
1

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use

(Hyperlinks are active in View Show mode)

Chapter 3 – Combinational 
Logic Design

Part 1 – Implementation Technology and Logic 
Design 

Logic and Computer Design Fundamentals

EE 200: Digital Logic Circuit Design
Dr Radwan E Abdel-Aal, COE

Unit 6

1.Random Access Memory (RAM) 
(Sections 7.2- 7.3)

2.Programmable Logic
(Sections 7.5-7.7) 

1. Random Access Memory (Read/Write)

 Storage element  Memory device for data storage

 A latch or a flip flop stores one bit

 A register of m such flip flops stores m bits

m = 8: Byte, m = 16: Word, 
m = 32: double words, m = 64: Quad words, etc. 

Over the years, Processors have used larger and larger   
registers to store/ process data: m = 4, 8, 16, 32, 64, 128 bits



2

Chapter 3 - Part 1        3

Computer Storage
The computer needs to store programs and data

Solid State
(Semiconductor) Memory
(Random Access)

Discs, tapes, CDs
(Sequential Access)

Read/Write
(RAM)*

Read Only
(ROM)

ROM
PROM
EPROM
EEPROM?

• SRAM

• DRAM:
- Larger Capacity
- Cheaper per bit
- Lower power
- But needs continuous refreshing to maintain data

* Misnomer – Why?
The Read/Write becoming a misnomer as well!

Now new mass storage devices 
are Solid State (semiconductor)!

Primary Storage Secondary (Mass) Storage
- Faster Speed
- More Costly
(per bit)

- Smaller Capacity
- Closer to processor

Volatile Non Volatile (e.g. for booting)

Static

Dynamic

Chapter 3 - Part 1        4

Example: 1024 (1 k) locations × 16-bit each     

- A RAM memory Chip effectively
contains a number of  
registers

- Why “random access”?

Time taken to transfer data 
to or from any address 
(storage location) is the 
same regardless of the 
address

- This is different from 
sequential storage, e.g. 
Disc, CD, or tape

Random Access (Read/Write) Memory (RAM) 



3

Size or Storage Capacity of a Memory Device
# of storage locations x width of each location (bits)

 Address = k bits, Data width = n

Number of registers (storage 
locations) = 2k locations

 Each location is m-bit wide

 Memory size is                            
2k locations x n bits each

 Total storage Capacity in bits: 
Number of storage locations x 
width of data in each location

 Example: k = 10, n = 8

 Size: 210 locations x 8 bits each

 1K Bytes of storage

= 1 K Bytes = 8 K bits 
What is k, n for a 64 K  x Byte memory?

Usually on the same (bidirectional)
data pins, with opposite directions  
enabled for reads and writes

(read)

(write)

Chip 
Select
(Enable) 

Can be 1 pin R/W’

Address bus

Data bus

C
on

tr
ol

 b
us

RAM Memory
Read and Write Operations
 Write:

• Enable the memory device (Chip Select)

• Apply the address of the location you want to write to

• Apply the data to be written to data I/P pins

• Activate the WRITE Control input     Data on the input pins are 
written into addressed location 

 READ:

• Enable the memory device (Chip Select)

• Apply the address of the location you want to write to

• Activate the READ Control input

 Data stored at addressed location appears at the Data O/P pins 
(are read) after some propagation delay (access time)

Chip Select



4

Memory 
Write and Read Cycles

Processor

Data at I/Ps into addressed location
here

0

t setup t  hold

Data must be valid here

Memory 
Write and Read Cycles

Processor

Access time (e.g. 20 ns)
1

Old data on the O/P data bus

New data retrieved from 
the addressed location



5

Types of RAM (Read/Write) Memories

Two Basic Types:

• Static RAM (SRAM): Data stored in latch 
(1 latch per bit) and remains as long as 
power remains ON

• Dynamic (DRAM): Data stored as a 
charge on a capacitor – can be lost due 
to leakage, needs to be periodically 
refreshed, otherwise data will be lost

even with power ON

Comparison: Speed, Cost, Density,  
Applications

Write
Read

Only 1 Transistor
Per 1-bit cell

1-bit Cell ≈ 4 Transistors

SRAM

DRAM

Bare Circuits
(Storage Only)

Bit
(1)

Chapter 3 - Part 1        10

Modeling 
a Complete bit circuit (BC) with controls

Here, a cell that is not selected
Produces a ______(0/1) O/P?

=1 to select 

1/0

bit

Encapsulated

Q

SR=00: No Change
(Read)

Data
Data



6

Chapter 3 - Part 1        11

4 words (locations) x 4 bits (16-bit) RAM
With Direct Decoding (1 Enable for each “word”) 

Represents
4 wires –
I/Ps to the 
OR 

Tri-state
Can help!

