
COE 202 – Logic Design

COE 202- Digital Logic

Number Systems III

Dr. Abdulaziz Y. Barnawi

COE Department

KFUPM

January 26, 2016 © Abdulaziz Barnawi

1

COE 202 – Logic Design

Converting Decimal Integers to Binary

Arithmetic operations:

 Binary number system

 Other number systems

Binary codes

 Binary coded decimal (BCD)

 ASCII Code

 Error Detecting Code

January 26, 2016 © Abdulaziz Barnawi

2

COE 202 – Logic Design

Arithmetic Operation in base-r

Arithmetic operations with numbers in base-r follow the
same rules as for decimal numbers

Be careful !

– Only r allowed digits

January 26, 2016 © Abdulaziz Barnawi

3

COE 202 – Logic Design

Binary Addition

 1 + 1 = 2, but 2 is not allowed digit in binary

 Thus, adding 1 + 1 in the binary system results in a Sum bit of 0
and a Carry bit

January 26, 2016 © Abdulaziz Barnawi

4

One bit addition:

0

+ 0

0

0

+ 1

1

1

+ 0

1

1

+ 1

2

1 0

2 doesn't exist in binary!

carry

augend /aw-jend/

addend

sum

COE 202 – Logic Design

Binary Addition

January 26, 2016 © Abdulaziz Barnawi

5

Example:

 1 1 1 1

 1 1 0 0 0 0 1 1 1 1

+ 0 1 1 1 1 0 1 0 1 0

 1 0 0 1 1 1 1 1 0 0 1

carries

sum

Q: How to verify?

A: Convert to decimal

783

+ 490

1273

COE 202 – Logic Design

Binary Subtraction

 The borrow digit is negative and has the weight of the next higher
digit.

January 26, 2016 © Abdulaziz Barnawi

6

One bit subtraction:

 0

- 0

0

0

- 1

 1

1

 - 0

1

1

 - 1

0

borrow 1

minuend /men-u-end/

subtrahend /sub-tra-hend/

difference

COE 202 – Logic Design

 In Decimal subtraction, the borrow is equal to 10.

 In Binary, the borrow is equal to 2. Therefore, a ‘1’ borrowed in
binary will generate a (10)2, which equals to (2)10 in decimal

 January 26, 2016 © Abdulaziz Barnawi

7

Subtract 101 - 011 Larger binary numbers

1 1 1 1 1

0 1 0 1

- 0 1 1

0 1 0

borrow

difference

1 1 0 0 0 0 1 1 1 1

- 0 1 1 1 1 0 1 0 1 0

0 1 0 0 1 0 0 1 0 1

borrow

Verify In
decimal,

783

- 490

293 difference

COE 202 – Logic Design

Binary Multiplication

 Binary multiplication is performed similar to decimal multiplication.

 Example: 11 * 5 = 55

January 26, 2016 © Abdulaziz Barnawi

8

COE 202 – Logic Design

Hexadecimal addition

 Rules:

 For adding individual digits of a Hexadecimal number, a mental addition of
the decimal equivalent digits makes the process easier.

 After adding up the decimal digits, you must convert the result back to
Hexadecimal, as shown in the above example.

 Example: Add (59F)16 and (E46)16

January 26, 2016 © Abdulaziz Barnawi

9

5 9 F

+ E 4 6

1 3 E 5

F + 6 = (21)10 = (16 x 1) + 5 = (15)16

5 + E = (19)10 = (16 x 1) + 3 = (13)16

Carry

1 1 Carry

COE 202 – Logic Design

Binary Codes

 A n-bit binary code is a binary string of 0s and 1s of size n.

 It can represent 2n different elements.

 4 elements can coded using 2 bits

 8 elements can be coded using 3 bits

 Given the number of elements to be binary coded, there is a
minimum number of bits, but no maximum !

