COE 202; Digital Logic Design Number Systems Part 1

Dr. Ahmad Almulhem

Email: ahmadsm AT kfupm Phone: 860-7554
 Office: 22-324

Objectives

1. Weighted (positional) number systems
2. Features of weighted number systems.
3. Commonly used number systems
4. Important properties

Introduction

- A number system is a set of numbers together with one or more operations (e.g. add, subtract).
- Before digital computers, the only known number system is the decimal number system (النظام العشري)
- It has a total of ten digits: $\{0,1,2, \ldots, 9\}$
- From the previous lecture:
- Digital systems deal with the binary system of numbering i.e. only 0's and 1's
- Binary system has more reliability than decimal
- All these numbering systems are also referred to as weighted numbering systems

Weighted Number System

- A number \mathbf{D} consists of n digits and each digit has a position.
- Every digit position is associated with a fixed weight.
- If the weight associated with the $t h$. position is w_{j}, then the value of \mathbf{D} is given by:

$$
D=d_{n-1} w_{n-1}+d_{n-2} w_{n-2}+\ldots \ldots+d_{1} w_{1}+d_{0} w_{0}
$$

- Also called positional number system

Example

- The Decimal number system is a weighted number system.
- For Integer decimal numbers, the weight of the rightmost digit (at position () is $\mathbf{1}$, the weight of position 1 digit is $\mathbf{1 0}$, that of position 2 digit is $\mathbf{1 0 0}$, position 3 is $\mathbf{1 0 0 0}$, etc.

The Radix (Base)

- A digit d_{i}, has a weight which is a power of some constant value called radix (r) or base such that $w_{i}=r$.
- A number system of radix r, has r allowed digits $\{0,1, \ldots(r-1)\}$
- The leftmost digit has the highest weight and called Most Significant Digit (MSD)
- The rightmost digit has the lowest weight and called Least Significant Digit (LSD)

Example

- Decimal Number System
- Radix (base) $=10$
- $\mathrm{w}_{\mathrm{i}}=\mathrm{r}^{\mathrm{i}}$, so

- Only 10 allowed digit: \{0,1,2,3,4,5,6,7,8,9\}

Fractions (Radix point)

- A number D has n integral digits and m fractional digits
- Digits to the left of the radix point (integral digits) have positive position indices, while digits to the right of the radix point (fractional digits) have negative position indices
- The weight for a digit position \bar{i} is given by $\mathbf{w}_{i}=\mathbf{r}^{i}$

Example

- For D = 57.6528
- $\mathrm{n}=2$
$-m=4$
- The weighted representation for D is:
$\mathrm{i}=-4 \quad d_{i} r^{i}=8 \times 10^{-4}$
$\mathrm{i}=-3 \quad d_{i} t^{i}=2 \times 10^{-3}$
$\mathrm{i}=-2 \quad d_{i} t^{i}=5 \times 10^{-2}$
$\mathrm{i}=-1 \quad d_{i} i^{i}=6 \times 10^{-1}$
$\mathrm{i}=0 \quad d_{i} i^{i}=7 \times 10^{0}$
$\mathrm{i}=1 \quad d_{i} i^{i}=5 \times 10^{1}$
- $\mathrm{r}=10$ (decimal number)

Number	5	2	\cdot	9	4

$$
D=5 \times 10^{1}+2 \times 10^{0}+9 \times 10^{-1}+4 \times 10^{-2}+6 \times 10^{-3}
$$

Notation

A number D with base r can be denoted as $(\mathrm{D})_{\mathrm{r}}$,
Decimal number 128 can be written as (128) ${ }_{10}$
Similarly a binary number is written as $(10011)_{2}$

Question: Are these valid numbers?

- $(9478)_{10}$
- $(1289)_{2}$
- $(111000)_{2}$
- $(55)_{5}$

Common Number Systems

- Decimal Number System (base-10)
- Binary Number System (base-2)
- Octal Number System (base-8)
- Hexadecimal Number System (base-16)

Binary Number System (base-2)

- $r=2$
- Two allowed digits $\{0,1\}$
- A Binary Digit is referred to as bit
- Examples: 1100111, 01, 0001, 11110
- The left most bit is called the Most Significant Bit (MSB)
- The rightmost bit is called the Least Significant Bit (LSB)

Binary Number System (base-2)

- The decimal equivalent of a binary number can be found by expanding the number into a power series:

```
Example
```

$$
=1 \mathrm{x} 1+0 \times 2+1 \times 4
$$

$$
=(5)_{10}
$$

```
```

MSB

```
```

MSB

```
Question:
What is the decimal equivalent
of \((110.11)_{2}\) ?

\section*{Binary Number System (base-2)}
- The decimal equivalent of a binary number can be found by expanding the number into a power series:
```

