KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 202: Fundamentals of Computer Engineering Term 111 (Fall 2011)

Instructor: Dr. Abdulaziz Barnawi
Lecture: U.T.: 8:30-9:45 AM
Class location: Bldg. 24-156
Office hours: S.M.: 11:00-11:50 AM, T.: 1:00-1:50 PM, or by appointment
Office Location: Bldg 22 Room 407-4 Office-Tel: 1038
E-mail: barnawi AT kfupm
Web site: http://faculty.kfupm.edu.sa/coe/barnawi

Course Description:

Introduction to Computer Engineering. Digital Circuits. Boolean algebra and switching theory. Manipulation and minimization of Boolean functions. Combinational circuits analysis and design, multiplexers, decoders and adders. Sequential circuit analysis and design, basic flip-flops, clocking and edge-triggering, registers, counters, timing sequences, state assignment and reduction techniques. Register transfer level operations.

Pre-requisite: PHSY 102-General Physics II

Textbook:

Logic and Computer Design Fundamentals, Morris Mano and Charles Kime, Fourth Edition, Prentice Hall International, 2008.

Tentative Grading Policy:

Homework Assignments 10\%
Quizzes 10%

CAD Assignments 05\%
Major Exam I 20\%
Major Exam II 25\%
(Tentative: Thu. 13 October 2011, Evening)
Final Exam 30\%
Bonus for 100% attendance 03%

IMPORTANT NOTES:

- All KFUPM regulations and standards will be enforced. Attendance will be checked each class. The KFUPM rule pertaining to a DN grade will be strictly enforced (i.e. $>\mathbf{6}$ absences will result in a DN grade).
- Prompt attendance in classes shows how keen you are to benefit from this course and enhances your performance and grade. Therefore, three late attendances are counted as one absent.
- Only university approved/certified excuses will be accepted, and should be presented no later than 1 week after absence.
- Assignments are submitted at the beginning of class at the due date.
- You have 48 hours to object to the grade of homework, a quiz, or a major exam from the end of the class time in which the graded papers have been distributed back.
- Check the course webpage and your Blackboard for updates, emails and announcements.
- Check your exam schedule carefully. NO make up exams without an official excuse that includes Exams. You must inform the instructor on the same day of missed exam/quiz.

Course Objectives:

After successfully completing the course, students will be able to:

1. Use math and Boolean algebra in performing computations in various number systems and simplification of Boolean algebraic expressions.
2. Design efficient combinational and sequential logic circuit implementations from functional description of digital systems.
3. Use CAD tools to simulate and verify logic circuits.

Course Learning Outcomes:

Course Learning Outcomes	Outcome Indicators and Details	Assessment Methods and Metrics	Min. Weight	$\begin{gathered} \text { ABET } \\ 2000 \end{gathered}$
Ability to use math and Boolean algebra in performing computations in various number systems and simplification of Boolean algebraic expressions.	- Represent integer and fractional values in various number systems - Convert number representation from one system to another - Perform arithmetic operations in various number systems - Represent data in different binary codes including error detecting codes - Simplify Boolean expressions using Boolean algebra \& identities	- Quizzes - Assignments - Exams	20\%	A(H)
Ability to design efficient combinational and sequential logic circuit implementations from functional description of digital systems.	- Derive gate-level implementation of a given Boolean expression and vice versa - Ability to build larger combinational functions using predefined modules (e.g., decoders, multiplexers, adders, Magnitude comparators.) - Ability to build a state diagram / table for both Moore \& Mealy models from functional description - Ability to design \& implement Moore \& Mealy model synchronous sequential circuits using different Flip-Flop types. - Ability to draw timing diagrams for major signals of both sequential and combination circuits	- Quizzes - Assignments - Exams	50\%	C(H)
Ability to use CAD tools to simulate and verify logic circuits.	- Ability to simulate and verify the operation of combinational circuits - Ability to simulate and verify the operation of sequential circuits	- Assignments	5\%	K(L)

Tentative Class and Lab Schedule

