
COE 205 Term 011

 Lecture Notes: Kamal Chenaoua 1

Procedures

Definition:

A procedure is a reusable section of the software that is stored in memory once, used as
often as necessary.

Calling a procedure :

The CALL instruction links to the procedure and the RET instruction returns from the
procedure. The Stack stores the return address whenever a procedure is called during the
execution of a program. The CALL instruction pushes the address of the instruction
following the CALL (return address) onto the stack. The RET instruction removes an
address from the stack, so the program returns to the instruction following the CALL.

Procedures in MASM:

A procedure begins with the PROC directive and ends with the ENDP directive. Each
directive appears with the name of the procedure. The directive PROC is followed by the
procedure type: NEAR (intra-segment) or FAR (inter-segment).

Note: In MASM version 6.X NEAR or FAR procedures may be followed by the USES directive. The
USES directive allows any number of registers to be automatically pushed onto the stack and popped from
the stack within the procedure.

The CALL Instruction:

The CALL instruction transfers the flow of the program to the procedure. The CALL
instruction differs from the jump instruction in the sense that a CALL saves the return
address in the stack. The RET instruction return control to the instruction that
immediately follows the CALL. There exist two types of calls: FAR and NEAR, and two
types of addressing modes used with calls, Register and Indirect Memory modes.

Instruction Example Effect

CALL CALL SQRT [SP-1] ? 34H
[SP-2] ? 5BH

SP ? SP-2
IP ? 34A0H

RET RET LSB(IP) ? [SP]
MSB(IP) ? [SP+1]

SP ? SP + 2

Note: Assume SQRT is a Near Procedure, starting at CS:34A0H, and the instruction CALL is at
CS:345BH.

Table 14. 1: Summary of the Subroutine Handling Instructions

Note:
Procedures that are to be used by all program (global) should be written as FAR
procedures. Procedures that are used within the same program are normally defined as
NEAR procedures.

COE 205 Term 011

 Lecture Notes: Kamal Chenaoua 2

Near CALL:

A near CALL is three bytes long, with the first byte containing the opcode, and the two
remaining bytes containing the displacement or distance of ?32 K. When a NEAR CALL
executes, it pushes the offset address of the next instruction on the stack. The offset
address of the next instruction appears in the IP register. After saving this address, it then
adds the displacement from bytes 2 and 3 to the IP to transfer control to the procedure. A
variation of NEAR CALL exists, CALLN, but should be avoided.

Far CALL:

The FAR CALL calls a procedure anywhere in the system memory. It is a five-byte
instruction that contains an opcode followed by the next value for the IP and CS registers.
Bytes 2 and 3 contain the new contents of IP, while bytes 4 and 5 contain the new
contents for CS. The contents of both IP and CS are put on the stack before jumping to
the address indicated by bytes 2 to 5 of the instruction. A variant of the FAR CALL is
CALLF but should be avoided.

Calls With Register Operand:

CALLs may contain a register operand. An example is CALL BX, in which the content
of IP is pushed into the stack, and a jump is made to the offset address indicated by BX,
in the current code segment. This type of CALL uses a 16-bit offset address stored in any
16-bit register, except the segment registers.

Calls With Indirect Memory Address:

A CALL with an indirect memory address is useful when different subroutines need to be
chosen in a program. This selection process is often keyed with a number that addresses a
CALL address in a lookup table. The CALL instruction can also reference far pointers if
the data in the table are defined as double-word data with the DD directive, using the
CALL FAR PTR[SI] or CALL TABLE[SI] instructions. These instructions retrieve a
32-bit address from the data segment memory location addressed by SI and use it as the
address of a far procedure.

Parameter Passing :

To pass data (parameters) between the main program and the routines, data may be left in
the general-purpose registers . This method has the disadvantage of changing the
contents of the registers every time the subroutine is called. A more elegant way is to
exchange data through the stack, or through memory. The data to be passed to a
subroutine is saved in the memory before calling the subroutine. All registers which need
to be saved and are used by the subroutine, should be saved and retrieved afterwards.

