COE 202- Digital Logic

Standard & Canonical Forms

Dr. Abdulaziz Y. Barnawi

COE Department

KFUPM

Outline

- Minterms and Maxterms
- ☐ From truth table to Boolean expression
 - Sum of minterms
 - Product of Maxterms
- Standard and Canonical Forms
- Implementation of Standard Forms
- Practical Aspects of Logic Gates

MinTerms

- A product term is a term where literals are ANDed.
 - Example: x'y', xz, xyz, ...
- A minterm is a product term in which all variables appear exactly once, in normal or complemented form
 - **Example:** F(x,y,z) has 8 minterms: xyz,xyz,xyz,xyz,xyz,xyz,xyz & xyz
- Each minterm equals 1 at exactly one particular input combination and is equal to 0 at all other combinations
- Thus, for example, $\bar{x} \bar{y} \bar{z}$ is always equal to 0 except for the input combination xyz = 000, where it is equal to 1.

Src: Mano's book

MinTerms

- In general, minterms are designated m_i, where i corresponds the input combination at which this minterm is equal to 1.
- \square Accordingly, the minterm $\bar{x} \bar{y} \bar{z}$ is referred to as m_0 .

Minterms for Three Variables

Product Υ Z Symbol X **Term** m_5 \mathbf{m}_0 m_1 m_4 \mathbf{m}_{2} m_3 \mathbf{m}_{6} m_7 $\overline{X}\overline{Y}\overline{Z}$ 0 0 0 0 0 m_0 $\overline{X}\overline{Y}Z$ 0 0 m_1 $\overline{X}Y\overline{Z}$ 0 m_2 $\overline{X}YZ$ 0 0 m_3 $X\overline{Y}\overline{Z}$ m_4 $X\overline{Y}Z$ 0 m_5 $XY\overline{Z}$ 0 0 0 m_6 XYZ0 0 0 0 0 0 m_7

© Abdulaziz Barnawi COE 202 – Logic Design January 30, 2016

MinTerms

- □ In general, for n-input variables, the number of minterms = the total number of possible input combinations = 2ⁿ.
- Question: What is the number of minterms for a function with 5 input variables?
 - Number of minterms = $2^5 = 32$ minterms.

MaxTerms

- A sum term is a term where literals are ORed.
 - **Example:** x'+y', x+z, x+y+z, ...
- A maxterm is a sum term in which all variables appear exactly once, in normal or complemented form
 - **Example:** F(x,y,z) has 8 Maxterms: (x+y+z), (x+y+z'), (x+y'+z), ...
- □ Each Maxterm equals 0 at exactly one of the 8 possible input combinations and is equal to 1 at all other combinations.
- Thus, for example, (x + y + z) equals 1 at all input combinations except for the combination xyz = 000, where it is equal to 0.

MaxTerms

- \square In general, Maxterms are designated M_i , where i corresponds the input combination at which this Maxterm is equal to 0.
- Accordingly, the minterm (x + y + z) is referred to as M_0 .

Maxterms for Three Variables

Src: Mano's book

X	Y	Z	Sum Term	Symbol	M_{o}	M ₁	M ₂	М _з	M_4	M_5	M_6	M ₇
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\overline{Z}$	\mathbf{M}_{1}	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	\overline{X} + Y + Z	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7	1	1	1	1	1	1	1	0

MaxTerms

- For n-input variables, the number of Maxterms = the total number of possible input combinations = 2^n .
- Question: What is the number of Maxterms for a function with 5 input variables?
 - Number of Maxterms = 2^5 = 32 Maxterms.
- Using De-Morgan's theorem, or truth tables, it can be easily shown that minterms and Maxterms are the complement of each other!

$$M_i = \overline{m_i}$$
 $\forall i = 0, 1, 2, ..., (2^n - 1)$

Expressing Functions as a Sum of Minterms

- A Boolean function can be expressed algebraically from a give truth table by forming the logical sum (OR) of ALL the minterms that produce 1 in the function
- Example: Consider the function defined by the truth table

□
$$F(X,Y,Z) = X'Y'Z' + X'YZ' + XY'Z + XYZ$$

= $m_0 + m_2 + m_5 + m_7$
= $\sum m(0,2,5,7)$

X	Υ	Z	m	F
0	0	0	m ₀	1
0	0	1	m ₁	0
0	1	0	m ₂	1
0	1	1	m_3	0
1	0	0	m ₄	0
1	0	1	m_5	1
1	1	0	m ₆	0
1	1	1	m ₇	1