A0

A1

0  puts 0s on all 
word select lines 

Problem:
large RAMs require large decoders
1 K Byte RAM: Decoder has 1 K 10-input ANDs 

To all bits

I/P to all bits in a column

Select all bits
in a row (word)

Word (location)

Control

Bit

Bus

Bus

Bus

4-bit 

4-bit 

(Write)

(Read)

Chapter 3 - Part 1        12

Solution: 2-D Decoding (2 Enables for each word)
Uses 2 smaller (1/2 size) decoders (X, Y) 

1 K Words Memory
(10-bit address:
10 address pins on the chip)
Use two 5-to-32 decoders

MS 
Half of 
address bits

LS 
Half of 
address bits

Decoder has 32 gates (5 I/Ps)

Each Decoder now has 
32 gates (of 5 I/Ps each)

2 wires enable 
the selected word

Verify:
This reduces # of AND gates
needed for building decoders 
by a factor of 16



7

Chapter 3 - Part 1        13

Further Improvements for DRAM …
Address Multiplexing (reduced the # of address pins

= 64 K bits
In a 2-D array
256 rows x
256 columns

DRAMs are large in capacity

Their large address needs a 
Large number of pins on the chip

We can half the number of pins 
If we use separate registers for the row and column
Addresses on the chip

64K = 216 locations (16-bit address)

The 16 bit address is
Supplied to the chip
on only 8-pins:

1. Row part with the RAS signal
2. Column part with the CAS signal

Helps reduce the physical size of 
DRAM chips

½ normal size
of the address bus
of 16 bits

256
row
enables

256 column enables 

8

8

Row, then 
Column 

Chapter 3 - Part 1        14

2. Programmable Logic 
Implementation Technologies Overview

 Why programmable logic?

 Programmable logic:                 
Technologies and Configurations

 Examples of Programmable Logic Devices:
• Read-Only Memory (ROM)

• Programmable Array Logic (PAL)

• Programmable Logic Array (PLA)

• VLSI Programmable Logic Devices            
(Field Programmable Gate Arrays- FPGA)



8

15

The Rationale:
Why Programmable Logic?

 Facts: (Economy of Scale)
• It is most economical to produce ICs in large volumes
• But:
 In many situations users require: 

 ICs in smaller volumes 

 Frequent  changes to be done in the field, e.g. on the 
Firmware of a product under development

 A programmable logic device can be 
a good compromise:
• Produced in large quantities
• But also allows users to program it many times* (in the 

field) to accommodate changes on small volumes

(*nowadays: erasable, reprogrammable, etc.)

Integrated
Circuits

Chapter 3 - Part 1        16

Programmable Logic Concept

Locations of connections inserted/removed by user
determine the logic function implemented 



9

Chapter 3 - Part 1        17

Hardware Programming Technologies
How connections are made: The ROM case
 ROM: In the Factory (not user-programmable) 

Cannot be erased or reprogrammed by user

• “Programmed” permanently through the VLSI mask 
during manufacturing of the chip

 PROM: Programmable only once,

• e.g. using fusible links (metal connections)

 Programmable many times (Erase & then Re-program)

 Ultra-Violet (UV) Erasable, e.g. EPROMs (off situ)

 Electrically Erasable, (in situ) e.g.
• EEPROMs

• Flash Memory

18

Programmable Logic Configurations: (SOm or SOP)
All use AND-OR structure- differ in which is programmable

Connections
to the AND

How many
Possibilities?AND OR

Programmable  Read Only (non-volatile) Memory (PROM)Fixed

 Programmable Array Logic (PAL) Programmable Fixed

 Programmable Logic Array (PLA)Programmable Programmable

(Maximum flexibility)

Connections
to the OR



10

Chapter 3 - Part 1        19

ROM, PAL and PLA Configurations

(a) Programmable read-only memory (PROM)

Inputs
Fixed

AND array
(e.g. decoder)

Programmable
OR array

Outputs
Programmable
Connections

(b) Programmable array logic (PAL) device

Inputs Programmable
AND array

Fixed
OR array

Outputs
Programmable
Connections

(c) Programmable logic array (PLA) device

Inputs Programmable
OR array

Outputs
Programmable
Connections

Programmable
Connections

Programmable
AND array

PROM

PAL

PLA

Fixed
Connections

Fixed
Connections

Chapter 3 - Part 1        20

Wiring Conventions 
for Programmable Logic

• We deal with a large number of gates and gate inputs
• Need a more concise way of expressing gate circuits 
graphically

Inputs

Inputs (literals)

1 wire X X

A A B B

For the connections shown,
F = ? 

X marks a connection, i.e. an input to the OR

F 



11

 Example: 8 X 4 PROM (n = 3 i/p (address) lines,  m = 4 o/p lines)

 The fixed "AND" array is in a
3-to-8 “decoder” 

giving all 8 minterms

 Programmable "OR“s.
We use a single line to
represent all inputs to an
OR gate.  An “X” in the
array indicates connecting the
minterm to the OR

 Example: For input (A,B,C) = 010:

output is (F3,F2,F1,F0 ) = 1001.

