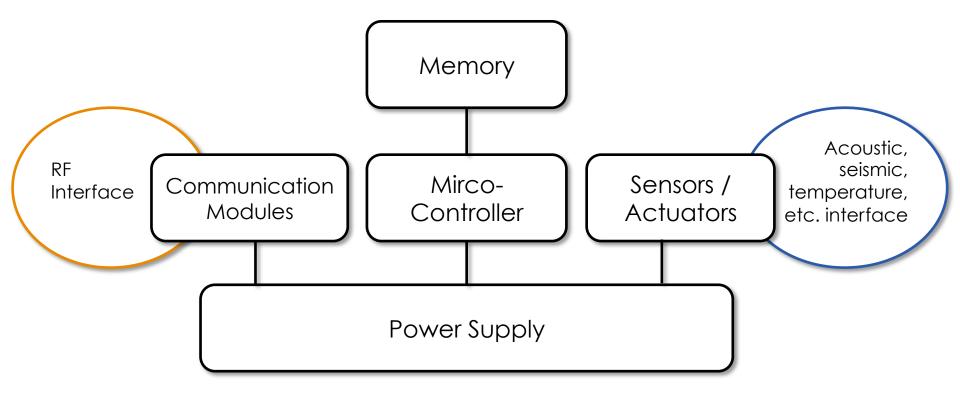
### COE 545 - Wireless Sensor Networks

### Sensor Node Architecture


Dr. Abdulaziz Barnawi COE Dept. KFUPM

© Abdulaziz Barnawi

### WSN Hardware Design

- Sensor nodes support wide range of application
  - Application specific requirements
    - Hardware is designed to be Modular, flexible, programmable
- Sensor nodes have limited resources Power / CPU / Memory
  - Hardware is designed to be Power efficient

### Sensor Node Architecture



### Sensor Node Architecture

#### Sensor Node Components

- Controller process relevant data, signal processing
- Memory store programs and intermediate data
- Sensors and actuators interface to the physical world, observe or control physical parameters of the environment (e.g. acoustic, temperature, imaging, etc.)
- Communication sending and receiving information over a wireless channel.
- Power supply mainly batteries, energy from the environment(e.g. solar cells)

### Micro-controller

#### Available architectural options:

- CPU highly overpowered, high energy consumption and cost, not suitable for WSN
- DSP optimized for signal processing tasks, not suitable for WSN
- **FPGAs** reprogrammable (flexible), time and energy tradeoffs
- ASIC customized design, peak performance is needed, somehow better energy efficiency, no flexibility
- Microcontroller optimized for embedded applications, low power consumption, flexible

### Micro-controller

Examples of MCU for embedded applications

- **MSP 430** 
  - 16-bit RISC core, 4MHz
  - on-chip RAM (sizes are 2–10 kB)
  - 12-bit ADC converters
- Atmel ATMega
  - 8-bit microcontroller
  - Used for embedded applications

# Micro-controller

| Sensor                  | TelosB    | IRIS                    | MICA2                 | MICAz                  |
|-------------------------|-----------|-------------------------|-----------------------|------------------------|
| МСИ Туре                | TI MSP430 | XM2111CA/<br>ATmega128L | MPR400/<br>ATmega128L | MPR2400/<br>ATmega128L |
| Speed                   | 8 MHz     | 8 MHz                   | 8 MHz                 | 8 MHz                  |
| RAM                     | 10 kB     | 8 KB                    | 4-8 KB                | 4-8 KB                 |
| Program<br>Flash Memory | 48 KB     | 128 KB                  | 128 KB                | 128 KB                 |

### Radio Transceiver

#### Tasks and characteristics

- Service interface to upper layers (MAC) bit, byte, packet level
- Power consumption and energy efficiency
- Transmission power control
- State change times and energy
- Carrier frequency and multiple channels
- Data rates
- Modulations
- 🗖 Gain
- Receiver sensitivity
- Carrier sense and RSSI
- Voltage range

Energy efficiency related

Radio performance related

### Radio Transceiver

#### Transceiver operational states

- Transmit transceiver's transmit part is active
- Receive transceiver receive part is active
- Idle ready to receive (expecting), but nothing is received
  - Main parts of the receive circuitry are active, some other part should be switched off —> little reduction in energy consumption
- Sleep many parts of the transceiver are switched offNot able to immediately receive something
  - startup energy and to leave sleep state can be significant

# Examples of Radio Transceivers

#### Chipcon CC1000

- FSK
- 868–870 MHz (up to 4 channels) and
- 902–928 MHz (up to 54 channels)
- 38.4 kbps data rate
- RF Power: -20 to +5 dBm
- Used in MICA2/MICA2DOT
- Chipcon CC2420
  - IEEE 802.15.4 (ZigBee) compliant
  - QPSK quadrature phase shift keying
  - DSSS modem
  - Low voltage operation
  - 250 kbps data rate
  - RF Power: -25 to 0 dBm
  - Used in MICAz, TelosB





### Sensors

#### Three categories

- Passive, omnidirectional
  - No active manipulation (probing) of environment
  - No notion of direction
  - Examples: thermometer, light sensors, vibration, humidity

#### Passive, narrow-beam

- No active manipulation (probing) of environment
- Direction of measurement exists
- Examples: Camera
- Active sensors
  - Probe the environment
  - Examples: sonar, radar, seismic sensor

#### MTS300/MTS310

Flexible sensor boards

#### MTS420/400

- Some basic environmental sensing parameters
  - e.g. Barometric Pressure, Ambient Light, Relative Humidity & Temperature
- optional GPS module