Expressing Functions as a Product of Sums

- □ A Boolean function can be expressed algebraically from a give truth table by forming the logical product (AND) of ALL the Maxterms that produce 0 in the function
- Example: Consider the function defined by the truth table

$$\square$$
 F(X,Y,Z) = Π M(1,3,4,6)

Applying DeMorgan

$$F' = m_1 + m_3 + m_4 + m_6$$

$$= \sum m(1,3,4,6)$$

$$F = F'' = [m_1 + m_3 + m_4 + m_6]'$$

$$= m_1'.m_3'.m_4'.m_6'$$

$$= M_1.M_3.M_4.M_6$$

$$= \prod M(1,3,4,6)$$

Х	Υ	Z	M	F	F'
0	0	0	Mo	1	0
0	0	1	M_1	0	1
0	1	0	M ₂	1	0
0	1	1	M ₃	0	1
1	0	0	M4	0	1
1	0	1	M_5	1	0
1	1	0	M ₆	0	1
1	1	1	M ₇	1	0

- \square Any function can be expressed both as a sum of minterms (Σm_i) and as a product of Maxterms (ΠM_i)
- □ The product of Maxterms expression (Π Mj) of F contains all Maxterms M_j (\forall j ≠ i) that do not appear in the sum of minterms expression of F
- □ The sum of minterms expression of F` contains all minterms that do not appear in the sum of minterms expression of F
- □ This is true for all complementary functions. Thus, each of the 2ⁿ minterms will appear either in the sum of minterms expression of F or the sum of minterms expression of F` but not both.

- The product of Maxterms expression of F` contains all Maxterms that do not appear in the product of Maxterms expression of F
- □ This is true for all complementary functions. Thus, each of the 2ⁿ Maxterms will appear either in the product of Maxterms expression of F or the product of Maxterms expression of F` but not both

- Example: Given that F (a, b, c, d) = Σ (0, 1, 2, 4, 5, 7), derive the product of Maxterms expression of F and the two standard form expressions of F`
- □ Since the system has 4 input variables (a, b, c & d), the number of minterms and Maxterms = 2^4 = 16
- \square F (a, b, c, d) = Σ (0, 1, 2, 4, 5, 7)
- \square F (a, b, c, d) = Π (3, 6, 8, 9, 10, 11, 12, 13, 14, 15)
- \square F` (a, b, c, d) = Σ (3, 6, 8, 9, 10, 11, 12, 13, 14, 15).
- \square F` (a, b, c, d) = Π (0, 1, 2, 4, 5, 7)

- Example: Let F(X,Y,Z) = Y' + X'Z', express F as a sum of minterms and product of Maxterms
- F = Y' + X'Z' = Y'(X+X')(Z+Z') + X'Z'(Y+Y') = (XY'+X'Y')(Z+Z') + X'YZ'+X'Z'Y' = XY'Z+X'Y'Z+XY'Z'+X'Y'Z'+ X'YZ'+X'Z'Y' $= m_5 + m_1 + m_4 + m_0 + m_2 + m_0$ $= m_0 + m_1 + m_2 + m_4 + m_5$ $= \sum m(0,1,2,4,5)$
- $lue{}$ To find the form Π M, consider the remaining indices
- \blacksquare F = Π M(3,6,7)
- What about F'?

- Question: F (a,b,c,d) = Σ m(0,1,2,4,5,7), What are the minterms and Maxterms of F and and its complement F?
- Solution:

- Question: F (a,b,c,d) = Σ m(0,1,2,4,5,7), What are the minterms and Maxterms of F and and its complement F?
- Solution:
- \square F has 4 variables; $2^4 = 16$ possible minterms/Maxterms

F (a,b,c,d) =
$$\Sigma$$
 m(0,1,2,4,5,7)
= Π M(3,6,8,9,10,11,12,13,14,15)

F (a,b,c,d) =
$$\Sigma$$
 m(3,6,8,9,10,11,12,13,14,15)
= Π M(0,1,2,4,5,7)

