUID Instruction

Initial EAX Value Information Provided about the Processor
Extended Function CPUID Information
80000000H EAX: Maximum Input Value for Extended Function CPUID Information
EBX, ECX, EDX: Reserved
80000001H EAX: Extended Feature Flags (refer to Table 7)
EBX, ECX, EDX: Reserved for additional extended feature flags.
80000002H EAX: Processor Brand String
EBX, ECX, EDX: Processor Brand String Continued
80000003H EAX, EBX, ECX, EDX: Processor Brand String Continued
80000004H EAX, EBX, ECX, EDX: Processor Brand String Continued
80000005h EAX, EBX, ECX, EDX:  Reserved
80000006h Extended L2 Cache Features Function
EAX: Reserved
EBX: Reserved
ECX: Bits 7-0: L2 Cache Line Size
Bits 15-8: L2 Cache Associativity
Bits 31-16: L2 Cache Size in 1-K units
EDX: Reserved
80000007h EAX, EBX, ECX, EDX: Reserved
80000008h Extended Address Sizes Function
EAX: Bits 7-0 Physical Address Size (# of bits)
Bits 15-8 Virtual Address Size (# of hits)
Bits 31-16: Reserved
EBX, ECX, EDX: Reserved
3.2 Processor Signature

Beginning with the Intel 486 processor family, the EDX register contains the processor
identification signature after reset (see Figure 3). The processor identification signatureisa
32-bit value. The processor signature is composed from eight different bit fields. The fieldsin
gray represent reserved bits, and should be masked out when utilizing the processor signature.
The remaining six fields form the processor identification signature.

Figure 3. EDX Register after RESET

31 28 27

20 19 16 15 1413 1211 87 43

0

EDX =

Extended Extended Type Family Model Stepping
Family Model Code Number ID

Processors that implement the CPUID instruction also return the 32-bit processor identification
signature after reset; however, the CPUID instruction gives you the flexibility of checking the
processor signature at any time. Figure 3 shows the format of the 32-bit processor signature for
the Intel 486, and subsequent Intel processors. Note that the EDX processor signature value after
reset is equivalent to the processor signature output value in the EAX register in Figure 2. Table 4
shows the values returned in the EAX register currently defined for these processors.

Application Note

17




Output of the CPUID Instruction

18

intal

The extended family, bit positions 20 through 27 are used in conjunction with the family code,
specified in bit positions 8 through 11, to indicate whether the processor belongs to the Intel 386,
Intel486, Pentium, Pentium Pro or Pentium 4 family of processors. P6 family processors include
all processors based on the Pentium Pro processor architecture and have an extended family equal
to 00h and a family code equal to 6h. Pentium 4 family processors include all processors based on
the Intel NetBurst® microarchitecture and have an extended family equal to 00h and afamily code
equal to OFh.

The extended model, bit positions 16 through 19 in conjunction with the model number, specified
in bits 4 though 7, are used to identify the model of the processor within the processor’ s family.
The stepping ID in bits O through 3 indicates the revision number of that model.

The processor type, specified in bit positions 12 and 13 of Table 2 indicates whether the processor
isan original OEM processor, an OverDrive processor, or adual processor (capable of being used
in adual processor system). Table 2 shows the processor type values returned in bits 12 and 13 of
the EAX register.

Table 2. Processor Type (Bit Positions 13 and 12)

Value Description
00 Original OEM processor
01 OverDrive® processor
10 Dual processor
11 Intel reserved (Do Not Use)

The Pentium 11 processor, model 5, the Pentium 11 Xeon processor, model 5, and the Celeron
processor, model 5 share the same extended family, family code, extended model and model
number. To differentiate between the processors, software should check the cache descriptor
values through executing CPUID instruction with EAX = 2. If no L2 cache isreturned, the
processor isidentified as an Intel® Celeron® processor, model 5. If 1-MB or 2-MB L2 cache size
is reported, the processor isthe Pentium Il Xeon processor otherwise it is a Pentium |1 processor,
model 5 or aPentium |1 Xeon processor with 512-KB L2 cache.

The Pentium 111 processor, model 7, and the Pentium 11l Xeon processor, model 7, share the same
extended family, family code, extended model and model number. To differentiate between the
processors, software should check the cache descriptor values through executing CPUID
instruction with EAX = 2. If 1M or 2M L2 cache sizeis reported, the processor is the Pentium Il|
Xeon processor otherwise it is a Pentium Il processor or a Pentium 111 Xeon processor with
512-KB L2 cache.

The processor brand for the Pentium Ill processor, model 8, the Pentium 111 X eon processor,
model 8, and the Celeron processor, model 8, can be determined by using the Brand 1D values
returned by the CPUID instruction when executed with EAX equal to 1. Table 11 shows the
processor brands defined by the Brand ID.

Application Note



Output of the CPUID Instruction

Older versions of Intel486 SX, Intel486 DX and IntelDX2™ processors do not support the

CPUID instruction?, so they can only return the processor signature at reset. Refer to Table 4 to

determine which processors support the CPUID instruction.

Figure 4 shows the format of the processor signature for Intel 386 processors, which are different

from other processors. Table 3 shows the values currently defined for these Intel 386 processors.

Figure 4. Processor Signature Format on Intel386™ Processors

31 15 11 3 0
RESET — EDX
N N N
Type T I
Family
Major Stepping
Minor Stepping
D Intel Reserved. Do not define.
Table 3. Intel386™ Processor Signatures
Type Family Major Stepping Minor Stepping Description
0000 0011 0000 XXXX Intel386™ DX processor
0010 0011 0000 XXXX Intel386 SX processor
0010 0011 0000 XXXX Intel386 CX processor
0010 0011 0000 XXXX Intel386 EX processor
0100 0011 0000 and 0001 XXXX Intel386 SL processor
0000 0011 0100 XXXX RapidCAD* coprocessor

2All Intel486 SL-enhanced and Write-Back enhanced processors are capable of executing the CPUID instruction. See

Table4.

Application Note

19



Output of the CPUID Instruction

Table 4. Intel486™ and Subsequent Processor Signatures

INtal

Extended Extended Type Family Model Stepping Description
Family Model Code Number ID

00000000 0000 00 0100 000x Xxxx (1) Intel486™ DX processors

00000000 0000 00 0100 0010 XXxx (1) Intel486 SX processors

00000000 0000 00 0100 0011 XXxx (1) Intel487™ processors

00000000 0000 00 0100 0011 Xxxx (1) IntelDX2™ processors

00000000 0000 00 0100 0011 Xxxx (1) IntelDX2 OverDrive® processors

00000000 0000 00 0100 0100 XXXX (3) Intel486 SL processor

00000000 0000 00 0100 0101 XXxx (1) IntelSX2™ processors

00000000 0000 00 0100 0111 xxxx (3) [ Write-Back Enhanced IntelDX2 processors

00000000 0000 00 0100 1000 XXXX (3) IntelDX4™ processors

00000000 0000 0x 0100 1000 XXXX (3) IntelDX4 OverDrive processors

00000000 0000 00 0101 0001 XXXX (2) Pentium® processors (60, 66)

00000000 0000 00 0101 0010 XXXX (2) Pentium processors (75, 90, 100, 120, 133, 150,
166, 200)

00000000 0000 01 0101 0001 XXXX (2) Pentium OverDrive processor for Pentium
processor (60, 66)

00000000 0000 014 0101 0010 XXXX (2) Pentium OverDrive processor for Pentium
processor (75, 90, 100, 120, 133)

00000000 0000 01 0101 0011 XXXX (2) Pentium OverDrive processors for Intel486
processor-based systems

00000000 0000 00 0101 0100 XXXX (2) Pentium processor with MMX™ technology
(166, 200)

00000000 0000 01 0101 0100 XXXX (2) Pentium OverDrive processor with MMX™
technology for Pentium processor (75, 90, 100,
120, 133)

00000000 0000 00 0110 0001 XXxX (2) Pentium Pro processor

00000000 0000 00 0110 0011 XXxXX (2) Pentium Il processor, model 3

00000000 0000 00 0110 01016) XXXX (2) Pentium Il processor, model 5, Pentium |l Xeon
processor, model 5, and Intel® Celeron®
processor, model 5

00000000 0000 00 0110 0110 XXXX (2) Celeron processor, model 6

00000000 0000 00 0110 0111 XXXX (2) Pentium Ill processor, model 7, and Pentium IlI
Xeon processor, model 7

00000000 0000 00 0110 1000(") XXXX (2) Pentium Il processor, model 8, Pentium Il Xeon
processor, model 8, and Celeron processor,
model 8

00000000 0000 00 0110 1001 XXXX (2) Intel Pentium M processor model 9.

00000000 0000 00 0110 1010 XXXX (2) Pentium Il Xeon processor, model A

00000000 0000 00 0110 1011 XXXX (2) Pentium Il processor, model B

20

Application Note




INtal

Output of the CPUID Instruction

Family

Extended Extended Type Family Model Stepping Description
Model Code Number ID

00000000

0000 00 0110 1101 XXXX (2) Intel Pentium M processor model D. All

processors are manufactured using the 90 nm
process.

00000000

0000 01 0110 0011 XXXX (2) Intel Pentium Il OverDrive processor

00000000

0000 00 1111 0000 XXXX (2) Pentium 4 processor, Intel Xeon processor. All

processors are model 0 and manufactured using
the 0.18 micron process.

00000000

0000 00 1111 0001 XXXX (2) Pentium 4 processor, Intel Xeon processor, Intel

Xeon processor MP, and Intel Celeron
processor. All processors are model 1 and
manufactured using the 0.18 micron process.

00000000

0000 00 1111 0010 XXXX (2) Pentium 4 processor, Mobile Intel Pentium 4

processor — M, Intel Xeon processor, Intel Xeon
processor MP, Intel Celeron processor, and
Mobile Intel Celeron processor. All processors
are model 2 and manufactured using the 0.13
micron process.

00000000

0000 00 1111 0011 XXXX (2) Pentium 4 processor, Mobile Intel Pentium 4

processor — M, Intel Xeon processor, Intel
Celeron processor. All processors are model 3
and manufactured using the 90 nm process.

NOTES:

Application Note

1.

2.

This processor does not implement the CPUID instruction.

Refer to the Intel486™ documentation, the Pentium® Processor Specification Update (Document
Number 242480), the Pentium® Pro Processor Specification Update (Document Number 242689), the
Pentium® Il Processor Specification Update (Document Number 243337), the Pentium® 1l Xeon
Processor Specification Update (Document Number 243776), the Intel® Celeron® Processor
Specification Update (Document Number 243748), the Pentium ® IIl Processor Specification Update
(Document Number 244453), the Pentium® Il Xeon™ Processor Specification Update (Document
Number 244460), the Pentium® 4 Processor Specification Update (Document Number 249199), the
Intel® Xeon™ Processor Specification Update (Document Number 249678) or the Intel® Xeon™
Processor MP Specification Update (Document Number 290741) for the latest list of stepping numbers.

Stepping 3 implements the CPUID instruction.

The definition of the type field for the OverDrive processor is 01h. An erratum on the Pentium OverDrive
processor will always return 00h as the type.

To differentiate between the Pentium Il processor, model 5, Pentium Il Xeon processor and the Celeron
processor, model 5, software should check the cache descriptor values through executing CPUID
instruction with EAX = 2. If no L2 cache is returned, the processor is identified as an Celeron processor,
model 5. If 1M or 2M L2 cache size is reported, the processor is the Pentium 1l Xeon processor
otherwise it is a Pentium Il processor, model 5 or a Pentium Il Xeon processor with 512-KB L2 cache
size.

To differentiate between the Pentium Ill processor, model 7 and the Pentium Il Xeon processor, model
7, software should check the cache descriptor values through executing CPUID instruction with EAX = 2.
If 1M or 2M L2 cache size is reported, the processor is the Pentium Il Xeon processor otherwise it is a
Pentium Ill processor or a Pentium Il Xeon processor with 512-KB L2 cache size.

To differentiate between the Pentium Il processor, model 8 and the Pentium Il Xeon processor, model
8, software should check the Brand ID values through executing CPUID instruction with EAX = 1.

21




Output of the CPUID Instruction

3.3

Note:

Feature Flags

When the EAX register contains avalue of 1, the CPUID instruction (in addition to loading the
processor signature in the EAX register) loads the EDX and ECX register with the feature flags.
The feature flags (when a Flag = 1) indicate what features the processor supports. Table 5 and
Table 6 list the currently defined feature flag values.

For future processors, refer to the programmer’ s reference manual, user’ s manual, or the
appropriate documentation for the latest feature flag values.

Use the feature flags in your applications to determine which processor features are supported. By
using the CPUID feature flags to determine processor features, your software can detect and avoid
incompatibilities introduced by the addition or removal of processor features.

Table 5. Feature Flag Values Reported in the EDX Register

Bit Name Description when Comments
Flag =1

0 FPU Floating-point unit on-Chip The processor contains an FPU that supports the Intel387 floating-
point instruction set.

1 VME Virtual Mode Extension The processor supports extensions to virtual-8086 mode.

2 DE Debugging Extension The processor supports I/O breakpoints, including the CR4.DE bit
for enabling debug extensions and optional trapping of access to
the DR4 and DRS5 registers.

3 PSE Page Size Extension The processor supports 4-Mbyte pages.

4 TSC Time-Stamp Counter The RDTSC instruction is supported including the CR4.TSD bit for
access/privilege control.

5 MSR Model Specific Registers Model Specific Registers are implemented with the RDMSR,
WRMSR instructions

6 PAE Physical Address Extension | Physical addresses greater than 32 bits are supported.

7 MCE Machine Check Exception Machine Check Exception, Exception 18, and the CR4.MCE enable
bit are supported

8 CX8 CMPXCHGS Instruction The compare and exchange 8 bytes instruction is supported.

Supported
9 APIC On-chip APIC Hardware The processor contains a software-accessible Local APIC.
Supported

10 Reserved Do not count on their value.

11 SEP Fast System Call Indicates whether the processor supports the Fast System Call
instructions, SYSENTER and SYSEXIT. NOTE: Refer to Section 3.4
for further information regarding SYSENTER/ SYSEXIT feature and
SEP feature bit.

12 MTRR Memory Type Range The Processor supports the Memory Type Range Registers

Registers

specifically the MTRR_CAP register.

22

Application Note




Output of the CPUID Instruction

Bit Name Description when Comments
Flag =1
13 PGE Page Global Enable The global bit in the page directory entries (PDEs) and page table
entries (PTESs) is supported, indicating TLB entries that are common
to different processes and need not be flushed. The CR4.PGE bit
controls this feature.
14 MCA Machine Check Architecture | The Machine Check Architecture is supported, specifically the
MCG_CAP register.
15 CcMoV Conditional Move Instruction | The processor supports CMOVcc, and if the FPU feature flag (bit 0)
Supported is also set, supports the FCMOVCC and FCOMI instructions.
16 PAT Page Attribute Table Indicates whether the processor supports the Page Attribute Table.
This feature augments the Memory Type Range Registers
(MTRRs), allowing an operating system to specify attributes of
memory on 4K granularity through a linear address.
17 PSE-36 36-bit Page Size Extension Indicates whether the processor supports 4-Mbyte pages that are
capable of addressing physical memory beyond 4GB. This feature
indicates that the upper four bits of the physical address of the 4-
Mbyte page is encoded by bits 13-16 of the page directory entry.
18 PSN Processor serial number is The processor supports the 96-bit processor serial number feature,
present and enabled and the feature is enabled.
Note: The Pentium 4 family of processors do not support this
feature.
19 CLFSH CLFLUSH Instruction Indicates that the processor supports the CLFLUSH instruction.
supported
20 Reserved Do not count on their value.
21 DS Debug Store Indicates that the processor has the ability to write a history of the
branch to and from addresses into a memory buffer.
22 ACPI Thermal Monitor and The processor implements internal MSRs that allow processor
Software Controlled Clock temperature to be monitored and processor performance to be
Facilities supported modulated in predefined duty cycles under software control.
23 MMX Intel Architecture MMX The processor supports the MMX technology instruction set
technology supported extensions to Intel Architecture.
24 FXSR Fast floating point save and | Indicates whether the processor supports the FXSAVE and
restore FXRSTOR instructions for fast save and restore of the floating point
context. Presence of this bit also indicates that CR4.0OSFXSR is
available for an operating system to indicate that it uses the fast
save/restore instructions.
25 SSE Streaming SIMD Extensions | The processor supports the Streaming SIMD Extensions to the Intel
supported Architecture.
26 SSE2 Streaming SIMD Extensions | Indicates the processor supports the Streaming SIMD Extensions -
2 2 Instructions.
27 SS Self-Snoop The processor supports the management of conflicting memory
types by performing a snoop of its own cache structure for
transactions issued to the bus.

