
COE 205: Computer Organization & Assembly Language
Introductory Experiment-B

By
Louai Al-Awami

Introduction
 A computer system consists mainly of three components: a Central

Processing Unit (CPU), a memory and Input/Output (I/O) devices. These three

components are interconnected by a bus system. A conceptual arrangement of such

system can be seen in Fig 1.

As an assembly programmer, you need to know some basic information about

the hardware you are programming. In this experiment, you will learn the basics of

the above-mentioned components and you will be able to extract some information

about them devices from your PC. You will also be able to comprehend the extracted

information and use them to get more information about your PC. The theme of this

experiment is to see how your program runs and affects those components.

Fig 1: Abstract Computer System.

The Bus System

 i

 The bus is simply a set of wires. The bus system consists of three buses: a

data bus, an address bus and a control bus. I will use the term "bus system" when

referring to the three buses together and the term "bus" to refer to a single bus. The

bus system connects the CPU, memory and I/O devices. The term bus cycle refers to

a single transaction on the bus. As examples, memory read, memory write and I/O

read and I/O write are all bus transactions or bus cycles.

The data bus is used to transfer data between the CPU and memory or the

CPU and the I/O devices. Notice in Fig.1 that the data bus and the control are

bidirectional which means that data can move in both directions. The address bus

however is unidirectional. The width of the data bus determines the size of the data

that can be transferred at one time. For example, the 8086 has a 16-bit data bus, which

means we can transfer at most 16-bit in one bus cycle. If we have 32-bit data in the

CPU and we would like to move it to memory, then we need two bus cycles.

The width of the address bus determines the amount of the memory accessible

by the CPU. For example, the 8086 has a 20-bit address bus, which means that we can

access up to 220, or 1 MB, of memory. The address bus is used by the CPU to indicate

the location the CPU would like to read from or write into.

The control bus is used to indicate the type of the requested operation. For

example if the CPU would like to read from memory, then it places a memory read on

the control bus. In case of I/O read on the other hand, it places an I/O read and so on.

Processor Estimated Clock Rate Data Bus Width Address Bus Width

8086 4.7 MHz 16-bit 20-bit

8088 4.7 MHz 8-bit 20-bit

80286 8 MHz 16-bit 24-bit

80386 40 MHz 32-bit 24-bit (Also 32-bit)

80486 75 MHz 32-bit 32-bit

Pentium 3 GHz + 64-bit 32-bit (Also 36-bit)

Table 1: A Compression Between Different Processors

The Central Processing Unit (CPU)
 The CPU -also called the processor- is the heart of any computer system. The

CPU is driven by a clock that synchronizes all events inside the computer system.

Consider a Pentium 4 with 2 GHz clock. Such a clock generates 2 X 109 clock cycles

per a second, this quantity is called the clock speed or clock frequency (). Each

clock cycle takes a period (T) that is calculated as

f

 ii

ns
f

T 5.0
102
11

9 =
×

==

The CPU fetches instructions and data from memory, decodes the instructions,

executes them and finally writes the results back into memory. This process is

repeated forever and is called the fetch-execute cycle.

Fetch Decode Execute Fetch Decode Execute Fetch Decode

Fig 2: Fetch-Execute Cycle.

 Fetching an instruction means reading it from memory. To do this, the CPU

places the address of the memory location it wishes to read. Place a memory read on

the control bus. The memory responds by placing the data on the data bus. The CPU

in turn reads the data from the data bus.

 Decoding the instruction means interpreting the meaning of the instruction. By

looking into the opcode which is a part of the binary representation of the instruction,

the CPU can recognize whether the require operation is an addition, subtraction,

multiplication etc.

 Executing the instruction is done by special hardware inside the CPU. The

CPU contains an Arithmetic and Logic Unit (ALU) that performs arithmetic

operations such as addition and multiplication, and logical operations such as AND

and XOR. The CPU also conations a control unit the controls the timing of the events

required to complete certain operation.

 The CPU contains a set of registers. Some registers are used to store data

temporarily while executing instructions. Examples of such registers are general

purpose registers such as AX, BX. Other registers are used to control the CPU

operations. An example is the IP register which tells the CPU about address of the

next instruction to be executed. Others registers include the flag register that contains

information about the current state of the CPU. In the 8086, registers are 16-bit, while

in the Pentium they are 32-bit. Refer to the textbook for more details about registers.

Memory
 Memory stores data and instruction required to manipulate the data. Two

operations are provided by the memory. The first operation is the read operation, in

which the content of a specific location in memory, determined by the value on the

 iii

One fetch-execute cycle

address bus, is read and placed on the data bus. The other operation is the write

operation where a value that is available on the data bus is written on a specific

location in memory indicated on the address bus.

 As we said earlier, the size of the addressable memory is determined by the

size of the address bus. For most systems, the available memory is less than the

addressable one. Also the memory differentiates between a read and write operation

by reading the value of control bus.

I/O Devices
 The I/O devices work as an interface between the outer world and computers.

