COE 202- Digital Logic

Number Systems III

Dr. Abdulaziz Y. Barnawi
COE Department
KFUPM

Converting Decimal Integers to Binary

\square Arithmetic operations:
\square Binary number system
\square Other number systems
\square Binary codes
\square Binary coded decimal (BCD)

- ASCII Code
- Error Detecting Code

Arithmetic Operation in base-r

\square Arithmetic operations with numbers in base-r follow the same rules as for decimal numbers
\square Be careful!

- Only r allowed digits

Binary Addition

$\square 1+1=2$, but 2 is not allowed digit in binary
\square Thus, adding $1+1$ in the binary system results in a Sum bit of 0 and a Carry bit

One bit addition:

2 doesn't exist in binary!

Binary Addition

Example:

Q: How to verify?

A: Convert to decimal

$$
\begin{array}{r}
783 \\
+\quad 490
\end{array}
$$

1273

Binary Subtraction

\square The borrow digit is negative and has the weight of the next higher digit.

One bit subtraction:

\square In Decimal subtraction, the borrow is equal to 10.
\square In Binary, the borrow is equal to 2 . Therefore, a ' 1 ' borrowed in binary will generate a $(10)_{2}$, which equals to $(2)_{10}$ in decimal

Binary Multiplication

\square Binary multiplication is performed similar to decimal multiplication.
(Example: 11 * $5=55$

Multiplicand		1	0	1	1	
Multiplier			1	0	1	\mathbf{x}
			1	0	1	1

Hexadecimal addition

\square Rules:

- For adding individual digits of a Hexadecimal number, a mental addition of the decimal equivalent digits makes the process easier.
\square After adding up the decimal digits, you must convert the result back to Hexadecimal, as shown in the above example.
\square Example: Add (59F) ${ }_{16}$ and (E46) ${ }_{16}$

13 E 5

Binary Codes

\square A n-bit binary code is a binary string of $0 s$ and 1 s of size n.
\square It can represent 2^{n} different elements.

- 4 elements can coded using 2 bits
- 8 elements can be coded using 3 bits
\square Given the number of elements to be binary coded, there is a minimum number of bits, but no maximum !

Binary Codes for Decimal Digits

\square Internally, digital computers operate on binary numbers
\square When interfacing to humans, digital processors, e.g. pocket calculators, communication is decimal-based
\square Input is done in decimal then converted to binary for internal processing
\square For output, the result has to be converted from its internal binary representation to a decimal form
\square To be handled by digital processors, the decimal input (output) must be coded in binary in a digit by digit manner

Binary Codes for Decimal Digits

\square For example, to input the decimal number 957, each digit of the number is individually coded and the number is stored as 100101010111.
\square Thus, we need a specific code for each of the 10 decimal digits. There is a variety of such decimal binary codes.
\square One commonly used code is the Binary Coded Decimal (BCD) code which corresponds to the first 10 binary representations of the decimal digits 0-9.

- The BCD code requires 4 bits to represent the 10 decimal digits.
- Since 4 bits may have up to 16 different binary combinations, a total of 6 combinations will be unused.
\square The position weights of the BCD code are $8,4,2,1$.

Binary Coded Decimal (BCD)

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Convert	2496_{10}	to	BCD code:
2	4	9	6
\downarrow	\downarrow	\downarrow	\downarrow
0010	0100	1001	0110

Not this is very different from converting to binary which yields:
100111000000_{2}
\ln BCD ...
0010010010010110

Other Decimal Codes

$\square 4$ bits = 16 different codes

\square Only 10 needed to represent the 10 decimal digits.
\square Many possible codes!

Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD $\mathbf{8 4 2 1}$	$\mathbf{2 4 2 1}$	Excess-3	$\mathbf{8 , 4 ,}, \mathbf{2}, \mathbf{- 1}$
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Number Conversion versus Coding

\square Converting a decimal number into binary is done by repeated division (multiplication) by 2
\square Coding a decimal number into its BCD code is done by replacing each decimal digit of the number by its equivalent 4 bit BCD code.
\square Example: Converting (13) ${ }_{10}$ into binary, we get 1101 , coding the same number into BCD, we obtain (00010011) ${ }_{B C D}$.
\square Exercise: Convert (95) ${ }_{10}$ into its binary equivalent value and give its BCD code as well.
\square Answer: $(1011111)_{2}$, and $(10010101)_{B C D}$.

ASCII Character Code

\square ASCII an abbreviation of "American Standard Code for Information Interchange"
\square Standard ASCII: 7-bit character codes (0-127)
\square Extended ASCII: 8-bit character codes (0-255)

ASCII Codes

The Charcter set of the ASCII Code

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF'	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAR	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	!	"	\#	\$	8	c	'	()	$\stackrel{ }{*}$	+	,	-	.	/
3	0	1	2	3	4	5	6	7	8	9	:	;	$<$	$=$	$>$?
4	${ }^{0}$	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	S	T	U	V	W	X	Y	Z	[\backslash]	\wedge	
6		a	b	c	d	e	f	g	h	i	j	k	1	m	n	\bigcirc
7	p	q	r	3	t	u	v	w	x	Y	z			\}	\sim	DEL

\square ASCII code for space character $=20$ (hex) = 32 (decimal)
\square ASCII code for 'A' = 41 (hex) = 65 (decimal)
\square ASCII code for 'a' = 61 (hex) = 97 (decimal)

Error Detection

\square Binary information may be transmitted through some communication medium, e.g. using wires or wireless media.
\square A corrupted bit will have its value changed from ' 0 ' to ' 1 ' or vice versa.
\square To be able to detect errors at the receiver end, the sender sends an extra bit (parity bit) with the original binary message.

Parity Bit

\square A parity bit is an extra bit included with the n-bit binary message to make the total number of 1's in this message (including the parity bit) either odd or even.
\square The 8th bit in the ASCII code is used as a parity bit.
\square There are two ways for error checking:
Even Parity: Where the 8th bit is set such that the total number of 1 s in the 8 -bit code word is even.
O Odd Parity: The 8th bit is set such that the total number of 1s in the 8 -bit code word is odd.

Parity Bit

Word	Even Parity	Odd Parity
1000001	01000001	11000001
1010100	11010100	01010100

Even Parity - number of 1 bits should be even.

Odd Parity - number of 1 bits should odd.

Parity can detect any number of odd errors: $1,3,5, \ldots$. Parity is also one of the simplest ways to detect errors. Communication protocols commonly include error detection and even correction.

Conclusions

\square When performing arithmetic operations in base-r, remember allowed digits $\{0, . ., r-1\}$
\square You can encode anything with sufficient 1's and 0's
\square Binary codes (BCD, gray code)

- Text (ASCII)
\square Sound (.wav, .mp3, ...)
\square Pictures (.jpg, .gif, .tiff)