Application Note

23




Output of the CPUID Instruction

INtal

Bit Name Description when Comments
Flag =1
28 HTT Hyper-Threading This processor’s microarchitecture has the capability to operate as
Technology multiple logical processors within the same physical package.

This field does not indicate that Hyper-Threading Technology has
been enabled for this specific processor. To determine if Hyper-
Threading Technology is supported, check the value returned in
EBX[23:16] after executing CPUID with EAX=1. If EBX[23:16]
contains a value >1, then the processor supports Hyper-Threading
Technology.

29 ™ Thermal Monitor supported | The processor implements the Thermal Monitor automatic thermal
control circuit (TCC).

30 Reserved Do not count on their value.

31 PBE Pending Break Enable The processor supports the use of the FERR#/PBE# pin when the
processor is in the stop-clock state (STPCLK# is asserted) to signal
the processor that an interrupt is pending and that the processor
should return to normal operation to handle the interrupt. Bit 10
(PBE enable) in the IA32_MISC_ENABLE MSR enables this
capability.

Table 6. Feature Flag Values Reported in the ECX Register
Bit Name Description when Comments
Flag =1
0 SSE3 Streaming SIMD Extensions | The processor supports the Streaming SIMD Extensions 3
3 instructions.

2:1 Reserved Do not count on their value.

3 MONITOR MONITOR/MWAIT The processor supports the MONITOR and MWAIT instructions.

4 DS-CPL CPL Qualified Debug Store [ The processor supports the extensions to the Debug Store feature
to allow for branch message storage qualified by CPL.

6:5 Reserved Do not count on their value.

7 EIST Enhanced Intel SpeedStep® | The processor implements the second-generation Intel SpeedStep
technology technology feature.

8 T™M2 Thermal Monitor 2 The processor implements the Thermal Monitor 2 thermal control
circuit (TCC).

9 Reserved Do not count on their value.

10 CID Context ID The L1 data cache mode can be set to either adaptive mode or
shared mode by the BIOS.

13:11 Reserved Do not count on their value.
14 XTPR Send Task Priority The processor supports the ability to disable sending Task Priority
Messages messages. When this feature flag is set, Task Priority messages
may be disabled. Bit 23 (Echo TPR disable) in the
IA32_MISC_ENABLE MSR controls the sending of Task Priority
messages.
31:15 Reserved Do not count on their value.

24

Application Note




3.4

Note:

Output of the CPUID Instruction

Extended Feature Flags

When the EAX register contains a value of 80000001h, the CPUID instruction loads the EDX
register with the extended feature flags. The feature flags (when aFlag = 1) indicate what
extended features the processor supports. Table 7 lists the currently defined extended feature flag

values.

For future processors, refer to the programmer’ s reference manual, user’ s manual, or the
appropriate documentation for the latest extended feature flag values.

Use the extended feature flags in your applications to determine which processor features are
supported. By using the CPUID feature flags to determine processor features, your software can
detect and avoid incompatibilities introduced by the addition or removal of processor features.

Table 7. Extended Feature Flag Values Reported in the EDX Register

Bit Name Description when Comments
Flag =1
28-0 Reserved Do not count on their value.
29 Intel® EM64T | Intel® Extended Memory 64 | The processor supports 64-bit extensions to the 1A-32 Architecture.
Technology For additional information refer to the “64-bit Extensions Technology
Software Developers Guide” (document numbers 300834 and
300835) available at:
http://devel oper.intel.com/technol ogy/64bitextensions/
31-30 Reserved Do not count on their value.

Application Note

25



http://developer.intel.com/technology/64bitextensions/

Output of the CPUID Instruction

3.5

3.6

intal

SYSENTER/SYSEXIT — SEP Features Bit

The SY SENTER Present (SEP) bit 11 of CPUID indicates the presence of thisfacility. An
operating system that detects the presence of the SEP bit must also qualify the processor family
and model to ensure that the SY SENTER/SY SEXIT instructions are actually present:

IF (CPUID SEP bit is set)

IF ((Processor Signature & OxXOFFF3FFF) < 0x00000633)
Fast System Call is NOT supported

ELSE
Fast System Call is supported

}

The Pentium Pro processor (Model = 1) returns a set SEP CPUID feature bit, but should not be
used by software.

Cache Size, Format and TLB Information

When the EAX register contains avalue of 2, the CPUID instruction loads the EAX, EBX, ECX
and EDX registers with descriptors that indicate the processors cache and TLB characteristics.
The lower 8 bits of the EAX register (AL) contain avalue that identifies the number of timesthe
CPUID has to be executed to obtain a complete image of the processor’s caching systems. For
example, the Pentium 4 processor returns avaue of 1 in the lower 8 bits of the EAX register to
indicate that the CPUID instruction need only be executed once (with EAX = 2) to obtain a
complete image of the processor configuration.

The remainder of the EAX register, the EBX, ECX and EDX registers contain the cache and TLB
descriptors. Table 8 shows that when bit 31 in agiven register is zero, that register contains valid
8-hit descriptors. To decode descriptors, move sequentially from the most significant byte of the
register down through the least significant byte of the register. Assuming bit 31 is 0, then that
register contains valid cache or TLB descriptorsin bits 24 through 31, bits 16 through 23, bits 8
through 15 and bits 0 through 7. Software must compare the value contained in each of the
descriptor bit fields with the values found in Table 9 to determine the cache and TLB features of a
processor

Table 9 lists the current cache and TLB descriptor values and their respective characteristics. This
list will be extended in the future as necessary. Between models and steppings of processors the
cache and TLB information may change bit field locations, therefore it isimportant that software
not assume fixed locations when parsing the cache and TLB descriptors.

26

Table 8. Descriptor Formats

Register bit 31

Descriptor Type

Description

Reserved

Reserved for future use.

8-bit descriptors

Descriptors point to a parameter
table to identify cache
characteristics. The descriptor is
null if it has a 0 value.

Application Note




intal

Output of the CPUID Instruction

Table 9. Descriptor Decode Values

Value Cache or TLB Description
00h Null
01lh Instruction TLB: 4-KBPages, 4-way set associative, 32 entries
02h Instruction TLB: 4-MB Pages, fully associative, 2 entries
03h Data TLB: 4-KB Pages, 4-way set associative, 64 entries
04h Data TLB: 4-MB Pages, 4-way set associative, 8 entries
06h 1°-level instruction cache: 8-KB, 4-way set associative, 32-byte line size
08h 1°-level instruction cache: 16-KB, 4-way set associative, 32-byte line size
0Ah 1°-level data cache: 8-KB, 2-way set associative, 32-byte line size
0Ch 1°-level data cache: 16-KB, 4-way set associative, 32-byte line size
22h 3"level cache: 512 KB, 4-way set associative, sectored cache, 64-byte line size
23h 3" level cache: 1-MB, 8-way set associative, sectored cache, 64-byte line size
25h 3" level cache: 2-MB, 8-way set associative, sectored cache, 64-byte line size
29h 3" level cache: 4-MB, 8-way set associative, sectored cache, 64-byte line size
2Ch 1°-level data cache: 32-KB, 8-way set associative, 64-byte line size
30h 1°-level instruction cache: 32-KB, 8-way set associative, 64-byte line size
3%h 2"level cache: 128-KB, 4-way set associative, sectored cache, 64-byte line size
3Bh 2".level cache: 128-KB, 2-way set associative, sectored cache, 64-byte line size
3Ch 2"level cache: 256-KB, 4-way set associative, sectored cache, 64-byte line size
40h No 2"-level cache or, if processor contains a valid 2"-level cache, no 3“-level cache
41h 2"level cache: 128-KB, 4-way set associative, 32-byte line size
42h 2"_level cache: 256-KB, 4-way set associative, 32-byte line size
43h 2"level cache: 512-KB, 4-way set associative, 32-byte line size
44h 2"-level cache: 1-MB, 4-way set associative, 32-byte line size
45h 2"-level cache: 2-MB, 4-way set associative, 32-byte line size
50h Instruction TLB: 4-KB, 2-MB or 4-MB pages, fully associative, 64 entries
51h Instruction TLB: 4-KB, 2-MB or 4-MB pages, fully associative, 128 entries
52h Instruction TLB: 4-KB, 2-MB or 4-MB pages, fully associative, 256 entries
5Bh Data TLB: 4-KB or 4-MB pages, fully associative, 64 entries
5Ch Data TLB: 4-KB or 4-MB pages, fully associative, 128 entries
5Dh Data TLB: 4-KB or 4-MB pages, fully associative, 256 entries
60h 1°-level data cache: 16-KB, 8-way set associative, sectored cache, 64-byte line size
66h 1%-level data cache: 8-KB, 4-way set associative, sectored cache, 64-byte line size
67h 1°-level data cache: 16-KB, 4-way set associative, sectored cache, 64-byte line size
68h 1%-level data cache: 32-KB, 4 way set associative, sectored cache, 64-byte line size

Application Note

27




Output of the CPUID Instruction

Value Cache or TLB Description
70h Trace cache: 12K-uops, 8-way set associative
71h Trace cache: 16K-uops, 8-way set associative
72h Trace cache: 32K-uops, 8-way set associative
78h 2"level cache: 1-MB, 4-way set associative, 64-byte line size
79h 2"level cache: 128-KB, 8-way set associative, sectored cache, 64-byte line size
7Ah 2"level cache: 256-KB, 8-way set associative, sectored cache, 64-byte line size
7Bh 2"level cache: 512-KB, 8-way set associative, sectored cache, 64-byte line size
7Ch 2"level cache: 1-MB, 8-way set associative, sectored cache, 64-byte line size
7Dh 2"level cache: 2-MB, 8-way set associative, 64-byte line size
7Fh 2"level cache: 512-KB, 2-way set associative, 64-byte line size
82h 2"level cache: 256-KB, 8-way set associative, 32-byte line size
83h 2"level cache: 512-KB, 8-way set associative, 32-byte line size
84h 2"level cache: 1-MB, 8-way set associative, 32-byte line size
85h 2"level cache: 2-MB, 8-way set associative, 32-byte line size
86h 2"level cache: 512-KB, 4-way set associative, 64-byte line size
87h 2"level cache: 1-MB, 8-way set associative, 64-byte line size
BOh Instruction TLB: 4-KB Pages, 4-way set associative, 128 entries
B3h Data TLB: 4-KB Pages, 4-way set associative, 128 entries
FOh 64-byte Prefetching
F1lh 128-byte Prefetching

3.7

28

Pentium® 4 Processor, Model 0 Output Example

The Pentium 4 processor, model 0 returns the values shown in Table 8. Since the value of AL=1,
itisvalid to interpret the remainder of the registers. Table 8 also showsthe MSB (bit 31) of al the
registers are 0 which indicates that each register contains valid 8-bit descriptor. The register
valuesin Table 8 show that this Pentium 4 processor has the following cache and TLB

characteristics:

e (66h) A 1%-level data cache that is 8 KB, 4-way set associative, dual-sectored line, with
64-byte sector size.

64 entries.

byte sector size.

(5Bh) A data TLB that maps 4-KB or 4-MB pages, is fully associative, and has 64 entries.
(50h) Aninstruction TLB that maps 4-KB, 2-MB or 4-MB pages, is fully associative, and has

(7Ah) A 2"-level cache that is 256-K B, 8-way set associative, dual-sectored line, with 64-

(70h) A trace cache that can store up to 12K-uops, and is 8-way set associative.
(40h) No 3"-level cache

Application Note




intal

Table 10. Pentiume 4 Processor, Model 0 with 256-KB L2 Cache CPUID (EAX=2)
Example Return Values

EAX
EBX
ECX
EDX

Application Note

Output of the CPUID Instruction

31 23 15 7 0
66h 5Bh 50h 01h
00h 00h 00h 00h
00h 00h 00h 00h
00h 7Ah 70h 40h
29



Output of the CPUID Instruction

30 Application Note



Processor Serial Number

Processor Serial Number

4.1

The processor serial number extends the concept of processor identification. Processor serial
number is a 96-bit number accessible through the CPUID instruction. Processor serial number can
be used by applications to identify a processor, and by extension, its system.

The processor serial number creates a software accessible identity for an individual processor.
The processor serial number, combined with other qualifiers, could be applied to user
identification. Applications include membership authentication, data backup/restore protection,
removable storage data protection, managed access to files, or to confirm document exchange
between appropriate users.

Processor serial number is another tool for use in asset management, product tracking, remote
systems load and configuration, or to aid in boot-up configuration. In the case of system service,
processor serial number could be used to differentiate users during help desk access, or track error
reporting. Processor serial number provides an identifier for the processor, but should not be
assumed to be unique in itself. There are potential modes in which erroneous processor serial
numbers may be reported. For example, in the event a processor is operated outside its
recommended operating specifications, (e.g., voltage, frequency, etc.) the processor serial humber
may not be correctly read from the processor. Improper BIOS or software operations could yield
an inaccurate processor serial number. These events could lead to possible erroneous or duplicate
processor serial numbers being reported. System manufacturers can strengthen the robustness of
the feature by including redundancy features, or other fault tolerant methods.

Processor serial number used as a qualifier for another independent number could be used to
create an electrically accessible number that is likely to be distinct. Processor serial number isone
building block useful for the purpose of enabling the trusted, connected PC.

Presence of Processor Serial Number

To determine if the processor serial number feature is supported, the program should set the EAX
register parameter value to “1” and then execute the CPUID instruction as follows:

MOV EAX, 01H
CPUID

After execution of the CPUID instruction, the ECX and EDX register contains the Feature Flags.
If the PSN Feature Flags, (EDX register, bit 18) equals“1”, the processor serial number featureis
supported, and enabled. |f the PSN Feature Flags equals“ 0", the processor serial number
featureiseither not supported, or disabled in a Pentium |11 processor.

Application Note 31



Processor Serial Number

4.2

32

intal

Forming the 96-bit Processor Serial Number

The 96-hit processor serial number is the concatenation of three 32-bit entities.

To access the most significant 32-bits of the processor serial number the program should set the
EAX register parameter value to “1” and then execute the CPUID instruction as follows:

MOV EAX, 01H
CPUID

After execution of the CPUID instruction, the EAX register contains the Processor Signature. The
Processor Signature comprises the most significant 32-bits of the processor serial number. The
value in EAX should be saved prior to gathering the remaining 64-bits of the processor serial
number.

To access the remaining 64-bits of the processor serial number the program should set the EAX
register parameter value to “3” and then execute the CPUID instruction as follows:

MOV EAX, 03H
CPUID

After execution of the CPUID instruction, the EDX register contains the middle 32-bits, and the
ECX register contains the least significant 32-bits of the processor serial number. Software may
then concatenate the saved Processor Signature, EDX, and ECX before returning the compl ete 96-
bit processor serial number.

Processor serial number should be displayed as 6 groups of 4 hex nibbles (Ex. XXXX-XXXX-
XXXXK-XXXX-XXXX-XXXX where X represents a hex digit). Alpha hex characters should be
displayed as capital letters.

Application Note



Brand ID and Brand String

Brand ID and Brand String

5.1

5.2

Brand ID

Beginning with the Pentium Il processors, model 8, the Pentium 11 X eon processors, model 8,
and Celeron processor, model 8, the concept of processor identification is further extended with
the addition of Brand ID. Brand ID is an 8-bit number accessible through the CPUID instruction.
Brand ID may be used by applications to assist in identifying the processor.

Processors that implement the Brand 1D feature return the Brand ID in bits 7 through O of the
EBX register when the CPUID instruction is executed with EAX=1 (see Table 11). Processors
that do not support the feature return avalue of 0 in EBX bits 7 through 0.

To differentiate previous models of the Pentium 11 processor, Pentium |1 Xeon processor, Celeron
processor, Pentium 1l processor and Pentium 111 Xeon processor, application software relied on
the L2 cache descriptors. In afew cases, the results were ambiguous; for example, software could
not accurately differentiate a Pentium |1 processor from a Pentium |1 Xeon processor with a 512-
KB L2 cache. Brand ID eliminates this ambiguity by providing a software accessible value unique
to each processor brand. Table 11 shows the values defined for each processor.