These devices allow human to interact with computers in a convenient way. Examples

of such devices are monitor, mouse, keyboard and printer. These devices are

connected with the computer using different interfaces. Examples of such interfaces

include serial port, parallel port, Universal Serial Bus (USB). These I/O ports are, in

turn, interfaced to the system bus through an I/O controller.

Using the CodeView
 The CodeView (CV) is a useful utility that allows you to trace your program

and watch the status of your computer system while running your program. You will

use this tool to debug your program whenever needed.

Fig 3: progB1

Before you start the steps below, write programB1 that appears in Fig 3 using a

text editor and save it as progB1.asm in the directory you created in the last lab. Also,

 iv

TITLE "programB1"
.MODEL SMALL
.STACK 100
.DATA
 A DB 2
 B DB 3
 C DB 4
.CODE
 MOV AX,@DATA ; 1
 MOV DS,AX ; 2

 MOV AL,B ; 3
 MOV BL,A ; 4
 ADD AL,BL ; 5
 ADD C,AL ; 6

 MOV AX,4C00H ; 7
 INT 21H ; 8
END

notice the number in front of each instruction because it will be used as a reference in

the coming paragraphs.

 After you save the program, assemble it and link it as you have learned in the

previous experiment. You should have and .exe file in your directory

corresponding to the same program.

Running the CodeView
- Go to the Start> Programs> Masm 611> Masm Prompt.

- You will have the command prompt coming up, change the directory

to the directory containing your program.

- Write

Z:>COE205>LAB2> cv progB1

and press Enter.

- You will get the following screen

Fig 4: CodeView Main Screen.

Below, we will discuss the three parts that appear in the source window as in Fig 4.

NOTE: the values and addresses given below may change when you run the CV

on different machines; this is due to the operating system memory management.

Also, note that all the values given are in hexadecimal.

A: Source Code
 This part shows the assembly language program. Each instruction appears in

one line. The instruction that is black-highlighted is the instruction that is going to be

 v

B AC

executed next. For instance, in Fig 4 the instruction “MOV AX,0A3C” is the next

instruction to be executed.

Type of Instruction Example

No Operands CLD

One Operand INC AX

Two Operands MOV AX, BX

Table 2: Type of Instructions and Examples

Table 2

An Assembly language instruction may have zero, one or two operands.

Example of each can be show in the . In case of two-operand instructions, we

call the right-hand operand the source left-hand operand the destination. For

example, the MOV instruction copies the value of the destination to the source. In

instruction#2, the value of the register AX which is the source is copied into the

register DX which is the destination.

 Note that some instructions are viewed in a different from than the source

code. For example, the instruction “MOV AX, @Data“ has been replaced with “MOV

AX,0A3C”. In reality, there is no difference; the value 0A3C is nothing but the data

segment address for this program after its loaded by the MS-DOS operating system.

Another Example is the third instruction “MOV AL, B”, which has been replaced by

“MOV AL, BYTE PTR[0009]”. Where BYTE PTR[0009] is nothing but a pointer to

the offset of the variable “B”. In this case, variable “B” has been stored in the location

with offset 0009H in the data segment.

B: Machine Code
 An instruction represented as a machine code is shown in part B. This shows

how exactly the instruction is represented inside the memory. Generally, the first byte

of the instruction is called the opcode and it indicates operation (MOV, ADD, .etc)

and the addressing mode. For example, see the two instructions below.

Notice, that the higher bytes are the same (B8) since both instructions involves

moving an immediate value into a word register. The lower byte however, carries the

value to be loaded into the register in reveres order.

 vi

 Machine Code Assembly Code

1 B83C0A MOV AX, 0A3C

2 B8004C MOV AX, 4C00

Different instructions have different length depending on their type. To see

that, compare the following two instructions taken from the code in Fig 3.
 Machine Code Assembly Code Length (Bytes)

1 B83C0A MOV AX, 0A3C 3
2 8ED8 MOV DS,AX 2

This different is made to get better efficiency in performance and space

making the instructions that are used more often shorter in length. More details about

the instruction formatting can be found in the textbook.

C: Instruction Address
 Part C shows the address of the instruction in the data segment. Because

instructions differ in lengths, they occupy different parts of memory. The address is

divided into two parts, a segment address and an offset. The address looks like
Segment Address : Offset

The segment address in this case represents the code segment (CS). For

example, instruction#6 “ADD C,AL” has the address 0A3B:000E. Which means it is

stored in segment 0A3B of the code segment. The offset indicates a specific byte

inside the segment.

 The 8086 divides the memory into segments each is 64K Byte. If you calculate

the number of bits required to address such a memory you will find it 16-bit (2 Byte)

and this is why we have the offset as 2 bytes long.

 Think of the memory as a country. Then, the segments correspond to cities

inside the country. A segment address corresponds to a postal code of a city. As each

city contains many houses, each segment is divided into bytes. Like we use the P.O.

Box to address a house or an address in a city, we use the offset address a byte inside

a segment.

 Let us continue with our example. We saw that instruction#5 starts at address

0A3B:000E. Since the instruction is 4 bytes long, it ends at address 0A3B:0011.