#### MDA100

- Data acquisition board
- Thermistor, a light sensor/photocell

#### MEMSIC MTS300/310

- Multi Sensor Board
  - Light, Temperature
  - Microphone, Sounder
  - Dual-Axis Accelerometer, Dual-Axis Magnetometer (MTS310)
  - Compatible with IRIS, MICA2, MICAz



MTS300CB



MTS310CB

#### MEMSIC MDA300

- Multi-Function Data acquisition board
  - Qualified with numerous external environmental probe
    - humidity, temperature, wind speed
  - 2.5, 3.3, 5V sensor excitation and low-power mode
  - 64K EEPROM for onboard sensor calibration data
  - Applications
    - Environmental Data Collection
    - Agricultural and Habitat Monitoring
    - Viticulture and Nursery Management





- Programming Boards & Gateway
  - Interface between a mote and a PC
    - Ethernet
    - USB
    - Serial
  - Base Station for Wireless Sensor Networks



COE 549 – Wireless Sensor Networks

#### MEMSIC MIB510

- Serial Port Programming for IRIS, MICAz and MICA2 hardware platforms
- RS-232 Serial Gateway
- aggregation of sensor network data on a PC



- programs the Mote processor/radio boards
- monitors the MIB510 power voltage disables programming if the voltage is not within the required limits
- Power supply



#### MEMSIC MIB600

- Base Station/Ethernet (100 Base) Gateway for Wireless Sensor Networks
- Mote Network Testbed
- Remote In-System Programming for IRIS/MICAz and MICA2 Processor/Radio Boards
- Full TCP/IP Protocol ARP, UDP/IP, TCP/IP, Telnet, DHCP,BOOTP, TFTP, Auto IP, and HTTP
- Power Over Ethernet (POE) Ready



# Energy Supply for Sensor Nodes

Goal: provide as much energy as possible at smallest cost/volume/weight/recharge time/longevity
 In WSN, recharging may or may not be an option

### Options

- Primary batteries not rechargeable
- Secondary batteries rechargeable through energy harvesting (e.g. solar panels)

#### Requirements include

- Low self-discharge
- Long shelf life
- Capacity under load
- Efficient recharging at low current

### Battery Examples

Energy per volume (Joule per cubic centimeter)

| Primary batteries           |          |         |          |  |  |
|-----------------------------|----------|---------|----------|--|--|
| Chemistry                   | Zinc-air | Lithium | Alkaline |  |  |
| Energy (J/cm <sup>3</sup> ) | 3780     | 2880    | 1200     |  |  |
| Secondary batteries         |          |         |          |  |  |
| Chemistry                   | Lithium  | NiMHd   | NiCd     |  |  |
| Energy (J/cm <sup>3</sup> ) | 1080     | 860     | 650      |  |  |

# Energy harvesting

- How to recharge a battery?
  - Remember: Sensors are deployed in unattended area
  - Try to scavenge energy from environment
- Ambient energy sources
  - Light
  - Temperature gradients
  - Vibrations
  - Pressure variation (piezo-electric)
  - Air/liquid flow

# Examples of Energy Sources

| Energy source                                           | Energy density                                                                                                                        |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Batteries (zinc-air)<br>Batteries (rechargable lithium) | $1050 - 1560 \text{ mWh/cm}^3$<br>$300 \text{ mWh/cm}^3 \text{ (at } 3 - 4 \text{ V)}$                                                |
| Energy source                                           | Power density                                                                                                                         |
| Solar (outdoors)                                        | $15\mathrm{mW/cm^2}$ (direct sun)                                                                                                     |
| Solar (indoors)                                         | $0.15 \mathrm{mW/cm^2}$ (cloudy day)<br>$0.006 \mathrm{mW/cm^2}$ (standard office desk)<br>$0.57 \mathrm{mW/cm^2}$ (< 60 W desk lamp) |
| Vibrations                                              | $0.01 - 0.1 \mathrm{mW/cm^3}$                                                                                                         |
| Acoustic noise                                          | $3\cdot 10^{-6} { m mW/cm^2}$ at $75{ m Db}$<br>$9,6\cdot 10^{-4} { m mW/cm^2}$ at $100{ m Db}$                                       |
| Passive human-powered systems<br>Nuclear reaction       | 1.8  mW (shoe inserts)<br>$80 \text{ mW/cm}^3$ , $10^6 \text{ mWh/cm}^3$                                                              |

Source: Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor Networks

### Power Efficient Design

#### Efficient hardware

- Operate at low voltages and low current
- Selectable modes of operation: off, sleep, idle, active

#### Efficient software

- Fine-grained control of hardware
- In-network processing data Aggregate, compression

### Efficient radio

- Adaptive: transmit power, modulation, rate
- Different radio operational states : off, sleep, idle, active

### THIS IS THE TOPIC FOR NEXT LECTURE

### Conclusion

- Many considerations must be taken while choosing/ designing the required sensor node architecture
  - Flexibility
  - Power/Energy/Energy efficiency
  - Programmability
  - Accuracy & precision
  - Physical parameters & measurements
  - Location
  - Mobility

### ALL OF THE ABOVE IS .....

### References

- Holger\_Karl and Andreas Willig, Protocols and Architectures for Wireless Sensor Networks, Wiley, ISBN: 0-470-09510-5, June 2005 « Few slides are provider by the book auther »
- Baunach, M., Kolla, R., Mühlberger, C. "SNoW<sup>5</sup>: a modular platform for sophisticated real time wireless sensor networking", Technical Report 399, Institut für Informatik, Universität Würzburg, 2007
- Polastre, J.; Szewczyk, R.; Culler, D., "Telos: enabling ultra-low power wireless research" Fourth International Symposium on Information Processing in Sensor Networks, 2005.
- www.memsic.com
- www.atmel.com