Brand String

The Brand string is a new extension to the CPUID instruction implemented in some Intel 1A-32
processors, including the Pentium 4 processor. Using the brand string feature, future 1A-32
architecture based processors will return their ASCII brand identification string and maximum
operating frequency via an extended CPUID instruction. Note that the frequency returned is the
maximum operating frequency that the processor has been qualified for and not the current
operating frequency of the processor.

When CPUID is executed with EAX set to the values listed in Table 1, the processor will return
an ASCII brand string in the general-purpose registers as detailed in Table 1.

The brand/frequency string is defined to be 48 characters long, 47 bytes will contain characters
and the 48" byte is defined to be NULL (0). A processor may return less than the 47 ASCI|
characters as long as the string is null terminated and the processor returns valid data when
CPUID is executed with EAX = 80000002h, 80000003h and 80000004h.

The cpuid3a.asm program shows how software forms the brand string (see Example 1). To
determineif the brand string is supported on a processor, software must follow the step below:

1. Execute the CPUID instruction with EAX=80000000h

2. If ((returned value in EAX) > 80000000h) then the processor supports the extended CPUID
functions and EAX contains the largest extended function supported.

3. The processor brand string feature is supported if EAX >= 80000004h

Application Note 33



34

Table 11. Brand ID, CPUID (EAX=1) Return Values in EBX (bits 7 through 0)

Table 12.

Value Description
00h Unsupported
01lh Intel® Celeron® processor
02h Intel® Pentium® Ill processor
03h Intel® Pentium® Il Xeon™ processor
If processor signature = 000006B1h, then “Intel® Celeron® processor”
04h Intel® Pentium® Ill processor
06h Mobile Intel® Pentium® Il Processor-M
07h Mobile Intel® Celeron® processor
08h Intel® Pentium® 4 processor
If processor signature is >=00000F13h, then “Intel® Genuine processor”
09h Intel® Pentium® 4 processor
0Ah Intel® Celeron® Processor
0Bh Intel® Xeon™ processor
If processor signature is <0O0000F13h, then “Intel® Xeon™ processor MP”
0Ch Intel® Xeon™ processor MP
OEh Mobile Intel® Pentium® 4 processor—M
If processor signature is <O0000F13h, then “Intel® Xeon™ processor”
OFh Mobile Intel® Celeron® processor
11h Mobile Genuine Intel® processor
12h Intel® Celeron® M processor
13h Mobile Intel® Celeron® processor
14h Intel® Celeron® Processor
15h Mobile Genuine Intel® processor
16h Intel® Pentium® M processor
17h Mobile Intel® Celeron® processor

All other values

Reserved

Processor Brand String Feature

EAX Input Function Return Value
Value
80000000h Largest Extended Function EAX=Largest supported extended function number,
Supported EBX = ECX = EDX = Reserved
80000001h Extended Processor Signature EAX = Extended Feature Flags
and Extended Feature Bits EBX = ECX = EDX = Reserved
80000002h Processor Brand String EAX, EBX, ECX, EDX contain ASCII brand string
80000003h Processor Brand String EAX, EBX, ECX, EDX contain ASCII brand string
80000004h Processor Brand String EAX, EBX, ECX, EDX contain ASCII brand string
§

Application Note



intal

Usage Guidelines

6 Usage Guidelines

This document presents Intel-recommended feature-detection methods. Software should not try to
identify features by exploiting programming tricks, undocumented features, or otherwise
deviating from the guidelines presented in this application note.

The following guidelines are intended to help programmers maintain the widest range of
compatibility for their software.

Application Note

Do not depend on the absence of an invalid opcode trap on the CPUID opcode to detect the
CPUID instruction. Do not depend on the absence of an invalid opcode trap on the PUSHFD
opcode to detect a 32-bit processor. Test the ID flag, as described in Section 2 and shown in
Section 7.

Do not assumethat a given family or model has any specific feature. For example, do
not assume the family value 5 (Pentium processor) meansthereis a floating-point unit
on-chip. Use the featureflagsfor this determination.

Do not assume processors with higher family or model numbers have all the features of a
processor with alower family or model number. For example, a processor with afamily
value of 6 (P6 family processor) may not necessarily have all the features of a processor with
afamily value of 5.

Do not assume that the features in the OverDrive processors are the same as those in the
OEM version of the processor. Internal caches and instruction execution might vary.

Do not use undocumented features of a processor to identify steppings or features. For
example, the Intel 386 processor A-step had bit instructions that were withdrawn with the B-
step. Some software attempted to execute these instructions and depended on the invalid-
opcode exception as asignal that it was not running on the A-step part. The software failed to
work correctly when the Intel 486 processor used the same opcodes for different instructions.
The software should have used the stepping information in the processor signature.

Test feature flags individually and do not make assumptions about undefined bits. For
example, it would be a mistake to test the FPU bit by comparing the feature register to a
binary 1 with a compare instruction.

Do not assume the clock of a given family or model runs at a specific frequency, and do not
write processor speed-dependent code, such as timing loops. For instance, an OverDrive
Processor could operate at a higher internal frequency and still report the same family and/or
model. Instead, use a combination of the system’ s timers to measure elapsed time and the
TSC (Time-Stamp Counter) to measure processor core clocks to allow direct calibration of
the processor core. See Section 11 and Example 6 for details.

Processor model-specific registers may differ among processors, including in various models
of the Pentium processor. Do not use these registers unless identified for the installed
processor. Thisis particularly important for systems upgradeable with an OverDrive
processor. Only use Model Specific registers that are defined in the BIOS writers guide for
that processor.

Do not rely on the result of the CPUID algorithm when executed in virtual 8086 mode.

35



Usage Guidelines u
intal

Do not assume any ordering of model and/or stepping numbers. They are assigned arbitrarily.

Do not assume processor serial number is a unique number without further qualifiers.

Display processor serial number as 6 groups of 4 hex nibbles (Ex. XXXX-XXXX-XXXX-
XXXX-XXXX-XXXX where X represents a hex digit).

Display aphahex characters as capital letters.

A zero in the lower 64 hits of the processor serial number indicate the processor serial
number isinvalid, not supported, or disabled on this processor.

8

36 Application Note



Proper Identification Sequence

7 Proper Identification Sequence

To identify the processor using the CPUID instructions, software should follow the following

steps.

1. Determineif the CPUID instruction is supported by modifying the ID flag in the EFLAGS
register. If the ID flag cannot be modified, the processor cannot be identified using the
CPUID instruction.

2. Execute the CPUID instruction with EAX equal to 80000000h. CPUID function 80000000h
is used to determine if Brand String is supported. If the CPUID function 80000000h returns a
value in EAX greater than 80000004h the Brand String feature is supported and software
should use CPUID functions 80000002h through 80000004h to identify the processor.

3. If the Brand String feature is not supported, execute CPUID with EAX equal to 1. CPUID
function 1 returns the processor signature in the EAX register, and the Brand ID in the EBX
register bits 0 through 7. If the EBX register bits 0 through 7 contain a non-zero value, the
Brand ID is supported. Software should scan the list of Brand IDs (see Table 11) to identify
the processor.

4. If the Brand ID feature is not supported, software should use the processor signature (see
Figure 2) in conjunction with the cache descriptors (see Table 9) to identify the processor.

The cpuid3a.asm program example demonstrates the correct use of the CPUID instruction (see
Example 1). It aso shows how to identify earlier processor generations that do not implement the
Brand String, Brand 1D, processor signature or CPUID instruction (see Figure 5). This program
example contains the following two procedures:

e get cpu_type identifies the processor type. Figure 5 illustrates the flow of this procedure.

e get fpu type determines the type of floating-point unit (FPU) or math coprocessor
(MCP).

This procedure has been tested with 8086, 80286, Intel386, Intel486, Pentium processor, Pentium
processor with MM X technology, OverDrive processor with MM X technology, Pentium Pro
processors, Pentium |1 processors, Pentium |1 Xeon processors, Pentium |1 Overdrive processors,
Celeron processors, Pentium |11 processors, Pentium 111 Xeon processors and Pentium 4
processors. This program example is written in assembly language and is suitable for inclusion in
arun-timelibrary, or as system calls in operating systems.

Application Note 37



Proper Identification Sequence

38

Figure 5. Flow of Processor get cpu_type Procedure

Is it
an 8086
processor?

cpu_type>=4

Is the

~ CPUID

instruction

supported
?

No

[ cpu_type=0 >
cpu_type=2 >
cpu_type=3 >

cpuid_flag = 1, indicates
CPUID instruction present.
Execute CPUID with input of 0
to get vendor ID string and
input values for EAX.

Does the

vendor D =

\Genuinelntel”
?

If highestinputvdueis at least 1,
execute CPUID with input of 1in
EAX to obtain model, stepping,
family, and features.
Save in cpu_type, stepping,
model,and feature_flags.

»{end_get_cpu_type

Application Note



Usage Program Examples

8 Usage Program Examples

The cpuid3b.asm or cpuid3.c program examples demonstrate applications that call get_cpu_type
and get_fpu_type procedures and interpret the returned information. This code is shown in
Example 2 and Example 3. The results, which are displayed on the monitor, identify the installed
processor and features. The cpuid3b.asm example is written in assembly language and
demonstrates an application that displays the returned information in the DOS environment. The
cpuid3.c example is written in the C language (see Example 2 and Example 3). Figure 6 presents
an overview of the relationship between the three program examples.

Figure 6. Flow of Processor Identification Extraction Procedure

cpuid3b.ASM or cpuid3.C

Main cpuid3a.ASM

4“» get_cpu_type*

Call cpu_type
Call fpu_type

=P get_fpu_type

Processor features check

'

Print

!

End

Application Note 39



Usage Program Examples

40

Application Note



Alternate Method of Detecting Features

9 Alternate Method of Detecting
Features

Some feature flags indicate support of instruction set extensions (i.e. MM X, SSE and SSE2). The
preferred mechanism for determining support of instruction extensions is through the use of the
CPUID instruction, and testing the feature flags. However, an alternate method for determining
processor support of instruction extensions isto install an exception handler and execute one of
the instructions. If the instruction executes without generating an exception, then the processor
supports that set of instruction extensions. If an exception is raised, and the exception handler is
executed, then those instruction extensions are not supported by the processor. Before installing
the exception handler, the software should execute the CPUID instruction with EAX = 0. If the
CPUID instruction returns the Intel vendor-ID string “ Genuinelntel”, then software knows that it
can test for the Intel instruction extensions. Aslong as the CPUID instruction returns the Intel
vendor-1D, this method can be used to support future Intel processors. This method does not
reguire software to check the family and model.

The features.cpp program is written using the C++ language (see Example 4) and demonstrates
the use of exceptions to determine support of SSE3, SSE2, SSE, and MM X instruction
extensions. Features.cpp performs the following steps:

1. Check that the vendor-ID == “Genuinel ntel”
2. Install exception handler for SSE3 test

Attempt to execute a SSE3 instruction (haddpd xmm1, xmm2)

> W

Install exception handler for SSE2 test

5. Attempt to execute a SSE2 instruction (paddg xmm1, xmm2)
6. Install exception handler for SSE test

7. Attempt to execute a SSE instruction (orps xmm1, xmm?2)

8. Install exception handler for MMX test

9. Attempt to execute aMMX instruction (emms)

10. Print supported instruction set extensions.

Application Note 41



Alternate Method of Detecting Features

42 Application Note



Denormals Are Zero

intal

10 Denormals Are Zero

With the introduction of the SSE2 extensions, some Intel Architecture processors have the ability
to convert SSE and SSE2 source operand denormal numbersto zero. Thisfeatureis referred to as
Denormals-Are-Zero (DAZ). The DAZ mode is not compatible with IEEE Standard 754. The
DAZ mode is provided to improve processor performance for applications such as streaming
media processing, where rounding a denormal operand to zero does not appreciably affect the
quality of the processed data.

Some processor steppings support SSE2 but do not support the DAZ mode. To determineif a
processor supports the DAZ mode, software must perform the following steps.

1. Executethe CPUID instruction with an input value of EAX=0 and ensure the vendor-1D
string returned is “ Genuinelntel”.

2. Execute the CPUID instruction with EAX=1. Thiswill load the EDX register with the feature
flags.

3. Ensurethat the FXSR feature flag (EDX bit 24) is set. Thisindicates the processor supports
the FXSAVE and FXRSTOR instructions.

4. Ensurethat the XMM feature flag (EDX hit 25) or the EMM feature flag (EDX bit 26) is set.
This indicates that the processor supports at least one of the SSE/SSE?2 instruction sets and its
MXCSR control register.

5. Zero al6-byte aligned, 512-byte area of memory. Thisis necessary since some
implementations of FXSAVE do not modify reserved areas within the image.

6. Execute an FXSAVE into the cleared area

7. Bytes 28-31 of the FXSAVE image are defined to contain the MXCSR_MASK. If thisvaue
is 0, then the processor's MXCSR_MASK is OxFFBF, otherwise MXCSR_MASK isthe
value of this dword.

8. If bit 6 of the MXCSR_MASK is set, then DAZ is supported.

After completing this algorithm, if DAZ is supported, software can enable DAZ mode by setting
bit 6 in the MXCSR register save area and executing the FXRSTOR instruction. Alternately
software can enable DAZ mode by setting bit 6 in the MXCSR by executing the LDMXCSR
instruction. Refer to the chapter titled “ Programming with the Streaming SIMD Extensions
(SSE)” inthe Intel Architecture Software Developer’s Manual volume 1: Basic Architecture.

The assembly language program dazdtect.asm (see Example 5) demonstrates this DAZ detection
algorithm.

Application Note 43



Denormals Are Zero

44

Application Note



Operating Frequency

Operating Frequency

Note:

With the introduction of the Time-Stamp Counter, it is possible for software operating in real
mode or protected mode with ring O privilege to calculate the actual operating frequency of the
processor. To calculate the operating frequency, the software needs a reference period. The
reference period can be a periodic interrupt, or another timer that is based on time, and not based
on asystem clock. Software needs to read the Time-Stamp Counter (TSC) at the beginning and
ending of the reference period. Software can read the TSC by executing the RDTSC instruction,
or by setting the ECX register to 10h and executing the RDM SR instruction. Both instructions
copy the current 64-bit TSC into the EDX:EAX register pair.

To determine the operating frequency of the processor, software performs the following steps.
The assembly language program frequenc.asm (see Example 6) demonstrates the frequency
detection algorithm.

1. Execute the CPUID instruction with an input value of EAX=0 and ensure the vendor-1D
string returned is “ Genuinelntel”.

2. Execute the CPUID instruction with EAX=1 to load the EDX register with the feature flags.

Ensure that the TSC feature flag (EDX bit 4) is set. Thisindicates the processor supports the
Time-Stamp Counter and RDTSC instruction.

Read the TSC at the beginning of the reference period

Read the TSC at the end of the reference period.

Compute the TSC delta from the beginning and ending of the reference period.
Compute the actual frequency by dividing the TSC delta by the reference period.

w

N o oM

Actua frequency = (Ending TSC value — Beginning TSC value) / reference period

The measured accuracy is dependent on the accuracy of thereference period. A longer
reference period producesa more accurate result. 1n addition, repeating the calculation
multiple times may also improve accuracy.

Application Note 45



Operating Frequency

46

Example 1. Processor Identification Extraction Procedure

Filename: cpuid3a.asm
Copyright (c) Intel Corporation 1993-2004

This program has been developed by Intel Corporation. Intel
has various intellectual property rights which it may assert
under certain circumstances, such asif another
manufacturer's processor mis-identifies itself as being
"Genuinelntel" when the CPUID instruction is executed.

Intel specifically disclaims all warranties, express or

implied, and all liability, including consequential and other
indirect damages, for the use of this program, including
liability for infringement of any proprietary rights,

and including the warranties of merchantability and fitness

for aparticular purpose. Intel does not assume any
responsibility for any errors which may appear in this program
nor any responsibility to update it.

This code contains two procedures:

_get_cpu_type: Identifies processor typein _cpu_type:
0=8086/8088 processor
2=Intel 286 processor
3=Intel386(TM) family processor
4=Intel486(TM) family processor
5=Pentium(R) family processor
6=P6 family of processors
F=Pentium 4 family of processors

_get_fpu_type: Identifies FPU typein _fpu_type:
0=FPU not present
1=FPU present
2=287 present (only if cpu_type=3)
3=387 present (only if cpu_type=3)

This program has been tested with the Microsoft Developer Studio.

This code correctly detects the current Intel 8086/8088,
80286, 80386, 80486, Pentium(R) processor, Pentium(R) Pro

processor, Pentium(R) Il processor, Pentium 11 Xeon(TM) processor,

Pentium Il Overdrive(R), Intel Celeron processor, Pentium |11 processor,

Pentium 111 Xeon processor, Pentium 4 processors and
Intel(R) Xeon(TM) processors.