Operations on Functions

- □ The AND operation on two functions corresponds to the intersection of the two sets of minterms of the functions
- The OR operation on two functions corresponds to the union of the two sets of minterms of the functions
- Example
 - Let $F(A,B,C) = \sum m(1, 3, 6, 7)$ and $G(A,B,C) = \sum m(0,1, 2, 4,6, 7)$
 - \blacksquare F.G = Σ m(1, 6, 7)
 - \blacksquare F + G = Σ m(0,1, 2, 3, 4,6, 7)
 - \Box F'. G = ?
 - $\Gamma' = \Sigma m(0, 2, 4, 5)$
 - \blacksquare F'. G = Σ m(0, 2, 4)

Canonical Forms

- □ The sum of minterms and the product of Maxterms forms of Boolean expressions are known as canonical forms.
- Canonical form means that all equivalent functions will have a unique and equal representation.
- □ Two functions are equal if and only if they have the same sum of minterms and the same product of Maxterms.
- Example:
 - \blacksquare Are the functions F1 = a' b' + a c + b c ' and F2 = a' c' + a b + b' c Equal?
 - \blacksquare F1 = a' b' + a c + b c' = Σm(0, 1, 2, 5, 6, 7)
 - \blacksquare F2 = a' c' + a b + b' c = Σm(0, 1, 2, 5, 6, 7)
 - They are equal as they have the same set of minterms.

Standard Forms

- Remember: a product term is a term with ANDed literals. Thus, AB, A'B, A'CD are all product terms
- A minterm is a special case of a product term where all input variables appear in the product term either in the true or complement form
- Remember: a sum term is a term with ORed literals. Thus, (A+B), (A'+B), (A'+C+D) are all sum terms
- A maxterm is a special case of a sum term where all input variables, either in the true or complement form, are ORed together

Standard Forms

- Boolean functions can generally be expressed in the form of a Sum of Products (SOP) or in the form of a Product of Sums (POS)
- ☐ The sum of minterms form is a special case of the SOP form where all product terms are minterms.
- ☐ The product of Maxterms form is a special case of the POS form where all sum terms are Maxterms.
- ☐ The SOP and POS forms are Standard forms for representing Boolean functions.

SOP and POS Conversion

SOP
$$\Longrightarrow$$
 POS

$$F = AB + CD$$

= $(AB+C)(AB+D)$
= $(A+C)(B+C)(AB+D)$
= $(A+C)(B+C)(A+D)(B+D)$

$$F = (A'+B)(A'+C)(C+D)$$

$$= (A'+BC)(C+D)$$

$$= A'C+A'D+BCC+BCD$$

$$= A'C+A'D+BC+BCD$$

$$= A'C+A'D+BC$$

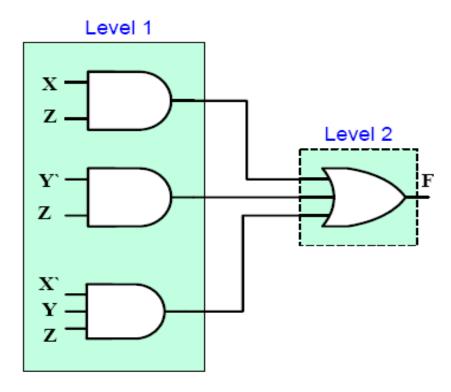
Question1: How to convert SOP to sum of minterms?

Question2: How to convert POS to product of Maxterms?

- **□** Sum of Products Expressions (SOP):
- Any SOP expression can be implemented in 2-levels of gates.
- □ The first level consists of a number of AND gates which equals the number of product terms in the expression.
- Each AND gate implements one of the product terms in the expression.
- □ The second level consists of a single OR gate whose number of inputs equals the number of product terms in the expression.

Example: Implement the following SOP function

$$F = XZ + Y`Z + X`YZ$$



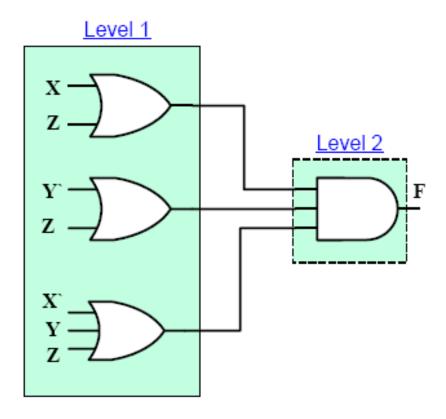
Two-Level Implementation (F = $XZ + Y^{\cdot}Z + X^{\cdot}YZ$)

Level-1: AND-Gates ; Level-2: One OR-Gate

- Product of Sums Expression (POS):
- Any POS expression can be implemented in 2-levels of gates.
- □ The first level consists of a number of OR gates which equals the number of sum terms in the expression.
- Each gate implements one of the sum terms in the expression.
- ☐ The second level consists of a single AND gate whose number of inputs equals the number of sum terms.