Similarly, instruction#6 starts at address 0A3B:0012. Note, that all instructions have

the same segment address.

 vii

How to step your program
In order to execute the next instruction press F10. The curser will move one position

down. You can also put a break point and make the program runs till this break point.

To do this:

1- Highlight the instruction that you would like to stop at.

2- Go to Data menu and chose Set Breakpoint.

3- Press F5.

In order to reset the program, go to Run menu and select Restart.

Viewing the Registers Window
 Another important window is the registers window. You can view it by

Clicking Alt+7.

Fig 5: CV with Registers Window

D: Registers
 This part shows the current values of the registers, there are 14 registers

shown. The default view is 16-bit registers for the 8086. You can view the 32-bit

registers by going to the Options menu and selecting 32-bit Registers.

 Consider the first instruction. It moves the value “0A3C” into the register AX.

Try to execute this instruction as you have learned. After executing this instruction,

the value of AX will change to “0A3C” instead of “0000”. You can notice that any

value that changes is highlighted.

 viii

D

E

 After executing the previous instruction, notice that besides AX, another

registers also have been highlighted, namely IP and FL. What do you think the cause

for this?

Overflow

NV: no overflow

OV: overflow

Direction

UP: up

DN: down

Interrupt

EI: Enable interrupt

DI: Disable Interrupts

Sign

NG: Negative

PL: positive

Zero

ZR: Zero

NZ: No zero

Auxiliary

AC: Auxiliary carry

NA: No Auxiliary carry

Parity

PE: Parity even

PO: Parity odd

Carry

CY: Carry

NC: No carry

Fig 6: Flags and Their Values

E: Flags
 The lower part of the window contains the flags that indicate the status of the

CPU after executing the last instruction. They are arranged as shown in Fig 6.

Viewing the Data Segment Window
 To view the data segment (DS) windows, press Alt+5. The following screen

will appear.

Fig 7: CV with Data Segment Windows

 ix

 Notice that in Fig 7, each line contains 13 bytes. The address given at the

beginning of the line is Data Segment Address: Offset of the first byte. This is why

the next line starts from 000DH.

 Be careful to one important point here. At the beginning of the program, the

DS register was loaded with the value “0A3C”, which means that the data of our

program is in the segment 0A3C. In the data segment register (DS) however, the

segment shown initially is “0A2B” which is a different segment. To show the correct

segment, put the cursor on the segment value in the data segment window and write

the new value (0A3C). The new screen will look like Fig 8.

Now, let us see how to locate the values of the variables. Notice that the

variable B has been replaced by BYTE PTR [0009]. This means that the offset of the

address of B is 0009 inside the data segment. If you try to located the value B in the

data segment as 0A3C:0009, you will find it 02.

As an exercise, try to find the values of A & C.

 x

Fig 8: Data Segment with Correct Value.

Student Name: ID#

Exercises
1. You can view your system information by going to

Start> Programs> Accessories> System Tools> System Information

Or

Right click the My Computer icon on you desktop and select Properties

Use this tool to fill the following table.

Processor

Processor Speed (MHz/GHz)

Memory Size MB

Operating System

Now, use the information you collected to answer the following questions.

a- Calculate the duration of one clock of your PC.

b- What is the size of the data bus and the address bus?

Data Bus:

Address Bus:

c- What is the maximum amount of data that can be transferred on the data

bus in one cycle?

d- What is the maximum amount of memory that your PC can address?

 xi

Student Name: ID#

2. Write the following program and use the CV to answer the following

questions?

a- What is the starting address of the memory where the code of this

program is stored?

b- What is the starting address of the data segment?

c- What is the equivalent binary code for the instruction#3? What is its

size?

d- How much memory is required to store the program?

 xii

TITLE "programB2"
.MODEL SMALL
.STACK 100
.DATA
 NUM1 DB 9
 NUM2 DB 8
 X DB 'A'
.CODE
 MOV AX,@DATA ; 1
 MOV DS,AX ; 2

 MOV AL,NUM1 ; 3
 ADD NUM2,AL ; 4
 MOV BL,X ; 5

 MOV AX,4C00H ; 6
 INT 21H ; 7
END

 xiii

Student Name: ID#

e- By looking at the binary code, what type of instruction do you think

the opcode "B8" refers to?

f- What is the address of the location storing the variables NUM1 &

NUM2?

g- What is the value stored in the memory location of NUM2 before and

after executing instruction#4?

Before:

After:

h- Write the status of the flags and their meanings after executing

instruction#4?

Overflow

Direction Interrupt Sign

Zero

Auxiliary Parity Carry

i- Run the program step-by-step and write the values of the source and

destination before and after each instruction.

Source Destination
Instruction

Before After Before After

MOV AX,@DATA

MOV DS,AX

MOV AL,NUM1

ADD NUM2,AL

MOV BL,C

MOV AX,4C00H

INT 21H

	Introduction
	The Bus System
	The Central Processing Unit (CPU)
	Memory
	I/O Devices
	Using the CodeView
	Student Name: ID#
	Exercises
	Student Name: ID#
	Student Name: ID#