NOTE: When using this code with C program cpuid3.c, 32-bit
segments are recommended.

To assembl e this code with TASM, add the JUMPS directive.

jumps ; Uncomment this line for TASM

Application Note



Operating Frequency

intal

; comment thisline for 32-bit segments

TITLE cpuid3a

DOSSEG

; uncomment the following 2 lines for 32-bit segments
; .386
; .model flat

; comment thisline for 32-bit segments
.model small

CPU_IDMACRO
db Ofh ; Hardcoded CPUID instruction
db 0azh

ENDM

.data
public _cpu_type
public _fpu_type
public _v86_flag
public _cpuid flag
public _intel_CPU
public _vendor_id
public _cpu_signature
public _features ecx
public _features edx
public _features ebx
public _cache eax
public _cache ebx
public _cache ecx
public _cache edx
public _sep flag
public _brand_string

_Cpu_type db 0
_fpu_type db 0

_v86 flag db 0
_cpuid_flag db 0
_intel_CPU db 0

_sep_flag db 0
_vendor_id db L "
intel_id db "Genuinelntel”
_Cpu_signature dd 0
_features ecx  dd 0
_features edx dd 0
_features ebx dd 0
_cache_eax dd 0
_cache_ebx dd 0

Application Note

47



Operating Frequency

48

_cache_ecx dd 0
_cache edx dd 0
fp_status dw 0
_brand string db 48 dup (0)

.code

; comment this line for 32-bit segments

.8086

; uncomment this line for 32-hit segments

; .386
public _get cpu type
_get_cpu_type proc

; This procedure determines the type of processor in a system

; and setsthe _cpu_type variable with the appropriate

; value. If the CPUID instruction isavailable, it is used

; to determine more specific details about the processor.

; All registers are used by this procedure, none are preserved.

; To avoid AC faults, the AM bit in CRO must not be set.

; Intel 8086 processor check

; Bits 12-15 of the FLAGS register are always set on the

; 8086 processor.

; For 32-bit segments comment the following lines down to the next

; comment line that says"STOP"

check 8086:
pushf ; push origina FLAGS
pop ax ; get original FLAGS
mov CX, ax ; saveoriginal FLAGS
and ax, Offfh ; Clear bits 12-15in FLAGS
push  ax ; save new FLAGS value on stack
popf ; replace current FLAGS value
pushf ; get new FLAGS
pop ax ; store new FLAGSin AX
and ax, 0f000h ; if bits 12-15 are set, then
cmp ax, 0f000h ; processor is an 8086/8088
mov  _cpu_type, O ; turn on 8086/8088 flag
jne check 80286 ; go check for 80286
push sp ; double check with push sp
pop dx ; if value pushed was different
cmp dx, sp ; meansit'sreally an 8086
jne end_cpu_type ; jJump if processor is 8086/8088
mov  _cpu_type, 10h ; indicate unknown processor

Application Note



.286
check 80286:
smsw  ax
and ax, 1
mov  _v86 flag, d
or cx, 0f000h
push  cx
popf
pushf
pop ax
and ax, 0f000h
mov  _Ccpu_type, 2
jz end_cpu_type
; Intel 386 processor check
faults.
.386
: "STOP"
;:heck_80386:
pushfd
pop eax

Application Note

jmp end_cpu_type

Intel 286 processor check

Operating Frequency

Bits 12-15 of the FLAGS register are always clear on the
Intel 286 processor in real-address mode.

; save machine status word
; isolate PE bit of MSW
; save PE bit to indicate V86

; try to set bits 12-15

; save new FLAGS value on stack

; replace current FLAGS value

; get new FLAGS

; storenew FLAGSin AX

; if bits 12-15 are clear

; processor=80286, turn on 80286 flag
; jump if processor is 80286

The AC hit, bit #18, isanew bit introduced in the EFLAGS
register on the Intel486 processor to generate alignment

This bit cannot be set on the Intel 386 processor.

mov €cx, eax
Xor eax, 40000h

push  eax

popfd

pushfd

pop eax

xor eax, ecx

mov  _cpu_type, 3
jz end_cpu_type
push  ecx

popfd

Intel 486 processor check

;itissafe to use 386 instructions

; push original EFLAGS

; get original EFLAGS

; save original EFLAGS

; flip AC bitin EFLAGS

; save new EFLAGS value on stack
; replace current EFLAGS value

; get new EFLAGS

; store new EFLAGS in EAX

; can't toggle AC bit, processor=80386
; turn on 80386 processor flag

; jJump if 80386 processor

; restore AC bit in EFLAGS first

Checking for ability to set/clear ID flag (Bit 21) in EFLAGS
which indicates the presence of a processor with the CPUID

instruction.

49



Operating Frequency

486

check_80486:
mov _Cpu_type, 4 ; turn on 80486 processor flag
mov  eax, ecx ; get original EFLAGS
xor eax, 200000h ; flip ID bitin EFLAGS
push  eax ; save new EFLAGS value on stack
popfd ; replace current EFLAGS value
pushfd ; get new EFLAGS
pop eax ; store new EFLAGS in EAX
xor eax, ecx ; can't toggle 1D hit,
je end_cpu_type ; processor=80486

; Execute CPUID instruction to determine vendor, family,
; model, stepping and features. For the purpose of this
; code, only theinitial set of CPUID information is saved.

mov  _cpuid flag, 1 ; flag indicating use of CPUID inst.
push  ebx ; saveregisters

push es

push edi

mov  eax, 0 ; set up for CPUID instruction
CPU_ID ; get and save vendor 1D

mov  dword ptr _vendor_id, ebx
mov  dword ptr _vendor_id[+4], edx
mov  dword ptr _vendor_id[+8], ecx

cmp dword ptr intel_id, ebx

jne end_cpuid_type

cmp dword ptr intel_id[+4], edx
jne end_cpuid_type

cmp dword ptr intel_id[+8], ecx

jne end_cpuid_type ; if not equal, not an Intel processor
mov  _intel CPU, 1 ; indicate an Intel processor

cmp eax, 1 ; make sure 1isvalid input for CPUID
il end_cpuid_type ; if not, jJump to end

mov eax, 1

CPU_ID ; get family/model/stepping/features
mov  _Cpu_signature, eax

mov  _features ebx, ebx
mov  _features edx, edx

mov  _features ecx, ecx
shr eax, 8 ; isolate family
and eax, Ofh
mov  _cpu_type, a ; set _cpu_type with family
; Execute CPUID instruction to determine the cache descriptor
; information.
mov  eax, 0 ; set up to check the EAX value

50 Application Note



intal

CPU_ID
cmp
il

mov
CPU_ID
cmp

jne

mov
mov
mov
mov

mov
CPU_ID
cmp

jbe

mov

mov
CPU_ID
mov
mov
mov
mov

add

mov
CPU_ID
mov
mov
mov
mov

add

mov
CPU_ID
mov
mov
mov
mov

end_cpuid_type:

Application Note

pop
pop
pop

ax, 2
end_cpuid_type

eax, 2

a, 1
end_cpuid_type

_cache _eax, eax
_cache_ebx, ebx
_cache _ecx, ecx
_cache _edx, edx

eax, 80000000h

eax, 80000000h
end_cpuid_type

di, offset _brand_string
eax, 80000002h

dword ptr [di], eax
dword ptr [di+4], ebx
dword ptr [di+8], ecx
dword ptr [di+12], edx
di, 16

eax, 80000003h

dword ptr [di], eax
dword ptr [di+4], ebx
dword ptr [di+8], ecx
dword ptr [di+12], edx
di, 16

eax, 80000004h

dword ptr [di], eax
dword ptr [di+4], ebx
dword ptr [di+8], ecx
dword ptr [di+12], edx

edi
es
ebx

Operating Frequency

; Are cache descriptors supported?

; Set up to read cache descriptor

; Isoneiteration enough to obtain

; cache information?

; This code supports one iteration

; only.
; store cache information

; NOTE: for future processors, CPUID
; instruction may need to be run more
; than once to get complete cache

; information

; check if brand string is supported

; take jJump if not supported

; get first 16 bytes of brand string

; save bytes0.. 15

; save bytes 16 .. 31

; save bytes 32 .. 47

; restore registers

comment this line for 32-bit segments

51



Operating Frequency

intal

.8086
end_cpu_type:

ret
_Qget_cpu_type endp

rhkkhkkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkk***
1

public _get fpu type
_Qet_fpu_type proc

; This procedure determines the type of FPU in asystem
; and setsthe _fpu_type variable with the appropriate value.
; All registers are used by this procedure, none are preserved.

; Coprocessor check

; The algorithm is to determine whether the floating-point

; status and control words are present. If not, no

; coprocessor exists. If the status and control words can

; be saved, the correct coprocessor is then determined

; depending on the processor type. The Intel 386 processor can
; work with either an Intel287 NDP or an Intel 387 NDP.

; The infinity of the coprocessor must be checked to determine
; the correct coprocessor type.

fninit ; reset FP status word

mov  fp_status, 5abah ; initialize temp word to non-zero
fnstsw fp_status ; save FP status word

mov  ax, fp_status ; check FP status word

cmp a, o ; Was correct status written

mov  _fpu_type O ; no FPU present

jne end_fpu_type

check_control_word:

fnstcw fp_status ; save FP control word

mov  ax, fp_status ; check FP control word

and ax, 103fh ; selected partsto examine

cmp ax, 3fh ; was control word correct

mov  _fpu_type, O

jne end_fpu_type ; incorrect control word, no FPU

mov  _fpu type 1
; 80287/80387 check for the Intel 386 processor
check_infinity:

cmp _cpu_type, 3
jne end_fpu_type

fldl ; must use default control from FNINIT
fldz ; forminfinity

fdiv ; 8087/Intel 287 NDP say +inf = -inf

fld st ; form negative infinity

fchs ; Intel387 NDP says +inf <> -inf

52 Application Note



Operating Frequency

intal

fcompp ; seeif they are the same

fstsw  fp_status ; look at status from FCOMPP

mov  ax, fp_status

mov  _fpu_type, 2 ; store Intel 287 NDP for FPU type

sahf ; seeif infinities matched

iz end_fpu_type ; jJump if 8087 or Intel 287 is present

mov  _fpu type 3 ; store Intel 387 NDP for FPU type
end_fpu_type:

ret

_get fpu_type endp

end

Application Note 53



Operating Frequency

Example 2. Processor ldentification Procedure in Assembly Language

; Filename: cpuid3b.asm
; Copyright (c) Intel Corporation 1993-2004

; This program has been developed by Intel Corporation. Intel
; has various intellectual property rights which it may assert

; under certain circumstances, such asif another

; manufacturer's processor mis-identifiesitself as being

; "Genuinelntel" when the CPUID instruction is executed.

; Intel specifically disclaims all warranties, express or

; implied, and al liability, including consequential and

; other indirect damages, for the use of this program,

; including liability for infringement of any proprietary

; rights, and including the warranties of merchantability and
; fitness for a particular purpose. Intel does not assume any
; responsibility for any errors which may appear in this

; program nor any responsibility to update it.

; This program contains three parts:
; Part 1:  Identifies processor typein the variable

; _cpu_type:
; Part 2. Identifies FPU typein the variable _fpu_type:

; Part 3:  Prints out the appropriate message. Thispartis
; specific to the DOS environment and uses the DOS
; system calls to print out the messages.

; This program has been tested with the Microsoft Developer Studio. If

; this code is assembled with no options specified and linked

; with the cpuid3a module, it correctly identifies the current

; Intel 8086/8088, 80286, 80386, 80486, Pentium(R), Pentium(R) Pro,

; Pentium(R) Il processors, Pentium(R) Il Xeon(TM) processors, Pentium(R) |1
; Overdrive(R) processors, Intel(R) Celeron(R) processors, Pentium(R) 11

; processors, Pentium(R) 11 Xeon(TM) processors, Pentium(R) 4 processors

; and Intel (R) Xeon(TM) processors DP and MP when executed in the

; real-address mode.

; NOTE: This code iswritten using 16-bit Segments

; To assembl e this code with TASM, add the JUMPS directive.
; jumps ; Uncomment this line for TASM

TITLE cpuid3b

DOSSEG
.model small
Stack  100h
OP_.O MACRO
db 66h ; hardcoded operand override
ENDM
.data
extrn _cpu_type: byte

54

Application Note



extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn

; The purpose of this code isto identify the processor and

; coprocessor that is currently in the system. The program

; first determines the processor type. Then it determines

; whether a coprocessor existsin the system. If a

; coprocessor or integrated coprocessor exists, the program

; identifies the coprocessor type. The program then prints

; the processor and floating point processors present and type.

mov
mov
mov
and
call
call
call

mov
int

_fpu_type:

_cpuid_flag:
_intel_CPU:
_vendor_id:

_Cpu_signature:

_features ecx:
_features edx:
_features ebx:
_cache_eax:
_cache_ebx:
_cache_ecx:
_cache_edx:
_brand_string:

ax, @data

ds, ax

es, ax

sp, not 3
_Qget_cpu_type
_Qet_fpu_type
print

ax, 4c00h
21h

byte
byte
byte
byte
dword
dword
dword
dword
dword
dword
dword
dword
byte

; et segment register

; set segment register

; align stack to avoid AC fault
; determine processor type

Operating Frequency

R R R R R R R R R EEEEEREEEEEEE R R EEEEEERE R R R R R

extrn

_Qet_cpu_type: proc

rhkhk Ak kAR I Ak Ik hd A hh A h Ik hhhhdhhhdhhkhhdhdhhdhdhdhdhdhdhddhddhdddxddxddrdhxddxx
’

extrn

_Qet_fpu_type: proc

kA AR I A KR I AR I A I I AR AT I A I I h A hhhdhhkdhdhdhkdhdhkhdhdhdhdhdhddhdddxhdxddxdhxddxx
’

FPU_FLAG
VME_FLAG
DE_FLAG
PSE_FLAG
TSC FLAG
MSR_FLAG
PAE FLAG
MCE_FLAG
CX8 FLAG
APIC_FLAG
SEP FLAG
MTRR_FLAG

Application Note

equ 0001h
equ 0002h
equ 0004h
equ 0008h
equ 0010h
equ 0020h
equ 0040h
equ 0080h
equ 0100h
equ 0200h
equ 0800h
equ 1000h

55



Operating Frequency

PGE_FLAG equ 2000h
MCA_FLAG equ 4000h
CMOV_FLAG  equ8000h
PAT FLAG equ 10000h
PSE36_FLAG  equ 20000h
PSNUM_FLAG  equ 40000h
CLFLUSH_FLAG equ 80000h
DTS FLAG equ 200000h
ACPI_FLAG equ 400000h
MMX_FLAG  equ800000h
FXSR FLAG  equ1000000h
SSE_FLAG equ 2000000h
SSE2 FLAG equ 4000000h
SS FLAG equ 8000000h
HTT FLAG equ 10000000h
TM_FLAG equ 20000000h
PBE FLAG equ 80000000h
SSE3 FLAG equ 0001h

56

MONITOR_FLAG equ 0008h
DS CPL_FLAG  equ 0010h

EIST_FLAG
TM2_FLAG
CID_FLAG
XTPR_FLAG

.data
id_msg
cp_error
cp_8086
cp_286
cp_386

cp_486
cp_486sx

fp_8087
fp_287
fp_387

intel486_msg
intel 486dx_msg
intel 486sx_msg
inteldx2_msg
intelsx2_msg
inteldx4_msg
inteldx2wb_msg

pentium_msg
pentiumpro_msg

equ 0080h

equ 0100h

equ 0400h

equ 04000h

dob "This system has a$"

db "n unknown processor$"

db "n 8086/8088 processor$’

db "n 80286 processor$"

db "n 80386 processor$"

db "n 80486DX, 80486DX 2 processor or"
db " 80487SX math coprocessor$”

db "n 80486SX processor$’

db " and an 8087 math coprocessor$"

db " and an 80287 math coprocessor$"

db " and an 80387 math coprocessor$"

db " Genuine Intel486(TM) processor$"

db " Genuine Intel486(TM) DX processor$’
db " Genuine Intel486(TM) SX processor$"
db " Genuine IntelDX2(TM) processor$"
db " Genuine Intel SX2(TM) processor$"

db " Genuine IntelDX4(TM) processor$"
db " Genuine Write-Back Enhanced"”

db " IntelDX2(TM) processor$"

db " Genuine Intel(R) Pentium(R) processor$"
db " Genuine Intel Pentium(R) Pro processor$’

pentiumiimodel 3_msg

pentiumiixeon_m5_msg

pentiumiixeon_msg

celeron_msg

celeronmodel6_msg

celeron_brand

db " Genuine Intel (R) Pentium(R) |1 processor, model 3$"
db " Genuine Intel(R) Pentium(R) Il processor, model 5 or”
db “ Intel(R) Pentium(R) Il Xeon(TM) processor$"

db " Genuine Intel (R) Pentium(R) I1 Xeon(TM) processor$’
db " Genuine Intel(R) Celeron(R) processor, model 5"

db " Genuine Intel(R) Celeron(R) processor, model 6$"

db " Genuine Intel(R) Celeron(R) processor$”