Example: Implement the following POS function

$$F = (X+Z)(Y^+Z)(X^+Y+Z)$$

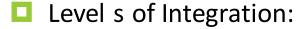


Two-Level Implementation $\{F = (X+Z)(Y+Z)(X+Y+Z)\}$

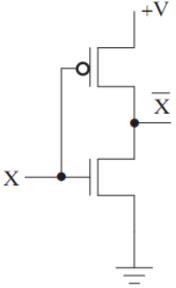
Level-1: OR-Gates ; Level-2: One AND-Gate

Practical Aspects of Logic Gates

- Logic gates are built with transistors as integrated circuits (IC) or chips.
- ICs are digital devices built using various technologies.
- Complementary metal oxide semiconductor (CMOS) technology

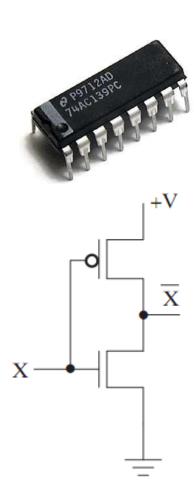


- Small Scale Integrated (SSI) < 10 gates
- Medium Scale Integrated (MSI) < 100 gates
- Large Scale Integrated (LSI) < 1000 gates
- Very Large Scale Integrated (VLSI) < 106 gates</p>



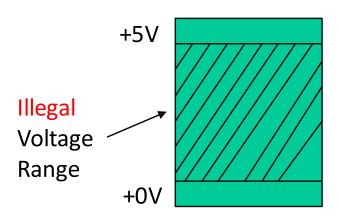
Practical Aspects of Logic Gates

- Key characteristics of ICs are:
 - Voltages ranges
 - Noise Margin
 - Gate propagation delay/speed
 - Fan-in and Fan-out
 - Buffers
 - Tri-state Gates

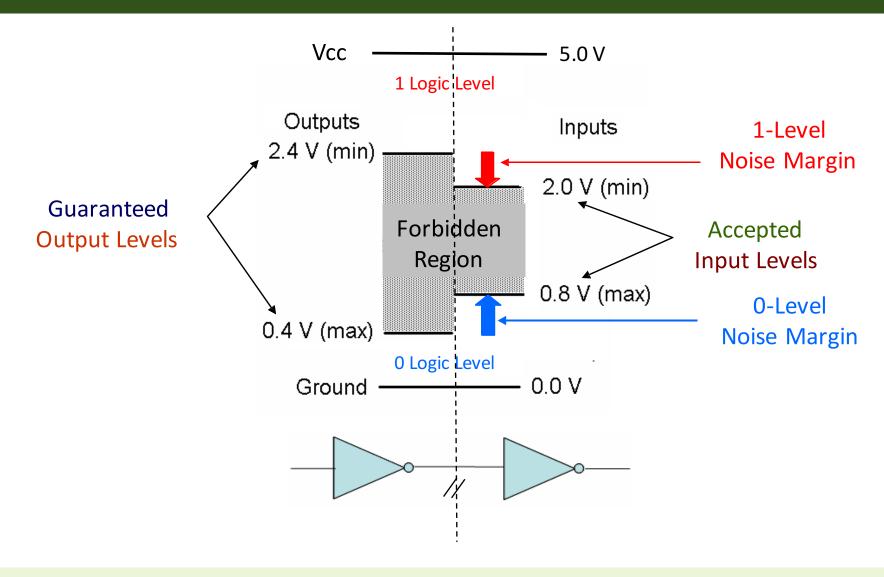


Voltage Levels

- Logic values of 0 & 1 corresponds to voltage level
- A range of voltage defines logic 0 and logic 1
- Any value outside this range is invalid