Example
MSB

- = 1x1 + 0x2 + 1x 4
- =(5) 10

```

\section*{Question:}

What is the decimal equivalent of \((110.11)_{2}\) ?

Answer: (6.75) \({ }_{10}\)

\section*{Octal Number System (base-8)}
- \(r=8\)
- Eight allowed digits \(\{0,1,2,3,4,5,6,7\}\)
- Useful to represent binary numbers indirectly
- Octal and binary are nicely related; i.e \(8=2^{3}\)
- Each octal digit represent 3 binary digits (bits)
- Example: \((101)_{2}=(5)_{8}\)
- Getting the decimal equivalent is as usual
\[
\text { Example } \begin{aligned}
&\left(375^{2}\right)_{8}=5 \times 8^{0}+7 \times 8^{1}+3 \times 8^{2} \\
&=5 \times 1+7 \times 8+3 \times 64 \\
&=(253)_{10}
\end{aligned}
\]

\section*{Hexadecimal Number System (base-16)}
- \(r=16\)
- 16 allowed digits \(\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}\)
- Useful to represent binary numbers indirectly
- Hex and binary are nicely related; i.e \(16=2^{4}\)
- Each hex digit represent 4 binary digits (bits)
- Example: \((1010)_{2}=(\mathrm{A})_{16}\)
- Getting the decimal equivalent is as usual


\section*{Hexadecimal Number System (base-16)}
- \(r=16\)
- 16 allowed digits \(\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}\)
- Useful to represent binary numbers indirectly
- Hex and binary are nicely related; i.e \(16=2^{4}\)
- Each hex digit represent 4 binary digits (bits)
- Example: \((1010)_{2}=(\mathrm{A})_{16}\)
- Getting the decimal equivalent is as usual


\section*{Examples}

Question: What is the result of adding 1 to the largest digit of some number system?
- \((9)_{10}+1=(10)_{10}\)
- \((7)_{8}+1=(10)_{8}\)
- \((1)_{2}+1=(10)_{2}\)
- \((F)_{16}+1=(10)_{16}\)

Conclusion: Adding 1 to the largest digit in any number system always
has a result of (10) in that number digit in any number system always
has a result of (10) in that number system.

\section*{OCTAL System}


\section*{Examples}

Question: What is the largest value representable using 3 integral digits?

Answer: The largest value results when all 3 positions are filled with the largest digit in the number system.
- For the decimal system, it is (999) 10
- For the octal system, it is \((777)_{8}\)
- For the hex system, it is (FFF) \({ }_{16}\)
- For the binary system, it is \((111)_{2}\)

\section*{Examples}

\section*{OCTAL System}


Binary System




Question: What is the result of adding 1 to the largest 3-digit number?
- For the decimal system, \((1)_{10}+(999)_{10}=(1000)_{10}=\left(10^{3}\right)_{10}\)
- For the octal system, \((1)_{8}+(777)_{8}=(1000)_{8}=\left(8^{3}\right)_{10}\)

In general, for a number system of radix \(\mathbf{r}\), adding 1 to the largest \(n\)-digit number \(=\mathbf{r}^{n}\)
Accordingly, the value of largest \(n\)-digit number \(=\mathbf{r}^{n}-1\)

\section*{Important Properties}
- The number of possible digits in any number system with radix \(r\) equals \(r\).
- The smallest digit is \(\mathbf{O}\) and the largest digit has a value ( \(r\) - 1 )
- Example: Octal system, \(\boldsymbol{r}=\boldsymbol{8}\), smallest digit \(=\boldsymbol{0}\), largest digit = 8-1 = \(\mathbf{7}\)
- The Largest value that can be expressed in \(\mathbf{n}\) integral digits is ( \(r^{n-1}\) )
- Example: \(n=3, r=10\), largest value \(=10^{3}-1=999\)

\section*{Important Properties}
- The Largest value that can be expressed in m fractional digits is (1-r-m)
- Example: \(n=3, r=10\), largest value \(=1-10^{-3}=0.999\)
- Largest value that can be expressed in \(\boldsymbol{n}\) integral digits and \(\boldsymbol{m}\) fractional digits is equal to ( \(\boldsymbol{r}^{n}-r^{-m}\) )
- Total number of values (patterns) representable in \(n\) digits is \(r^{n}\)
- Example: \(r=2, n=5\) will generate 32 possible unique combinations of binary digits such as (00000 \(->11111\) )
- Question: What about Intel 32-bit \& 64-bit processors?

\section*{Conclusions}
- A weighted (positional) number system has a radix (base) and each digit has a position and weight
- Commonly used number systems are decimal, binary, octal, hexadecimal
- A number D with base \(r\) can be denoted as \((D)_{r}\),
- To convert from base-r to decimal, use
\[
(D)_{r}=\sum_{i=-m}^{n-1} d_{i} r^{i}
\]
- Weighted (positional) number systems have several important properties```