Application Note



pentiumiii_msg db

db

pentiumiiixeon_msg db

pentiumiiixeon_brand db

pentiumiii_brand db

mobile_piii_brand db

mobile_icp_brand db

mobile P4 brand db

pentium4_brand db

xeon_brand db

xeon_mp_brand db

mobile_icp_brand 2 db

mobile pentium_m_brand db

mobile_genuine_brand db

mobile icp_m_brand db

unknown_msg db
brand_entry struct

brand_value db

brand_string dw
brand_entry ends

brand_table brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_entry

brand_table size equ

($ - offset brand_table) / (sizeof brand_entry)

Operating Frequency

" Genuine Intel (R) Pentium(R) |11 processor, model 7 or"

" Intel Pentium(R) 111 Xeon(TM) processor, model 7$"

" Genuine Intel(R) Pentium(R) 11 Xeon(TM) processor, model 7$"
" Genuine Intel(R) Pentium(R) 11 Xeon(TM) processor$"

" Genuine Intel(R) Pentium(R) 111 processor$"

" Genuine Mobile Intel (R) Pentium(R) 111 Processor-M$"

" Genuine Mobile Intel (R) Celeron(R) processor$"

" Genuine Mobile Intel (R) Pentium(R) 4 processor - M$"

" Genuine Intel(R) Pentium(R) 4 processor$”

" Genuine Intel (R) Xeon(TM) processor$"

" Genuine Intel (R) Xeon(TM) processor MP$"
" Genuine Mobile Intel (R) Celeron(R) processor$"
" Genuine Intel(R) Pentium(R) M processor$"

" Mobile Genuine Intel(R) processor$’

" Genuine Intel(R) Celeron(R) M processor$"

"n unknown Genuine Intel(R) processor$’

<01h, offset celeron_brand>

<02h, offset pentiumiii_brand>
<03h, offset pentiumiiixeon_brand>
<04h, offset pentiumiii_brand>
<06h, offset mobile_piii_brand>
<07h, offset mobile_icp_brand>
<08h, offset pentium4_brand>
<09h, offset pentium4_brand>
<0Ah, offset celeron_brand>

<0Bh, offset xeon_brand>

<0Ch, offset xeon_mp_brand>

<OEh, offset mobile_p4_brand>

<OFh, offset mobile_icp_brand>

<11h, offset mobile_genuine_brand>
<12h, offset mobile_icp_m_brand>
<13h, offset mobile_icp_brand_2>
<14h, offset celeron_brand>

<15h, offset mobile_genuine_brand>
<16h, offset mobile_pentium_m_brand>
<17h, offset mobile_icp_brand 2>

; Thefollowing 16 entries must stay intact as an array
offset intel486dx_msg
offset intel 486dx_msg
offset intel 486sx_msg
offset inteldx2_msg
offset intel 486_msg
offset intelsx2_msg
offset intel 486_msg
offset inteldx2wb_msg
offset inteldx4_msg
offset intel 486_msg
offset intel 486_msg
offset intel 486_msg

intel_486 0
intel_486 1
intel_486 2
intel_486_3
intel_486_4
intel_486 5
intel_486 6
intel_486_7
intel_486_8
intel_486 9
intel_486_a
intel_486 b

g2222z222222

Application Note

57



Operating Frequency

58

intel_486_c
intel_486_d
intel_486_e
intel_486_f

; end of array
family_msg
model_msg
stepping_msgy
ext_fam_msg
ext_mod_msg
cr_If
turbo_msg

dp_msgy
fpu_msg
vme _msg
de msg
pse_msg
tsc_msg
msr_msg
pae_msg
mce_msg
cx8_msg
apic_msgdb
_msg
no_sep_msg
mtrr_msgdb
pge_msg
mca_msg
cmov_msg
pat_msg
pse36_msg
psnum_msg
clflush_msg

dts msg

db

offset intel486_msg
offset intel486_msg
offset intel486_msg
offset intel486_msg

13,10,"Processor Family: $"
13,10,"Model: $

13,10," Stepping: $

13,10," Extended Family: $"

13,10," Extended Model: $"

13,10,"$"

13,10,"The processor is an OverDrive(R)"
" processor$’

13,10,"The processor is the upgrade”

" processor in adual processor system$"
13,10,"The processor contains an on-chip”
" FPUS$"

13,10," The processor supports Virtual"

" Mode Extensions$"

13,10, The processor supports Debugging”
" Extensions$"

13,10," The processor supports Page Size"
" Extensions$"

13,10,"The processor supports Time Stamp"
" Counter$"

13,10," The processor supports Model"

" Specific Registers”

13,10,"The processor supports Physical"

" Address Extensions$"

13,10, The processor supports Machine"

" Check Exceptions$"

13,10,"The processor supports the"

" CMPXCHGS8B instruction$'

13,10," The processor contains an on-chip”

db
db
db
db
db

" APIC$"

13,10,"The processor supports Fast System"
" Cally”

13,10," The processor does not support Fast"
" System Call$"

13,10,"The processor supports Memory Type"

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

" Range Registers$’

13,10, The processor supports Page Global"
" Enable$”

13,10,"The processor supports Machine"

" Check Architecture$"

13,10,"The processor supports Conditional
" Move Instruction$"

13,10,"The processor supports Page Attribute”

" Table$"

13,10," The processor supports 36-bit Page"
" Size Extension$"

13,10,"The processor supports the"

" processor serial number$"

13,10," The processor supports the"

" CLFLUSH instruction$"

13,10, The processor supports the"

" Debug Trace Store feature$"

Application Note



acpi_msgdb
mmx_msg
fxsr_msg db
sse msg
Sse2_msgy
ss_msg

htt_msg
tm_msg

pbe_msg
sse3_msg
monitor_msg
ds cpl_msg
eist_ msg
tm2_msg

cid_msg
Xtpr_msg

not_intel

ASC_MSG
LOCAL
add
cmp
jle
add

ascii_done:
mov
mov
mov
int

ENDM

.code
.8086

print proc

Operating Frequency

13,10,"The processor supports the"

db " ACPI registersin MSR space$"

db 13,10,"The processor supports Intel Architecture”
db " MMX(TM) Technology$"

13,10, The processor supports Fast floating point*

db " save and restore$"

db 13,10, The processor supports the Streaming”

db " SIMD extensions$'

db 13,10, The processor supports the Streaming”

db " SIMD extensions 2 instructions$"

db 13,10,"The processor supports Self-Snoop$’

db 13,10,"The processor supports Hyper-Threading Technology$"
db 13,10,"The processor supports the"

db " Therma Monitor$"

db 13,10,"The processor supports the"

db " Pending Break Event$"

db 13,10,"The processor supports the Streaming SIMD"

db " Extensions 3 instructions$"

db 13,10,"The processor supports the MONITOR and MWAIT"
db " instructions$"

db 13,10,"The processor supports Debug Store extensions for"
db " branch message storage by CPL$"

db 13,10,"The processor supports"

db " Enhanced SpeedStep(TM) Technology$’

db 13,10,"The processor supports the"

db " Thermal Monitor 2$"

db 13,10,"The processor supports L1 Data Cache Context ID$"
db 13,10,” The processor supports transmitting TPR messages$”
db "t least an 80486 processor.”

db 13,10,"1t does not contain a Genuine"

db "Intel part and as aresult,”

db "the",13,10,"CPUID"

db " detection information cannot be"

db " determined at this time.$"

MACRO msg

ascii_done : local |abel

al, 30h

al, 3%h Jisit 0-9?

ascii_done

al, 07h

byte ptr msg[20], al

dx, offset msg

ah, 9h

21h

; This procedure prints the appropriate cpuid string and

; numeric processor presence status. |f the CPUID instruction
; was used, this procedure prints out the CPUID info.

; All registers are used by this procedure, none are

Application Note

59



Operating Frequency

60

; preserved.

mov
mov
int

cmp
je

print_86:

cmp
jne
mov
mov
int
cmp
je
mov
mov
int
jmp

print_286:

cmp
jne
mov
mov
int
cmp
je

print_287:
mov
mov
int
jmp

print_386:

cmp
jne
mov
mov
int
cmp
je
cmp
je
mov
mov
int
jmp

print_486:
cmp
jne
mov
cmp

dx, offsetid_msg
ah, 9h
21h

_cpuid_flag, 1

print_cpuid_data

_cpu_type, 0
print_286

dx, offset cp_8086
ah, 9h

21h

_fpu_type, O
end_print

dx, offset fp_8087
ah, 9h

21h

end_print

_Cpu_type, 2
print_386

dx, offset cp_286
ah, 9h

21h

_fpu_type, O
end_print

dx, offset fp_287
ah, 9h

21h

end_print

_cpu_type, 3
print_486

dx, offset cp_386
ah, 9h

21h

_fpu_type, O
end_print
_fpu_type, 2
print_287

dx, offset fp_387
ah, 9h

21h

end_print

_cpu_type, 4
print_unknown

dx, offset cp_486sx
_fpu_type, O

; print initial message

; if setto 1, processor
; supports CPUID instruction
; print detailed CPUID info

; Intel processors will have
; CPUID instruction

Application Note



intal

je
mov

print_486sx:
mov
int
jmp

print_unknown:
mov

jmp

print_cpuid_data:

486
cmp
jne

mov
cmp
je
mov

skip_spaces:
cmp
jne

inc
loop

print_brand_string:

cmp
je
cmp
je

print_brand_char:

mov
mov
int

inc
cmp
je
loop
jmp

print_brand_id:
cmp
jb
ja

mov
shr
and
cmp
jae

Application Note

print_486sx
dx, offset cp_486

ah, 9h
21h
end_print

dx, offset cp_error
print_486sx

_intel_CPU, 1
not_Genuinelntel

di, offset _brand_string
byte ptr [di], O
print_brand_id

cx, 47

byte ptr [di], '
print_brand_string

di
skip_spaces

cx, 0

print_brand_id
byte ptr [di], O
print_brand_id

dl, [di]
ah, 2
21h

di

byte ptr [di], O
print_family
print_brand_char
print_family

_Ccpu_type, 6
print_486_type

print_pentiumiiimodel8_type

; check for genuine Intel
;  processor

; brand string supported?

; max brand string length

; skip leading space chars

; Nothing to print

; print upto the max chars

eax, dword ptr _cpu_signature

eax, 4
al, Ofh
a,s

print_pentiumiiimodel8_type

Operating Frequency

61



Operating Frequency

print_486_type:

cmp _cpu_type, 4 ; if 4, print 80486 processor
jne print_pentium_type

mov eax, dword ptr _cpu_signature

shr eax, 4

and eax, Ofh ; isolate model

mov dx, intel_486_0[eax*2]

jmp print_common

print_pentium_type:

cmp _cpu_type, 5 ; if 5, print Pentium processor
jne print_pentiumpro_type

mov dx, offset pentium_msg

jmp print_common

print_pentiumpro_type:
cmp _cpu_type, 6 ; if 6 & model 1, print Pentium
; Pro processor

jne print_unknown_type

mov eax, dword ptr _cpu_signature

shr eax, 4

and eax, Ofh ; isolate model

cmp eax, 3

jge print_pentiumiimodel 3_type

cmp eax, 1

jne print_unknown_type ; incorrect model number = 2
mov dx, offset pentiumpro_msg

jmp print_common

print_pentiumiimodel 3_type:
cmp eax, 3 ; if 6 & model 3, print Pentium
; 11 processor, model 3

jne print_pentiumiimodel5_type
mov dx, offset pentiumiimodel3_msg
jmp print_common

print_pentiumiimodel5_type:
cmp eax, 5 ;if 6 & model 5, either Pentium
; 11 processor, model 5, Pentium 11
; Xeon processor or Intel Celeron
; processor, model 5

je celeron_xeon_detect
cmp eax, 7 ; If model 7 check cache descriptors

; to determine Pentium |11 or Pentium |11 Xeon
jne print_celeronmodel6_type

celeron_xeon_detect:

; Isit Pentium Il processor, model 5, Pentium Il Xeon processor, Intel Celeron processor,
; Pentium 111 processor or Pentium 111 Xeon processor.

mov eax, dword ptr _cache eax
rol eax, 8
mov cX, 3

celeron_detect _eax:
cmp a, 40h ;lsitnoL2
je print_celeron_type

62 Application Note



cmp
jee

rol
loop

mov
mov

celeron_detect_ebx:
cmp
je
cmp
jae

rol
loop

mov
mov

celeron_detect_ecx:
cmp
je
cmp
jae

rol
loop

mov
mov

celeron_detect_edx:
cmp
je
cmp
jae

rol
loop

mov
mov
shr
and
cmp
je
mov
jmp

print_celeron_type:
mov
jmp

al, 44h
print_pentiumiixeon_type

eax, 8
celeron_detect _eax

eax, dword ptr _cache_ebx
cX, 4

al, 40h
print_celeron_type

al, 44h
print_pentiumiixeon_type

eax, 8
celeron_detect_ebx

eax, dword ptr _cache_ecx
cX, 4

al, 40h
print_celeron_type

a, 44h
print_pentiumiixeon_type

eax, 8
celeron_detect_ecx

eax, dword ptr _cache_edx
cX, 4

al, 40h
print_celeron_type

a, 44h
print_pentiumiixeon_type

eax, 8
celeron_detect_edx

Operating Frequency

iIsL2>= 1M

;lsitnoL2

iIsL2>= 1M

ilsitnoL2

iIsL2>= 1M

ilsitnoL2

iIsL2>= 1M

dx, offset pentiumiixeon_m5_msg
eax, dword ptr _cpu_signature

eax, 4

eax, Ofh

eax, 5

print_common

dx, offset pentiumiii_msg
print_common

dx, offset celeron_msg
print_common

print_pentiumiixeon_type:

mov
mov

Application Note

dx, offset pentiumiixeon_msg

ax, word ptr _cpu_signature

: isolate model

63



Operating Frequency

shr
and
cmp
je
mov
jmp

ax, 4

eax, Ofh

eax, 5
print_common

: isolate model

dx, offset pentiumiiixeon_msg

print_common

print_celeronmodel6_type:

cmp

jne
mov
jmp

eax, 6

print_pentiumiiimodel8_type

; if 6 & model 6, print Intel Celeron
; processor, model 6

dx, offset celeronmodel6_msg

print_common

print_pentiumiiimodel8_type:

cmp
jb
mov
cmp
je

mov
mov

next_brand:

cmp
je
add

loop
jmp

brand_found:

not_bl celeron:

mov
cmp
jne

mov
cmp
je

cmp
jae

mov
cmp
je

mov
cmp
je

not_xeon_mp:

64

mov
jmp

eax, 8

print_unknown_type

eax, dword ptr _features_ebx

a, o
print_unknown_type

di, offset brand_table
cx, brand_table size

a, byte ptr [di]
brand found

di, sizeof brand_entry
next_brand
print_unknown_type

; Pentium 111 processor, model 8, or
; Pentium 111 Xeon processor, model 8

; Isbrand_id supported?

; Setup pointer to brand_id table
; Get maximum entry count

; Isthisthe brand reported by the processor

: Point to next Brand Defined
; Check next brand if the table is not exhausted

eax, dword ptr _cpu_signature

eax, 06B1h
not_bl celeron

dx, offset celeron_brand
byte ptr[di], 3
print_common

eax, OF13h
not_xeon_mp

dx, offset xeon_mp_brand
byte ptr [di], OBh
print_common

dx, offset xeon brand
byte ptr[di], OEh
print_common

dx, word ptr [di+1]
print_common

; Check for Pentium 111, model B, stepping 1

; Assumethisis athe specia case (see Table 9)
; IsthisaB1 Celeron?

; Early "Intel(R) Xeon(TM) processor MP'?

; Early "Intel(R) Xeon(TM) processor"?