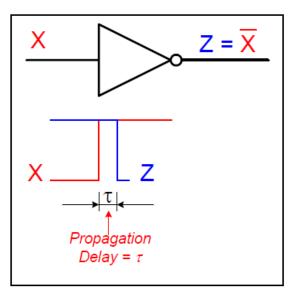


Noise Margins



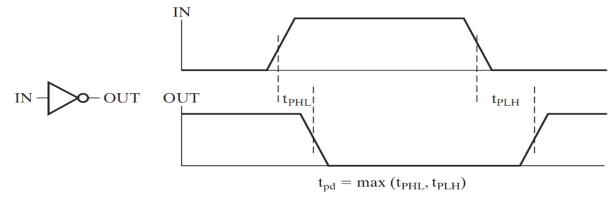
Propagation Delay

- Consider the shown inverter with input X and output Z.
 - A change in the input (X) from 0 to 1 causes the inverter output (Z) to change from 1 to 0.
 - The change in the output (Z), however is not instantaneous. Rather, it occurs slightly after the input change.
 - This delay between an input signal change and the corresponding output signal change is what is known as the propagation delay



Propagation Delay

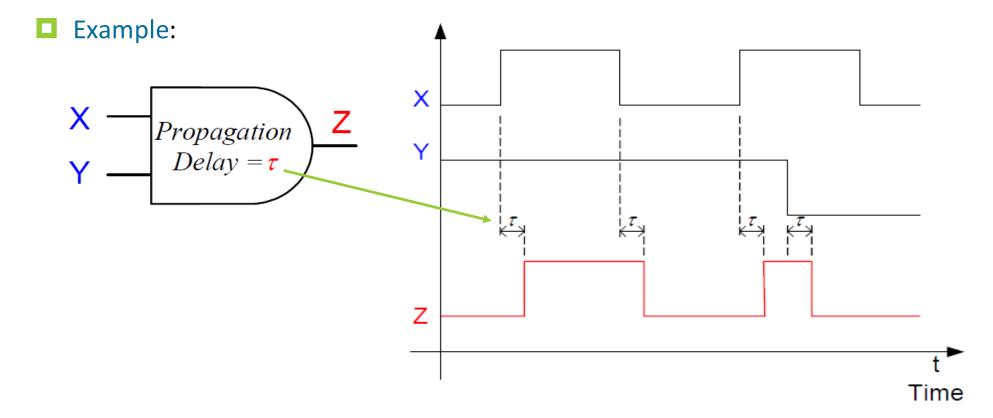
- Formally, the propagation delay (t_{pd}) is the time for a change in the input of a gate to propagate to the output
 - High-to-low (t_{phl}) and low-to-high (t_{plh}) output signal changes may have different propagation delays



- Faster circuits are characterized by smaller propagation delays
- Higher performance systems require higher speeds, i.e. smaller propagation delays

Propagation Delay

- A timing diagram shows the logic values of signals in a circuit versus time.
- A signal shape versus time is typically referred to as Waveform.

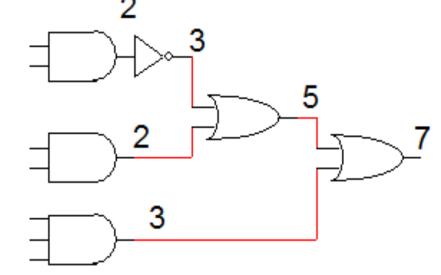


Computing Longest Delay

- Each gate has a given propagation delay
- We start at the inputs and compute the delay at the output of each gate as follows:
 - The delay at the output of a gate = gate propagation delay + maximum delay at its inputs
- Maximum propagation delay from any input to any output is called the Critical Path
- The critical path determines the minimum clock period (T) and the maximum clock frequency (f)
- Clock frequency (f) = 1 / T

Computing Longest Delay

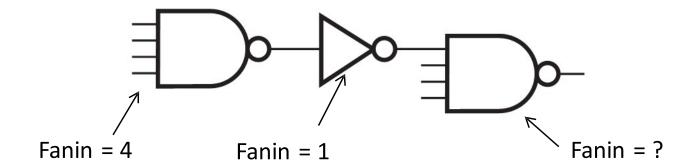
Example: Assume that delay of each gate is related to number of its inputs i.e. delay of 1 input gate is 1 ns, delay of 2-input gate is 2 ns. Compute longest propagation delay and maximum frequency.



- Longest propagation delay = 7 ns
- Maximum frequency = 1 / 7ns= 143 MHZ

Fanin

- □ Fan in of a gate is the number of inputs to the gate
 - A 3-input OR gate has a fanin = 3
- There is a limitation on the fanin
- Larger fanin generally implies slower gates (higher propagation delays)



Fanout

- Fan out of a gate is the number of gates that it can drive
 - The driven gate is called a load
- Fan out is limited due to
 - Current in TTL
 - Propagation delays in CMOS