January 26, 2016 © Abdulaziz Barnawi

10

COE 202 – Logic Design

Binary Codes for Decimal Digits

 Internally, digital computers operate on binary numbers

 When interfacing to humans, digital processors, e.g. pocket
calculators, communication is decimal-based

 Input is done in decimal then converted to binary for internal
processing

 For output, the result has to be converted from its internal binary
representation to a decimal form

 To be handled by digital processors, the decimal input (output)
must be coded in binary in a digit by digit manner

January 26, 2016 © Abdulaziz Barnawi

11

COE 202 – Logic Design

Binary Codes for Decimal Digits

 For example, to input the decimal number 957, each digit of the
number is individually coded and the number is stored as
1001 0101 0111.

 Thus, we need a specific code for each of the 10 decimal digits. There is
a variety of such decimal binary codes.

 One commonly used code is the Binary Coded Decimal (BCD) code
which corresponds to the first 10 binary representations of the decimal
digits 0-9.

 The BCD code requires 4 bits to represent the 10 decimal digits.

 Since 4 bits may have up to 16 different binary combinations, a total of 6
combinations will be unused.

 The position weights of the BCD code are 8, 4, 2, 1.

 January 26, 2016 © Abdulaziz Barnawi

12

COE 202 – Logic Design

Binary Coded Decimal (BCD)

January 26, 2016 © Abdulaziz Barnawi

13

COE 202 – Logic Design

Other Decimal Codes

 4 bits = 16 different
codes

 Only 10 needed to
represent the 10 decimal
digits.

 Many possible codes!

January 26, 2016 © Abdulaziz Barnawi

14

COE 202 – Logic Design

Number Conversion versus Coding

 Converting a decimal number into binary is done by repeated division
(multiplication) by 2

 Coding a decimal number into its BCD code is done by replacing each decimal
digit of the number by its equivalent 4 bit BCD code.

 Example: Converting (13)10 into binary, we get 1101, coding the same number
into BCD, we obtain (00010011) BCD.

 Exercise: Convert (95)10 into its binary equivalent value and give its BCD code
as well.

 Answer: (1011111)2, and (10010101) BCD.

January 26, 2016 © Abdulaziz Barnawi

15

COE 202 – Logic Design

ASCII Character Code

 ASCII an abbreviation of “American Standard Code for
Information Interchange”

 Standard ASCII: 7-bit character codes (0 – 127)

 Extended ASCII: 8-bit character codes (0 – 255)

January 26, 2016 © Abdulaziz Barnawi

16

COE 202 – Logic Design

ASCII Codes

 ASCII code for space character = 20 (hex) = 32 (decimal)

 ASCII code for ‘A' = 41 (hex) = 65 (decimal)

 ASCII code for 'a' = 61 (hex) = 97 (decimal)

 January 26, 2016 © Abdulaziz Barnawi

17

COE 202 – Logic Design

Error Detection

 Binary information may be transmitted through some
communication medium, e.g. using wires or wireless media.

 A corrupted bit will have its value changed from ‘0’ to ‘1’ or vice
versa.

 To be able to detect errors at the receiver end, the sender sends
an extra bit (parity bit) with the original binary message.

January 26, 2016 © Abdulaziz Barnawi

18

COE 202 – Logic Design

Parity Bit

A parity bit is an extra bit included with the n-bit binary
message to make the total number of 1’s in this
message (including the parity bit) either odd or even.

The 8th bit in the ASCII code is used as a parity bit.

There are two ways for error checking:

 Even Parity: Where the 8th bit is set such that the total
number of 1s in the 8-bit code word is even.

 Odd Parity: The 8th bit is set such that the total number of 1s
in the 8-bit code word is odd.

January 26, 2016 © Abdulaziz Barnawi

19

COE 202 – Logic Design

Parity Bit

January 26, 2016 © Abdulaziz Barnawi

20

COE 202 – Logic Design

Conclusions

When performing arithmetic operations in base-r,
remember allowed digits {0, .., r-1}

You can encode anything with sufficient 1’s and 0’s

 Binary codes (BCD, gray code)

 Text (ASCII)

 Sound (.wav, .mp3, ...)

 Pictures (.jpg, .gif, .tiff)

January 26, 2016 © Abdulaziz Barnawi

21