; Load DX with the offset of the brand string

Application Note



print_unknown_type:

mov dx, offset unknown_msg
print_common:

mov ah, 9h

int 21h

; print family, model, and stepping

Operating Frequency

; if neither, print unknown

print_family:
mov a, _cpu_type
ASC_MSG family_msg ; print family msg
mov eax, dword ptr _cpu_signature
and ah, Ofh ; Check for Extended Family
cmp ah, Ofh
jne print_model
mov dx, offset ext_fam_msg
mov ah, 9h
int 21h
shr eax, 20
mov ah, a ; Copy extended family into ah
shr a, 4
and ax, 0fOfh
add ah, '0 ; Convert upper nibble to ascii
add a,'o : Convert lower nibble to ascii
push ax
mov d,d
mov ah, 2
int 21h ; print upper nibble of ext family
pop ax
mov dl, ah
mov ah, 2
int 21h ; print lower nibble of ext family
print_model:
mov eax, dword ptr _cpu_signature
shr ax, 4
and al, Ofh
ASC_MSG model_msg ; print model msg
mov eax, dword ptr _cpu_signature
and al, 0foh : Check for Extended Model
cmp ah, OfOh

jne print_stepping
mov dx, offset ext_mod_msg

: Convert extended model to ascii

; print lower nibble of ext family

mov ah, 9h
int 21h
shr eax, 16
and al, oth
add a,'o
mov d,d
mov ah, 2
int 21h
print_stepping:
mov eax, dword ptr _cpu_signature
and al, oth
ASC_MSG stepping_msg

Application Note

; print stepping msg

65



Operating Frequency

66

print_upgrade:
mov
test
jz
mov
mov
int
jmp

check_dp:
test
jz
mov
mov
int

print_features:
mov
and
jz
mov
mov
int

check VME:
mov
and
jz
mov
mov
int

check DE:
mov
and
jz
mov
mov
int

check PSE:
mov
and
jz
mov
mov
int

check TSC:
mov
and
jz
mov
mov
int

check MSR:

eax, dword ptr _cpu_signature

ax, 1000h ; check for turbo upgrade

check_dp

dx, offset turbo_msg
ah, 9h

21h

print_features

ax, 2000h ; check for dual processor

print_features

dx, offset dp_msg
ah, 9h

21h

eax, dword ptr _features_edx

eax, FPU_FLAG ; check for FPU

check VME

dx, offset fpu_msg
ah, 9h

21h

eax, dword ptr _features_edx

eax, VME_FLAG : check for VME

check DE

dx, offset vme_msg
ah, 9h

21h

eax, dword ptr _features_edx

eax, DE_ FLAG ; check for DE

check PSE

dx, offset de_msg
ah, 9h

21h

eax, dword ptr _features_edx

eax, PSE FLAG ; check for PSE

check TSC

dx, offset pse_msg
ah, 9h

21h

eax, dword ptr _features_edx

eax, TSC FLAG ; check for TSC

check MSR

dx, offset tsc_msg
ah, 9h

21h

Application Note



mov
and
jz
mov
mov
int

check PAE:
mov
and
jz
mov
mov
int

check_MCE:
mov
and
jz
mov
mov
int

check_CX8:
mov
and
jz
mov
mov
int

check_APIC:
mov
and
jz
mov
mov
int

check_SEP:
mov
and
jz

cmp
jne

mov
cmp
ib

print_sep:
mov
mov
int
jmp

print_no_sep:

Application Note

eax, dword ptr _features edx
eax, MSR_FLAG

check PAE

dx, offset msr_msg

ah, 9h

21h

eax, dword ptr _features edx
eax, PAE_FLAG

check_ MCE

dx, offset pae_msg

ah, 9h

21h

eax, dword ptr _features_edx
eax, MCE_FLAG
check_CX8

dx, offset mce_msg

ah, 9h

21h

eax, dword ptr _features_edx
eax, CX8 FLAG
check_APIC

dx, offset cx8_msg

ah, 9h

21h

eax, dword ptr _features_edx
eax, APIC_FLAG
check_SEP

dx, offset apic_msg

ah, 9h

21h

eax, dword ptr _features_edx
eax, SEP_ FLAG
check MTRR

_Cpu_type, 6

eax, dword ptr _cpu_signature
a, 33h
print_no_sep

dx, offset sep_msg
ah, 9h

21h

check MTRR

; check for MSR

; check for PAE

: check for MCE

: check for CMPXCHGSB

: check for APIC

; Check for Fast System Call

; Determine if Fast System
print_sep ; Callsare supported.

Operating Frequency

67



Operating Frequency

68

mov
mov
int

check_MTRR:
mov
and
jz
mov
mov
int

check PGE:
mov
and
jz
mov
mov
int

check MCA:
mov
and
jz
mov
mov
int

check CMOV:
mov
and
jz
mov
mov
int

check PAT:
mov
and
jz
mov
mov
int

check PSE36:
mov
and
jz
mov
mov
int

check PSNUM:
mov
and
jz
mov
mov

dx, offset no_sep_msg
ah, 9h
21h

eax, dword ptr _features_edx
eax, MTRR_FLAG
check_PGE

dx, offset mtrr_msg

ah, 9h

21h

eax, dword ptr _features_edx
eax, PGE_FLAG

check MCA

dx, offset pge_msg

ah, 9h

21h

eax, dword ptr _features_edx
eax, MCA_FLAG

check CMOQV

dx, offset mca_msg

ah, 9h

21h

eax, dword ptr _features_edx
eax, CMOV_FLAG

check PAT

dx, offset cmov_msg

ah, 9h

21h

eax, dword ptr _features_edx
eax, PAT_FLAG

check PSE36

dx, offset pat_msg

ah, 9h

21h

eax, dword ptr _features_edx
eax, PSE36_FLAG

check PSNUM

dx, offset pse36_msg

ah, 9h

21h

eax, dword ptr _features_edx
eax, PSNUM_FLAG
check CLFLUSH

dx, offset psnum_msg

ah, 9h

; check for MTRR

; check for PGE

; check for MCA

; check for CMOV

; check for processor serial number

Application Note



int

check CLFLUSH:

mov
and
jz
mov
mov
int

check DTS:
mov
and
jz
mov
mov
int

check_ACHI:
mov
and
jz
mov
mov
int

check_ MMX:
mov
and
jz
mov
mov
int

check_FXSR:
mov
and
jz
mov
mov
int

check_SSE:
mov
and
jz
mov
mov
int

check_SSE2:
mov
and
jz
mov
mov
int

Application Note

Operating Frequency

21h

eax, dword ptr _features edx
eax, CLFLUSH_FLAG
check DTS

dx, offset clflush_msg

ah, 9h

21h

; check for Cache Line Flush

eax, dword ptr _features edx
eax, DTS FLAG
check_ACPI

dx, offset dts_ msg

ah, 9h

21h

; check for Debug Trace Store

eax, dword ptr _features_edx
eax, ACPI_FLAG

check_ MMX

dx, offset acpi_msg

ah, 9h

21h

; check for processor serial number

eax, dword ptr _features_edx
eax, MMX_FLAG
check_FXSR

dx, offset mmx_msg

ah, 9h

21h

; check for MM X technology

eax, dword ptr _features_edx
eax, FXSR_FLAG
check_SSE

dx, offset fxsr_msg

ah, 9h

21h

: check for FXSR

eax, dword ptr _features_edx

eax, SSE_ FLAG ; check for Streaming SIMD
check_SSE2 ;. Extensions

dx, offset sse_msg

ah, 9h

21h

eax, dword ptr _features_edx

eax, SSE2 FLAG ; check for Streaming SIMD
check_SS ;. Extensions 2

dx, offset sse2_msg

ah, 9h

21h

69



Operating Frequency

check_SS:
mov
and
jz
mov
mov
int

check_HTT:
mov
and
jz

mov
bswap
cmp
je

mov
mov
int

check TM:
mov
and
jz
mov
mov
int

check PBE:
mov
and
jz
mov
mov
int

check sse3:
mov
and
jz
mov
mov
int

check_monitor:
mov
and
jz
mov
mov
int

check_ds cpl:
mov
and
jz

70

eax, dword ptr _features_edx

eax, SS FLAG ; check for Self Snoop
check HTT

dx, offset ss_ msg

ah, 9h

21h

eax, dword ptr _features_edx
eax, HTT_FLAG ; check for Hyper-Thread Technology
check_TM

eax, dword ptr _features _ebx

eax ; Put Logical processor count in reg AH
ah, 1 ; Logical processor count > 17?

check TM

dx, offset htt_msg ; Supports HTT

ah, 9h

21h

eax, dword ptr _features_edx

eax, TM_FLAG ; check for Thermal Monitor
check PBE

dx, offset tm_msg

ah, 9h

21h

eax, dword ptr _features_edx

eax, PBE FLAG ; check for Pending Break Event
check sse3

dx, offset pbe_msg

ah, 9h

21h

eax, dword ptr _features _ecx

eax, SSE3 FLAG ; check for SSE3 instructions
check_monitor

dx, offset sse3_msg

ah, 9h

21h

eax, dword ptr _features _ecx

eax, MONITOR_FLAG ; check for monitor/mwait instructions
check_ds cpl

dx, offset monitor_msg

ah, 9h

21h

eax, dword ptr _features _ecx
eax, DS CPL_FLAG ; check for Debug Store extensions qualified by CPL
check EIST

Application Note



intal

mov
mov
int

check EIST:
mov
and
jz
mov
mov
int

check_TM2:
mov
and
jz
mov
mov
int

check_CID:
mov
and
jz
mov
mov
int

check XTPR:
mov
and
jz
mov
mov
int

jmp

not_Genuinelntel:
mov
mov
int

end_print:
mov
mov
int
ret

print endp

end start

Application Note

dx, offset ds_cpl_msg
ah, 9h
21h

eax, dword ptr _features _ecx
eax, EIST_FLAG

check TM2

dx, offset eist_msg

ah, 9h

21h

eax, dword ptr _features_ecx
eax, TM2_FLAG
check_CID

dx, offset tm2_msg

ah, 9h

21h

eax, dword ptr _features_ecx
eax, CID_FLAG

check_ XTPR

dx, offset cid_msg

ah, 9h

21h

eax, dword ptr _features_ecx
eax, XTPR_FLAG
end_print

dx, offset xtpr_msg

ah, 9h

21h

end_print

dx, offset not_intel
ah, 9h
21h

dx, offset cr_If
ah, 9h
21h

Operating Frequency

; check for Enhanced SpeedStep Technology

: check for Thermal Monitor 2

: check for L1 Context ID

; check for echo Task Priority

71



Operating Frequency

72

Example 3. Processor ldentification Procedure in the C Language

I* FILENAME: CPUID3.C
[* Copyright (c) Intel Corporation 1994-2004
/*

[* This program has been developed by Intel Corporation. Intel has
[* various intellectual property rights which it may assert under
/* certain circumstances, such as if another manufacturer's

[* processor mis-identifiesitself as being "Genuinelntel" when

[* the CPUID instruction is executed.

/*

* Intel specifically disclaims all warranties, express or implied,
/* and all liahility, including consequential and other indirect

[* damages, for the use of this program, including liability for

[* infringement of any proprietary rights, and including the

[* warranties of merchantability and fitness for a particular

[* purpose. Intel does not assume any responsibility for any

[* errors which may appear in this program nor any responsibility
[* to update it.

/*

/*

[* This program contains three parts:

[* Part 1: Identifies CPU typein the variable _cpu_type:

/*

[* Part 2: |dentifies FPU typein the variable _fpu_type:

/*

[* Part 3: Prints out the appropriate message.

/*

[* This program has been tested with the Microsoft Developer Studio.
[* If this code is compiled with no options specified and linked

/* with the cpuid3a module, it correctly identifies the current

* Intel 8086/8088, 80286, 80386, 80486, Pentium(R), Pentium(R) Pro,
/* Pentium(R) 11, Pentium(R) I Xeon(TM), Pentium(R) Il OverDrive(R),

/* Intel(R) Celeron(R), Pentium(R) 111 processors, Pentium(R) 11 Xeon(TM)
[* processors, Pentium(R) 4 processors and Intel(R) Xeon(TM) processors

#define FPU_FLAG 0x0001
#define VME_FLAG 0X0002
#define DE_FLAG 0X0004
#define PSE_FLAG 0X0008
#define TSC_FLAG 0x0010
#define MSR_FLAG 0X0020
#define PAE_FLAG 0X0040
#define MCE_FLAG 0X0080
#define CX8 FLAG 0x0100
#define APIC_FLAG 0X0200
#define SEP_FLAG 0X0800
#define MTRR_FLAG 0x1000
#define PGE_FLAG 0Xx2000
#define MCA_FLAG 0x4000
#define CMOV_FLAG 0x8000
#define PAT_FLAG 0x10000
#define PSE36_FLAG 0x20000

#define PSNUM_FLAG 0x40000
#define CLFLUSH_FLAG  0x80000

#define DTS _FLAG 0x200000
#define ACPI_FLAG 0x400000
#define MMX_FLAG 0x800000
#define FXSR_FLAG 0x1000000
#define SSE_FLAG 0x2000000
#define SSE2_FLAG 0x4000000
#define SS_FLAG 0x8000000
#defineHTT_FLAG 0x10000000
#define TM_FLAG 0x20000000
#define PBE_FLAG 0x80000000
#define SSE3_FLAG 0x0001

Application Note



#define MONITOR_FLAG  0x0008
#defineDS CPL_FLAG  0x0010

#define EIST_FLAG 0x0080
#define TM2_FLAG 0x0100
#define CID_FLAG 0x0400
#define XTPR_FLAG 0x4000

extern char cpu_type;
extern char fpu_type;
extern char cpuid_flag;
extern char intel_CPU;
extern char vendor_id[12];
extern long cpu_signature;
extern long features_ecx;
extern long features_edx;
extern long features_ebx;
extern long cache_eax;
extern long cache_ebx;
extern long cache_ecx;
extern long cache_edx;
extern char brand_string[48];
externint brand id;

long cache_temp;
long celeron_flag;
long pentiumxeon_flag;

struct brand_entry {
long brand_value;
char *brand_string;

b
#define brand_table _size 15

struct brand_entry brand_table[brand_table size] ={
0x01, " Genuine Intel(R) Celeron(R) processor”,
0x02, " Genuine Intel(R) Pentium(R) 111 processor"”,
0x03, " Genuine Intel(R) Pentium(R) 111 Xeon(TM) processor”,
0x04, " Genuine Intel(R) Pentium(R) 111 processor"”,
0x06, " Genuine Mobile Intel(R) Pentium(R) 111 Processor - M*",
0x07, " Genuine Mobile Intel(R) Celeron(R) processor”,
0x08, " Genuine Intel(R) Pentium(R) 4 processor”,
0x09, " Genuine Intel(R) Pentium(R) 4 processor”,
O0xO0A, " Genuine Intel(R) Celeron(R) processor",
0x0B, " Genuine Intel (R) Xeon(TM) processor",
0x0C, " Genuine Intel(R) Xeon(TM) Processor MP",
OxOE, " Genuine Mobile Intel(R) Pentium(R) 4 Processor - M",
OxOF, " Genuine Mobile Intel (R) Celeron(R) processor”,
0x11, " Mobile Genuine Intel(R) processor”,
0x12, " Genuine Mobile Intel(R) Celeron(R) M processor”,
0x13, " Genuine Mobile Intel(R) Celeron(R) processor”,
0x14, " Genuine Intel(R) Celeron(R) processor”,
0x15, " Mobile Genuine Intel(R) processor”,
0x16, " Genuine Intel(R) Pentium(R) M processor"
0x17, " Genuine Mobile Intel(R) Celeron(R) processor”,

h

int main() {
get_cpu_type();
get_fpu_type();
print();
return(0);

int print() {
int brand_index = 0;

Application Note

Operating Frequency

73



Operating Frequency

printf("This system has a");
if (cpuid_flag ==0) {
switch (cpu_type) {
case 0:

pri r{tf(" n 8086/8088 processor");
if (fpu_type) printf(" and an 8087 math coprocessor");
break;

case 2.
printf("n 80286 processor");
if (fpu_type) printf(" and an 80287 math coprocessor");
break;

case 3:
printf("n 80386 processor");
if (fpu_type==2)
printf(" and an 80287 math coprocessor");
eseif (fpu_type)
printf(" and an 80387 math coprocessor");
break;
case 4.
if (fpu_type)

printf("n 80486DX, 80486DX 2 processor or 80487SX math coprocessor");

se
printf("n 80486SX processor");
break;
default:
printf(*n unknown processor");

