COE 202- Digital Logic

Number Systems III

Dr. Abdulaziz Y. Barnawi COE Department KFUPM

Converting Decimal Integers to Binary

Arithmetic operations:

- Binary number system
- Other number systems

Binary codes

- Binary coded decimal (BCD)
- ASCII Code
- Error Detecting Code

Arithmetic Operation in base-r

- Arithmetic operations with numbers in base-r follow the same rules as for decimal numbers
- Be careful !
 - Only r allowed digits

COE 202 – Logic Design

Binary Addition

1 + 1 = 2, but 2 is not allowed digit in binary

Thus, adding 1 + 1 in the binary system results in a Sum bit of 0 and a Carry bit One bit addition:

Binary Addition

Binary Subtraction

The borrow digit is negative and has the weight of the next higher digit.

In Decimal subtraction, the borrow is equal to 10.

In Binary, the borrow is equal to 2. Therefore, a '1' borrowed in binary will generate a (10)₂, which equals to (2)₁₀ in decimal

Binary Multiplication

- Binary multiplication is performed similar to decimal multiplication.
- **Example:** 11 * 5 = 55

Multiplica	nd		1	0	1	1	
Multiplier		1	0	1	X		
			1	0	1	1	
		0	0	0	0		+
	1	0	1	1			+
	1	1	0	1	1	1	

Hexadecimal addition

Rules:

- For adding individual digits of a Hexadecimal number, a mental addition of the decimal equivalent digits makes the process easier.
- After adding up the decimal digits, you must convert the result back to Hexadecimal, as shown in the above example.

Example: Add (59F)₁₆ and (E46)₁₆

Binary Codes

A n-bit binary code is a binary string of 0s and 1s of size n.

- It can represent 2ⁿ different elements.
 - 4 elements can coded using 2 bits
 - 8 elements can be coded using 3 bits

Given the number of elements to be binary coded, there is a minimum number of bits, but no maximum !

Binary Codes for Decimal Digits

- Internally, digital computers operate on binary numbers
- When interfacing to humans, digital processors, e.g. pocket calculators, communication is decimal-based
- Input is done in decimal then converted to binary for internal processing
- For output, the result has to be converted from its internal binary representation to a decimal form
- To be handled by digital processors, the decimal input (output) must be coded in binary in a digit by digit manner

Binary Codes for Decimal Digits

- For example, to input the decimal number 957, each digit of the number is individually coded and the number is stored as 1001 0101 0111.
- Thus, we need a specific code for each of the 10 decimal digits. There is a variety of such decimal binary codes.
- One commonly used code is the Binary Coded Decimal (BCD) code which corresponds to the first 10 binary representations of the decimal digits 0-9.
 - □ The BCD code requires 4 bits to represent the 10 decimal digits.
 - Since 4 bits may have up to 16 different binary combinations, a total of 6 combinations will be unused.
 - □ The position weights of the BCD code are 8, 4, 2, 1.

Binary Coded Decimal (BCD)

Decimal	BCD							
0	0000	Convert 2496 ₁₀ to BCD code:						
1	0001	2 4 9 6						
2	0010	$\downarrow \downarrow \downarrow \downarrow$						
3	0011	0010 0100 1001 0110						
4	0100	Not this is very different from converting						
5	0101	to binary which yields:						
6	0110	100111000000_2						
7	0111	In BCD						
8	1000	0010010010010110						
9	1001							

Other Decimal Codes

- 4 bits = 16 different codes
- Only 10 needed to represent the 10 decimal digits.
- Many possible codes!

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

DIfferen

at Dianamy Carden for the Deal

Number Conversion versus Coding

- Converting a decimal number into binary is done by repeated division (multiplication) by 2
- Coding a decimal number into its BCD code is done by replacing each decimal digit of the number by its equivalent 4 bit BCD code.
- Example: Converting (13)₁₀ into binary, we get 1101, coding the same number into BCD, we obtain (00010011)_{BCD}.
- Exercise: Convert (95)₁₀ into its binary equivalent value and give its BCD code as well.
- Answer: (1011111)₂, and (10010101)_{BCD}.

ASCII Character Code

- ASCII an abbreviation of "American Standard Code for Information Interchange"
- □ Standard ASCII: 7-bit character codes (0 127)
- Extended ASCII: 8-bit character codes (0 255)

ASCII Codes

The Charcter set of the ASCII Code

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	\mathbf{LF}	VΤ	FF	CR	so	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	\mathbf{FS}	GS	RS	US
2	SP	!		#	\$	÷	8	1	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	0	A	В	С	D	E	F	G	Η	I	J	K	L	М	Ν	0
5	Р	Q	R	S	Т	U	v	W	Х	Y	Z	[\sim]	^	_
6	N.	а	b	С	d	е	f	g	h	i	j	k	1	m	n	0
7	р	q	r	з	t	u	v	W	х	У	Z	{		}	\sim	DEL

ASCII code for space character = 20 (hex) = 32 (decimal)

ASCII code for 'A' = 41 (hex) = 65 (decimal)

```
ASCII code for 'a' = 61 (hex) = 97 (decimal)
```

Error Detection

- Binary information may be transmitted through some communication medium, e.g. using wires or wireless media.
- A corrupted bit will have its value changed from '0' to '1' or vice versa.
- To be able to detect errors at the receiver end, the sender sends an extra bit (parity bit) with the original binary message.

Parity Bit

- A parity bit is an extra bit included with the n-bit binary message to make the total number of 1's in this message (including the parity bit) either odd or even.
- The 8th bit in the ASCII code is used as a parity bit.
- There are two ways for error checking:
 - Even Parity: Where the 8th bit is set such that the total number of 1s in the 8-bit code word is <u>even</u>.
 - Odd Parity: The 8th bit is set such that the total number of 1s in the 8-bit code word is <u>odd</u>.

19

Parity Bit

Word	Even Parity	Odd Parity
1000001	<mark>0</mark> 1000001	1 1000001
1010100	1 1010100	<mark>0</mark> 1010100

Even Parity - number of 1 bits should be even.

Odd Parity - number of 1 bits should odd.

Parity can detect any number of odd errors: 1,3,5,... Parity is also one of the simplest ways to detect errors. Communication protocols commonly include error detection and even correction. 20

Conclusions

When performing arithmetic operations in base-r, remember allowed digits {0, .., r-1}

You can encode anything with sufficient 1's and 0's

- Binary codes (BCD, gray code)
- Text (ASCII)
- **Sound** (.wav, .mp3, ...)
- Pictures (.jpg, .gif, .tiff)