}
dsef
[* using cpuid instruction */
if (intel_CPU) {
if (brand_string[0]) {
brand_index = 0;
while ((brand_string[brand_index] =="") && (brand_index < 48))
brand_index++;
if (brand_index != 48)
printf(" %s", &brand_string[brand_index]);

dseif (cpu_type==4) {
switch ((cpu_signature>>4) & Oxf) {

case O:

cae 1:
printf(" Genuine Intel486(TM) DX processor");
break;

case 2
printf(" Genuine Intel486(TM) SX processor");
break;

cae 3:
printf(" Genuine IntelDX2(TM) processor");
break;

case 4:
printf(* Genuine Intel486(TM) processor");
break;

case 5:
printf(" Genuine Intel SX2(TM) processor");
break;

cae 7.

printf(* Genuine Write-Back Enhanced \
IntelDX2(TM) processor");

break;
case 8:
printf("* Genuine IntelDX4(TM) processor");
break;
default:
printf(" Genuine Intel486(TM) processor");

74

Application Note



Application Note

Operating Frequency

elseif (cpu_type==15)
printf(" Genuine Intel Pentium(R) processor");

elseif ((cpu_type==6) && (((cpu_signature >> 4) & 0xf) == 1))
printf(" Genuine Intel Pentium(R) Pro processor");

elseif ((cpu_type==6) && (((cpu_signature >> 4) & 0xf) == 3))
printf(" Genuine Intel Pentium(R) Il processor, model 3");

elseif (((cpu_type == 6) && (((cpu_signature >> 4) & Oxf) ==5)) ||

((cpu_type==6) && (((cpu_signature >> 4) & 0xf) ==7)))

celeron_flag=0;

pentiumxeon_flag = 0;

cache_temp = cache_eax & OxFF000000;

if (cache_temp == 0x40000000)
celeron_flag = 1,

if ((cache_temp >= 0x44000000) & & (cache_temp <= 0x45000000))
pentiumxeon_flag = 1;

cache_temp = cache_eax & OxFF0000;

if (cache_temp == 0x400000)
celeron_flag = 1;

if ((cache_temp >= 0x440000) & & (cache_temp <= 0x450000))
pentiumxeon_flag = 1;

cache_temp = cache_eax & OxFFQO;

if (cache_temp == 0x4000)
celeron_flag = 1;

if ((cache_temp >= 0x4400) & & (cache_temp <= 0x4500))
pentiumxeon_flag = 1;

cache_temp = cache_ebx & OxFF000000;

if (cache_temp == 0x40000000)
celeron_flag = 1;

if ((cache_temp >= 0x44000000) & & (cache_temp <=0x45000000))
pentiumxeon_flag = 1;

cache_temp = cache_ebx & OxFFO0Q0;

if (cache_temp == 0x400000)
celeron_flag = 1;

if ((cache_temp >= 0x440000) & & (cache_temp <= 0x450000))
pentiumxeon_flag = 1;

cache_temp = cache_ebx & OxFFOO;

if (cache_temp == 0x4000)
celeron_flag = 1;

if ((cache_temp >= 0x4400) & & (cache_temp <= 0x4500))
pentiumxeon_flag = 1;

cache_temp = cache_ebx & OxFF;

if (cache_temp == 0x40)
celeron_flag = 1;

if ((cache_temp >= 0x44) & & (cache_temp <= 0x45))
pentiumxeon_flag = 1;

cache_temp = cache_ecx & OxFF000000;

if (cache_temp == 0x40000000)
celeron_flag = 1;

if ((cache_temp >= 0x44000000) & & (cache_temp <= 0x45000000))
pentiumxeon_flag = 1;

cache_temp = cache_ecx & OxFF0000;

if (cache_temp == 0x400000)
celeron_flag = 1;

if ((cache_temp >= 0x440000) & & (cache_temp <= 0x450000))
pentiumxeon_flag = 1;

cache_temp = cache_ecx & OxFFQO;

if (cache_temp == 0x4000)
celeron_flag = 1,

75



Operating Frequency

if ((cache_temp >= 0x4400) & & (cache_temp <= 0x4500))
pentiumxeon_flag = 1;

cache_temp = cache_ecx & OxFF;

if (cache_temp == 0x40)
celeron flag=1;

if ((cache_temp >= 0x44) & & (cache_temp <= 0x45))
pentiumxeon_flag = 1;

cache_temp = cache_edx & OxFF000000;

if (cache_temp == 0x40000000)
celeron flag=1;

if ((cache_temp >= 0x44000000) & & (cache_temp <= 0x45000000))
pentiumxeon_flag = 1;

cache_temp = cache_edx & OxFF00Q0;

if (cache_temp == 0x400000)
celeron flag=1;

if ((cache_temp >= 0x440000) & & (cache_temp <= 0x450000))
pentiumxeon_flag = 1;

cache_temp = cache_edx & OxFFOO;

if (cache_temp == 0x4000)
celeron flag=1;

if ((cache_temp >= 0x4400) & & (cache_temp <= 0x4500))
pentiumxeon_flag = 1;

cache_temp = cache_edx & OxFF;

if (cache_temp == 0x40)
celeron flag=1;

if ((cache_temp >= 0x44) & & (cache_temp <= 0x45))
pentiumxeon_flag = 1;

if (celeron _flag==1)
printf("* Genuine Intel Celeron(R) processor, model 5");
else

if (pentiumxeon flag == 1) {
if ((cpu_signature >> 4) & 0x0f) ==5)
printf(" Genuine Intel Pentium(R) 11 Xeon(TM) processor");
ese
printf(" Genuine Intel Pentium(R) |11 Xeon(TM) processor,");
printf(" model 7");

ese{
if ((cpu_signature >> 4) & 0x0f) ==5) {
printf("* Genuine Intel Pentium(R) Il processor, model 5");
printf("or Intel Pentium(R) Il Xeon(TM) processor");

dse{
printf(" Genuine Intel Pentium(R) |11 processor, model 7");
printf(" or Intel Pentium(R) I11 Xeon(TM) processor,");
printf("* model 7");

}
}

}
dseif ((cpu_type==6) && (((cpu_signature >> 4) & 0xf) == 6))
printf(* Genuine Intel Celeron(R) processor, model 6");
elseif ((features_ebx & Oxff) I=0) {
while ((brand_index < brand_table size) & &
((features_ebx & Oxff) !=brand_table[brand_index].brand_value))
brand_index++;
if (brand_index < brand_table size) {
if ((cpu_signature == 0x6B1) & &
(brand_table[brand_index].brand_value == 0x3))
printf(" Genuine Intel(R) Celeron(R) processor");
eseif ((cpu_signature < 0xF13) & &

76

Application Note



Application Note

Operating Frequency

(brand_table[brand_index].brand_value == 0x0B))

printf(" Genuine Intel (R) Xeon(TM) processor MP");
elseif ((cpu_signature < OxF13) & &

(brand_table[brand_index].brand_value == 0x0E))

printf(" Genuine Intel (R) Xeon(TM) processor");
else

printf("%s", brand_table[brand_index].brand_string);

ese
printf("n unknown Genuine Intel processor");

else

printf(*n unknown Genuine Intel processor");
printf("\nProcessor Family: %X", cpu_type);
if (cpu_type == Oxf)

printf("\n Extended Family: %x",(cpu_signature>>20)& Oxff);
printf("\nModel: %X", (cpu_signature>>4)& Oxf);
if (((cpu_signature>>4) & 0xf) == Oxf)

printf("*\n Extended Model: %x",(cpu_signature>>16)& Oxf);
printf("\nStepping: %X\n", cpu_signature& 0xf);
if (cpu_signature & 0x1000)

printf("\nThe processor is an OverDrive(R) processor");
dseif (cpu_si gnature & 0x2000)

printf("\nThe processor is the upgrade processor in adual processor system");
if (features edx & FPU_FLAG)

printf("\nThe processor contains an on-chip FPU");
if (features edx & VME_FLAG)

printf("\nThe processor supports Virtual Mode Extensions');
if (features edx & DE_FLAG)

printf("\nThe processor supports the Debugging Extensions');
if (features edx & PSE_FLAG)

printf("\nThe processor supports Page Size Extensions");
if (features edx & TSC_FLAG)

printf("\nThe processor supports Time Stamp Counter");
if (features edx & MSR_FLAG)

printf("\nThe processor supports Model Specific Registers');
if (features edx & PAE_FLAG)

printf("\nThe processor supports Physical Address Extension");
if (features edx & MCE_FLAG)

printf("\nThe processor supports Machine Check Exceptions’);
if (features edx & CX8_FLAG)

printf("\nThe processor supports the CMPXCHG8B instruction™);
if (features edx & APIC_FLAG)

printf("\nThe processor contains an on-chip APIC");
if (features edx & SEP_FLAG) {

if ((cpu_type == 6) && ((cpu_signature & Oxff) < 0x33))

printf("\nThe processor does not support the Fast System Call");
else
printf("\nThe processor supports the Fast System Call");

if (features edx & MTRR_FLAG)

printf("\nThe processor supports the Memory Type Range Registers");
if (features_edx & PGE_FLAG)

printf("\nThe processor supports Page Global Enable");
if (features edx & MCA_FLAG)

printf("\nThe processor supports the Machine Check Architecture");
if (features edx & CMOV_FLAG)

printf("\nThe processor supports the Conditional Move Instruction");
if (features edx & PAT_FLAG)

printf("\nThe processor supports the Page Attribute Table");
if (features edx & PSE36_FLAG)

printf("\nThe processor supports 36-bit Page Size Extension");
if (features_edx & PSNUM_FLAG)

printf("\nThe processor supports the processor serial number");
if (features edx & CLFLUSH_FLAG)

printf("\nThe processor supports the CLFLUSH instruction");
if (features edx & DTS FLAG)

printf("\nThe processor supports the Debug Trace Store feature");

77



Operating Frequency u

if (features_edx & ACPI_FLAG)
printf("\nThe processor supports ACPI registersin M SR space");
if (features edx & MMX_FLAG)
printf("\nThe processor supports Intel Architecture MMX(TM) technology");
if (features edx & FXSR_FLAG)
printf("\nThe processor supports the Fast floating point save and restore”);
if (features edx & SSE_FLAG)
printf("\nThe processor supports the Streaming SIMD extensions to the Intel Architecture”);
if (features_edx & SSE2_FLAG)
printf("\nThe processor supports the Streaming SIMD extensions 2 instructions");
if (features edx & SS FLAG)
printf("\nThe processor supports Self-Snoop");
if (features_edx & HTT_FLAG) &&
(((features_ebx >> 16) & OXOFF) > 1))
printf("\nThe processor supports Hyper-Threading Technology");
if (features edx & TM_FLAG)
printf("\nThe processor supports the Thermal Monitor");
if (features edx & PBE_FLAG)
printf("\nThe processor supports Pending Break Event signaling");
if (features_ecx & SSE3 FLAG)
printf("\nThe processor supports the Streaming SIMD extensions 3 instructions");
if (features_ecx & MONITOR_FLAG)
printf("\nThe processor supports the MONITOR and MWAIT instructions");
if (features ecx & DS CPL_FLAG)
printf("\nThe processor supports Debug Store extensions for branch message storage by CPL");
if (features _ecx & EIST_FLAG)
printf("\nThe processor supports Enhanced SpeedStep(TM) Technology");
if (features ecx & TM2_FLAG)
printf("\nThe processor supports the Thermal Monitor 2*);
if (features ecx & CID_FLAG)
printf("\nThe processor supports L1 Data Cache Context ID");
if (features ecx & XTPR_FLAG)
printf("\nThe processor supports transmitting TPR messages");

ese{
printf("t least an 80486 processor. ");
printf("\nlt does not contain a Genuine Intel part and as aresult, the");
printf("\nCPUID detection information cannot be determined at thistime.");

printf("*\n");
return(0);

78 Application Note



intal

Operating Frequency

Example 4. Instruction Extension Detection Using Exception Handlers

/I FILENAME: FEATURES.CPP
I/ Copyright (c) Intel Corporation 2000-2004

I

I/ This program has been developed by Intel Corporation. Intel has
I/ variousintellectual property rights which it may assert under

/I certain circumstances, such as if another manufacturer's

/I processor mis-identifiesitself as being " Genuinelntel" when

// the CPUID instruction is executed.

I

I Intel specifically disclaims all warranties, express or implied,
// and al liahility, including consequential and other indirect

/I damages, for the use of this program, including liability for

I infringement of any proprietary rights, and including the

[/ warranties of merchantability and fitness for a particular

Il purpose. Intel does not assume any responsibility for any

/I errors which may appear in this program nor any responsibility
/[ to update it.

I

#include "stdio.h"
#include "string.h"
#include "excpt.h"

I/l The follow code sample demonstrate using exception handlers to identify available |A-32 features,
I/l The sample code I dentifies | A-32 features such as support for Streaming SIMD Extensions 3,

I/ Streaming SIMD Extensions 2 (SSE2), support for Streaming SIMD Extensions (SSE),

/I support for MMX (TM) instructions.

// This technique can be used safely to determined 1A-32 features and provide

I/ forward compatibility to run optimally on future 1A-32 processors.

// Please note that the technique of trapping invalid opcodes is not suitable

I/ for identifying the processor family and model.

int main(int argc, char* argv[])

{

Application Note

char sSupportSSE3[80]="Don't know";
char sSupportSSE2[80]="Don't know";
char sSupportSSE[80]="Don't know";
char sSupportMMX[80]="Don't know";

/I To identify whether SSE3, SSE2, SSE, or MM X instructions are supported on an x86 compatible
/I processor in afashion that will be compatible to future 1A-32 processors,

Il The following tests are performed in sequence: (This sample code will assume cpuid

1 instruction is supported by the target processor.)

/I 1. Test whether target processor is a Genuine Intel processor, if yes

/1 2. Test if executing an SSE3 instruction would cause an exception, if no exception occurs,

1 SSE3 is supported; if exception occurs,

Il 3. Test if executing an SSE2 instruction would cause an exception, if no exception occurs,
1 SSE2 is supported; if exception occurs,

Il 4, Test if executing an SSE instruction would cause an exception, if no exception occurs,
1 SSE is supported; if exception occurs,

II'5. Test if executing an MM X instruction would cause an exception, if no exception occurs,
1 MMX instruction is supported,
1l if exception occurs, MM X instruction is not supported by this processor.

/I For clarity, the following stub function "IsGenuinel ntel Processor()" is not shown in this example,

79



Operating Frequency

80

intal

I/ The function "1sGenuinel ntel Processor()" can be adapted from the sample code implementation
/1 of the assembly procedure”_get_cpu_type". The purpose of this stub function is to examine

I/l whether the Vendor ID string, which is returned when executing

I/ cpuid instruction with EAX = 0, indicates the processor is a genuine Intel processor.

if (1sGenuinelntel Processor())

{

I/ First, execute an SSE3 instruction to see whether an exception occurs

_try
{
_asm{
haddpd xmm1, xmm2 /I thisis an instruction available in SSE3
/l _emit Ox66 __asm _emit OXOF __asm _emit Ox7C __asm _emit OXCA

strepy (& sSupportSSE3[0], "Yes'); /I No exception executing an SSE3 instruction
}

__except( EXCEPTION_EXECUTE_HANDLER ) // SSE3 exception handler
{

/I exception occurred when executing an SSE3 instruction
strepy (& sSupportSSE3[0], "No");
}

I/ Second, execute an SSE2 instruction to see whether an exception occurs

_try
{
_asm{
paddg xmm1, xmm?2 // thisis an instruction available in SSE2
}

strepy (& SSupportSSE2[Q], "Yes'); /I No exception executing an SSE2 instruction
}

__except( EXCEPTION_EXECUTE_HANDLER ) // SSE2 exception handler
{

I exception occurred when executing an SSE2 instruction
strepy (& sSupportSSE2[0], "No");

}
// Third, execute an SSE instruction to see whether an exception occurs
_try
{
_asm{
orps xmm1, xmm2 // thisis an instruction available in SSE
/l_asm _emit 0x66 __asm _emit OxOf __asm _emit Ox57 __asm _emit OxcO
}
strepy (& sSupportSSE[ 0], "Yes'); // no exception executing an SSE instruction
}
__except( EXCEPTION_EXECUTE_HANDLER ) /I SSE exception handler
{
/I exception occurred when executing an SSE instruction
strepy (& sSupportSSE[0], "No");
}

Il Fourth, execute an MM X instruction to see whether an exception occurs

Application Note



Operating Frequency

intal

_try
{

_asm{

emms //thisisaninstruction availablein MM X }

strepy (& sSupportMM X[ 0], "Yes"); /I no exception executing an MM X instruction
}
__except( EXCEPTION_EXECUTE_HANDLER ) /I MMX exception handler
{

/I exception occurred when executing an MMX instruction

strepy (& sSupportMM X[ 0], "No");
}

}

printf("This Processor supports the following instruction extensions: \n");
printf(" SSE3 instruction: \t\t%s \n", & sSupportSSE3[0]);

printf(" SSE2 instruction: \t\t%s \n", & sSupportSSE2[0]);

printf(" SSE instruction: \t\t%s \n", & sSupportSSE[Q]);

printf("MMX instruction: \t\t%s \n", & sSupportMM X[0Q]);

return O;

Application Note 81



Operating Frequency

Example 5. Detecting Denormals-Are-Zero Support

Filename: DAZDTECT.ASM
Copyright (c) Intel Corporation 2001-2004

This program has been developed by Intel Corporation. Intel
has various intellectual property rights which it may assert
under certain circumstances, such asif another
manufacturer's processor mis-identifiesitself asbeing
"Genuinelntel" when the CPUID instruction is executed.

Intel specifically disclaims all warranties, express or

implied, and all liahility, including consequential and other
indirect damages, for the use of this program, including
liability for infringement of any proprietary rights,

and including the warranties of merchantability and fitness

for aparticular purpose. Intel does not assume any
responsibility for any errors which may appear in this program
nor any responsibility to updateit.

This example assumes the system has booted DOS.
This program runsin Real mode.

rhkkkkkhkhkkkhhkkkhhkkkhhkkhkhhkkhhhkkhhhkkhhkkhhhkkhhkkhhhkkhhkkhkhhkhhhhhhkkhhkkhhkkhhkkhhkkhhkhkdhkkkdkkkxx

This program was assembled using MASM 6.14.8444.

This program performs the following 8 stepsto determine if the
processor supports the SSE/SSE2 DAZ mode.

Step 1. Execute the CPUID instruction with an input value of EAX=0 and
ensure the vendor-ID string returned is “Genuinelntel”.

Step 2. Execute the CPUID instruction with EAX=1. Thiswill load the
EDX register with the feature flags.

Step 3. Ensure that the FXSR feature flag (EDX bit 24) is set.
This indicates the processor supports the FXSAVE and FXRSTOR
instructions.

Step 4. Ensure that the XMM feature flag (EDX bit 25) or the EMM feature
flag (EDX bit 26) is set. Thisindicates that the processor supports
at least one of the SSE/SSE2 instruction sets and its MXCSR control
register.

Step 5. Zero a 16-byte aligned, 512-byte area of memory.
Thisis necessary since some implementations of FXSAVE do not
modify reserved areas within the image.

; Step 6. Execute an FXSAVE into the cleared area.
Step 7. Bytes 28-31 of the FXSAVE image are defined to contain the
; MXCSR_MASK. If thisvalueisO0, then the processor's MXCSR_MASK
; is OXFFBF, otherwise MXCSR_MASK isthe value of this dword.
Step 8. If bit 6 of the MXCSR_MASK is set, then DAZ is supported.

)
rhkkkkkhkhkkkhhkkkhhkkkhhkkhkhhkkhhhkkhhhkkhhkkhhhkkhhkkhhkkhhkkhkhhkhhhkkhhhkkhhhkkhhkkhhkkhhhkkhhkhkdhkkkdkhkxx
)

.DOSSEG
.MODEL small, c
STACK

; Data segment

82 Application Note



Operating Frequency

.DATA

buffer DB 512+16 DUP (0)
not_intel DB
NoSSEorSSE2 DB
no_FXSAVE DB
daz_mask_clear DB
no_daz DB
supports_daz DB

"Thisisnot an Genuine Intel processor.", 0Dh, 0Ah, "$"
"Neither SSE or SSE2 extensions are supported.”, ODh, 0Ah, "$"
"FXSAVE not supported.”, ODh, OAh, "$"

"DAZ bitin MXCSR_MASK is zero (clear).", ODh, OAh, "$"
"DAZ mode not supported.”, ODh, OAh, "$"

"DAZ mode supported.”, ODh, OAh, "$"

; Code segment
.CODE
.686p
XMM
dazdtect PROC NEAR
.Startup ; Allow assembler to create code that
; initializes stack and data segment
; registers
; Step 1.

;Verify Genuine Intel processor by checking CPUID generated vendor ID

mov eax, 0

cpuid

cmp ebx, 'uneG' ; Comparefirst 4 |etters of Vendor ID

jne notl ntel processor ; Jump if not Genuine Intel processor

cmp edx, 'leni’ ; Compare next 4 |etters of Vendor ID

jne notl ntel processor ; Jump if not Genuine Intel processor

cmp ecx, 'letn' ; Compare last 4 letters of Vendor ID

jne notl ntel processor ; Jump if not Genuine Intel processor
; Step 2,3,and 4

; Get CPU feature flags

; Verify FXSAVE and either SSE or

; SSE2 are supported

mov eax, 1

cpuid

bt edx, 24t ; Feature Flags Bit 24 is FXSAVE support

jnc noFxsave ; jump if FXSAVE not supported

bt edx, 25t ; Feature Flags Bit 25 is SSE support

jc Sse_or_sse? supported ; jump if SSE is not supported

bt edx, 26t ; Feature Flags Bit 26 is SSE2 support

jnc no_sse sse2 ; jump if SSE2 is not supported

sse_or_sse?_supported:

; FXSAVE requires a 16-byte aligned

; buffer so get offset into buffer
mov bx, OFFSET buffer
and bx, OFFFOh
add bx, 16t

; Step 5.

; Clear the buffer that will be
; used for FXSAVE data

Application Note

; Get offset of the buffer into bx
; Dl isaligned at 16-byte boundary

83



Operating Frequency

; Step 6.

; Step 7.

push
pop
mov
xor
mov
cld

rep

fxsave

mov
cmp
jne

mov

ds

es

di, bx

cx, 512/2

stosw ; Fill at FXSAVE buffer with zeroes

[bx]

eax, DWORD PTR [bx][281] ; Get MXCSR_MASK

eax, 0 : Check for valid mask
check_mxcsr_mask
eax, OFFBFh ; Force use of default MXCSR_MASK

check_mxcsr_mask:
; EAX contains MXCSR_MASK from FXSAVE buffer or default mask

; Step 8.

bt
jc

mov
Jmp

supported:

notlntel Processor:

mov
Jmp

mov
Jmp

no_sse sse2:

mov
Jmp

noFxsave:

mov

notSupported:

print:

dazdtect

84

mov
Int

mov

mov
Int

ret
ENDP
END

eax, 6t
supported

; MXCSR_MASK Bit 6is DAZ support
; Jump if DAZ supported

dx, OFFSET daz_mask_clear
notSupported

dx, OFFSET supports_daz
print

; Indicate DAZ is supported.

dx, OFFSET not_intel
print

; Assume not an Intel processor

dx, OFFSET noSSEorSSE2 ; Setup error message assuming no SSE/SSE2
notSupported

dx, OFFSET no_FXSAVE

ah, 09h
21h

; Execute DOS print string function

dx, OFFSET no_daz

ah, 09h
21h

; Execute DOS print string function

; Allow assembler to generate code
; that returns control to DOS

Application Note



Operating Frequency
intel
Example 6. Frequency Calculation

; Filename: FREQUENC.ASM
; Copyright (c) Intel Corporation 2001-2004

; This program has been developed by Intel Corporation. Intel
; has various intellectual property rights which it may assert

; under certain circumstances, such asif another

; manufacturer's processor mis-identifiesitself as being

; "Genuinelntel" when the CPUID instruction is executed.

; Intel specifically disclaims all warranties, express or

; implied, and all liability, including consequential and other

; indirect damages, for the use of this program, including

; liability for infringement of any proprietary rights,

; and including the warranties of merchantability and fitness

; for aparticular purpose. Intel does not assume any

; responsibility for any errors which may appear in this program
nor any responsibility to update it.

This example assumes the system has booted DOS.
This program runsin Real mode.

rhkkkkkhkhkkkhhkkkhhkkkhhkkhkhhkkhhhkkhhhkkhhkkhhhkkhhkkhhhkkhhkhkhhhhhkhhhkkhhhkkhhkkhhkkhhkkkhhkkkdhkkdkkkxx

; This program was assembled using MASM 6.14.8444 and tested on a
; system with a Pentium(r) Il processor, a system with a

; Pentium(r) 111 processor, a system with a Pentium(r) 4 processor,

; B2 stepping, and a system with a Pentium(r) 4 processor,

; C1 stepping.

; This program performs the following 8 steps to determine the
; actual processor frequency.

; Step 1. Execute the CPUID instruction with an input value of EAX=0
; and ensure the vendor-1D string returned is " Genuinelntel".

; Step 2. Execute the CPUID instruction with EAX=1to load the EDX
; register with the feature flags.

; Step 3. Ensure that the TSC feature flag (EDX bit 4) is set. This

; indicates the processor supports the Time-Stamp Counter

; and RDTSC instruction.

; Step 4. Read the TSC at the beginning of the reference period

; Step 5. Read the TSC at the end of the reference period.

; Step 6. Compute the TSC delta from the beginning and ending of the
; reference period.

; Step 7. Compute the actua frequency by dividing the TSC delta by

; the reference period.

’
rhkkkkkhkhkkkhhkkkhhkkkhhkkhkhhkkhhhkkhhhkkhhkkhhhkkhhkkhhhkkhhhkhhkhhhkhhhkkhhhkkhhkkhhkkhhkkhhkdhkkdkxkxx
’

.DOSSEG
.MODEL small, pascal
.STACK ;4096

wordToDec PROTO NEAR PASCAL decAddr:WORD, hexData WORD

Application Note 85



Operating Frequency

; Macro  printst

; This macro is used to print a string passed as an input

; parameter and aword value immediately after the string.
; The string is delared in the data segment routine during

; assembly time. The word is converted to dec ascii and

; printed after the string.

; Input:  stringData = string to be printed.
; wordData = word to be converted to dec ascii and printed

; Destroys: None

; Output: None

: Assumes. Stack is available

printst MACRO  stringdata, hexWord
local stringlabel, decData

.data
stringlabel DB stringdata
decData DB 5 dup (0)
DB 0Odh, Oah, '$
.code
pushf
pusha

; Convert the word ino hex ascii and store in the string
invoke wordToDec, offset decData, hexWord

mov dx, offset stringlabel ; Setup string to be printed
mov ah, 0%h ; Execute DOS print function
int 21h

popa

popf

ENDM

SEG_BIOS DATA_AREA EQU  40h
OFFSET_TICK_COUNT EQU  6¢ch
INTERVAL_IN_TICKS EQU o1

; Data segment

.DATA

; Code segment

.CODE

86

Application Note



intal

.686p
cpufreq PROC NEAR

local tscLoDword:DWORD, \
tscHiDword:DWORD, \
mhz:WORD,\
Nearest66Mhz:WORD,\
Nearest50Mhz:WORD,\
deltabbMhz:WORD

Startup

; Step 1.

Operating Frequency

; Allow assembler to create code that
; initializes stack and data segment
; registers

;Verify Genuine Intel processor by checking CPUID generated vendor 1D

mov
cpuid

cmp
jne
cmp
jne
cmp
jne

; Step2and 3

eax, 0

ebx, 'uneG'
exit

edx, 'leni'
exit

ecx, 'letn'
exit

; Get CPU feature flags
; Verify TSC is supported

mov
cpuid
bt
jnc

push

pop
mov
mov

wait_for_new_tick:

cmp
je

; Step 4

eax, 1
edx, 4t
exit

SEG_BIOS DATA_AREA
€es

si, OFFSET_TICK_COUNT
ebx, DWORD PTR es[si]

ebx, DWORD PTR es[s]]

wait_for_new_tick

:**Timed interval starts**

; Read CPU time-stamp

rdtsc
mov
mov

add

Application Note

tscLoDword, eax
tscHiDword, edx

ebx, INTERVAL_IN_TICKS +1

: Check VendorlD = Genuinelntel
; Jump if not Genuine Intel processor

; Flags Bit 4 is TSC support
; jump if TSC not supported

; The BIOS tick count updateds
; ~18.2 times per second.

; Wait for tick count change

; Read and save TSC immediately
; after atick

; Set time delay value ticks.

87



Operating Frequency

88

wait_for_elapsed_ticks:

; Step 5

; Step 6

; Step 7

deltab6:

cmp ebx, DWORD PTR es:[s] ; Have we hit the delay?
jne wait_for_elapsed_ticks

;**Timeinterval ends**

; Read CPU time-stamp immediatly after tick delay reached.
rdtsc

sub eax, tscLoDword ; Calculate TSC deltafrom
shb edx, tscHiDword ; beginning to end of interval

; 54945 = (1/18.2) * 1,000,000 This adjusts for MHz.
; 54945*INTERVAL_IN_TICKS adjusts for number of ticksin interval

mov ebx, 54945 INTERVAL_IN_TICKS
div ebx

; ax contains measured speed in MHz
mov mhz, ax

; Find nearest full/half multiple of 66/133 MHz

xor dx, dx
mov ax, mhz
mov bx, 3t
mul bx

add ax, 100t
mov bx, 200t

div bx
mul bx
xor dx, dx
mov bx, 3
div bx

; ax contains nearest full/half multiple of 66/100 MHz

mov Nearest66Mhz, ax

sub ax, mhz
jge deltab6
neg ax ; ax = abs(ax)

; ax contains delta between actual and nearest 66/133 multiple
mov Delta66Mhz, ax

; Find nearest full/half multiple of 100 MHz

xor dx, dx
mov ax, mhz
add ax, 25t
mov bx, 50t
div bx

mul bx

Application Note



Operating Frequency

; ax contains nearest full/half multiple of 100 MHz

mov Nearest50Mhz, ax

sub ax, mhz

jge delta50

neg ax ; ax = abs(ax)
deltas0:

; ax contains delta between actual and nearest 50/100 MHz multiple

mov bx, Nearest50Mhz

cmp ax, Deltab6Mhz

jb useNearest50M hz

mov bx, Nearest66M hz

; Correction for 666 MHz (should be reported as 667 MHZ)

cmp bx, 666

jne correct666

inc bx
correct666:
useNearest50MHz:

; bx contains nearest full/half multiple of 66/100/133 MHz

printst "Reported MHz = ~", bx

printst "Measured MHz = ", mhz ; print decimal value
exit:

.exit : returns control to DOS

ret

cpufreq ENDP

: Procedure wordToDec
; Thisroutine will convert aword value into a5 byte decimal
; ascii string.

; Input:  decAddr = addressto 5 byte location for converted string
; (near address assumes DS as segment)
; hexData = word value to be converted to hex ascii

; Destroys: ax, bx, cx

; Output: 5 byte converted hex string

: Assumes: Stack is available

wordToDec PROC NEAR PUBLIC uses es,
decAddr:WORD, hexData:WORD

pusha
mov di, decAddr

Application Note 89



Operating Frequency

90

push
pop

mov
xor
mov
div
add
stosb

mov
xor
mov
div
add
stosb

mov
xor
mov
div
add
stosb

mov
xor
mov
div
add
stosb

mov

add
stosb

popa
ret

wordToDec

END

@data
es

ax, hexData
dx, dx

bx, 10000t
bx

ax, 30h

ax, dx
dx, dx
bx, 1000t
bx

ax, 30h

ax, dx
dx, dx
bx, 100t
bx

ax, 30h

ax, dx
dx, dx
bx, 10t
bx

ax, 30h

ax, dx
ax, 30h

ENDP

; ES:DI -> 5-byte converted string

Application Note



	Contents
	Figures
	Tables
	Revision History
	Introduction
	Update Support

	Detecting the CPUID Instruction
	Output of the CPUID Instruction
	Vendor ID String
	Processor Signature
	Feature Flags
	Extended Feature Flags
	SYSENTER/SYSEXIT – SEP Features Bit
	Cache Size, Format and TLB Information
	Pentium® 4 Processor, Model 0 Output Example

	Processor Serial Number
	Presence of Processor Serial Number
	Forming the 96-bit Processor Serial Number

	Brand ID and Brand String
	Brand ID
	Brand String

	Usage Guidelines
	Proper Identification Sequence
	Usage Program Examples
	Alternate Method of Detecting Features
	Denormals Are Zero
	Operating Frequency