 Exercise: Express the F1 as - Σm()  

- an algebraic expression in A,B,C

a. Read Only Memory (ROM): &: Fixed- OR: Prog

Programmable sum of fixed minterms

D0
D1
D2
D3
D4
D5
D6
D7

A2

A1
A0

A

B

C

F0F1F2F3

X XX

X
X

X

X
X

X
X

m7

m0

8 
M

in
te

rm
s

8  X 3-input fixed ANDs give all 8 minterms 

LSB

2n x m Programmable Connections

m O/Ps

n I/Ps

ROM

3-input 4-output CL cct seen differently

Chapter 3 - Part 1        22

This ROM implements this truth table 

Can look at it in several ways:
- As an 8 words x 4-bit memory: at address 000 we permanently

stored data 1101 (non volatile)
- As a look-up table: Enter I/P 000 you get corresponding O/P 1101
- As an implementation of 3-I/P 4 O/P Combinational Logic 

(Using a decoder and 4 OR gate- Unit 3)  



12

Chapter 3 - Part 1        23

Read Only Memory (ROM): n i/ps to m o/ps 
2n permanent storage locations x m bits each

 A Read Only Memory (ROM) has:
• n input (address) lines  2n storage locations, 2n minterms
• m output lines (word width for each storage location)

 A Fixed array of 2n AND gates implements all the n-input minterms
Obtained from an n-to-2n decoder  

 Programmable Array of m OR gates to form m Som outputs.  
 The program for a PROM is simply the multiple-output truth table 

to be implemented
• For a 1 at an output in the table, a connection is made from the 

corresponding minterm to the corresponding OR gate
• For a 0 entry, no connection is made

 Can be viewed as a memory with the m inputs as addresses of data
(output values), hence ROM or PROM names!
Device on previous slide is an 8 x 4 memory (8 locations x 4-bit wide)

 Truth table is a listing of the memory contents at each input address

Chapter 3 - Part 1        24

Read Only Memory (ROM) 
Advantages/Limitations

 Advantages of ROMs: (= advantages of the canonical form) 

• Can implement any function (since all minterms of the input 
variables are available!)  

• PROM Program is derived directly from the truth table 
specifying the information to be stored

 Disadvantages: 

(disadvantages of the canonical form- No SOP optimization)

As n increases  Large Decoders needed (2n AND gates,  
each having n inputs)  

Example 1 G byte memory? Sizes

Q. For 1 M (Mega) Byte PROM Device                       
(1M locations x 8 bits)
# of Input (address) lines n = ?

# of Output lines m = ?

n m  1 M B
PROM



13

ROM-based Designs (Canonical Form), Som

for Combinational & Sequential circuits
 For Combinational Circuits:

ROMs can be used to implement a combinational circuit 
given its truth tables

 Example: Look up table 

example: X  X3 ; X is a 4-bit 

unsigned integer

You should be able to determine the minimum ROM size       
(# of locations x “word” size) required for a given problem

 For Sequential Circuits:

Use ROMs to implement the combinational part of the 
sequential circuit 

“Cuber”
X

X3

ROM-based Designs:
Combinational Circuits: Individual O/Ps

Example 1: Implement the following two combinational functions using a 
ROM

F1 (X,Y) = ∑ m (1,2,3)

F2 (X,Y) = ∑ m (0,2)

Solution should: 

 Specify the smallest ROM required:

ROM has n = 2 inputs ( 22 = 4 locations) 

and m = 2 outputs ( Each location has 2 bits) …i.e. a 4 x 2 bit ROM

 Specifying the ROM data content (to be programmed into the ROM):

Directly from the truth table of the two functions

Show the connection diagram

for this ROM (Decoder + ORs)

Index
0
1
2
3

ROM
Programming
Table 

Give Logic
Diagram



14

ROM-based Design Examples:
Combinational Circuits: Look-up Tables

Example 2: X2 look-up table, X is 3-bit binary number

 Specification: Use a ROM to implement a combinational circuit that 
accepts a 3-bit unsigned binary number at the input and generates its        
squared value at the output.

 Formulation: 

8 x 6 bits ROM, Truth Table  

 Observations on the truth table:

1. Output B0 = Input A0

2. Output B1 = Always 0

No need to ‘store’ data for B0 and B1

This reduces the size of the ROM required from 8 x 6 bits to 8 x 4 bits

6 bits

8
Locations

X X2

ROM-based Designs:
Combinational Circuits : Look-up Tables
Example 2, Continued

Truth Table for Reduced ROM

Implementations of the X2 Look-up Table: 

4 bits

8
Locations



15

ROM-based Designs:
Sequential Circuits

Individual FFsConventional Design

ROM-Register
Sequential Cct Design
Very compact!

Present 
State

Present State 

Assume D type FFs:
ROM provides 1 O/P per FFD inputs 

(= Next state!)

ROM Input (address) ROM Output (data stored at each address)

ROM-based Designs:
Sequential Circuit- D FF

The ROM Required

Organization

ROM Truth Table

X

Q1

Q2

Y

Q1+

Q2+

LSB
Careful
with order
of inputs

Present State

External I/P

Inputs to FFs
D- FF: 1 per FF

External O/P

Derive the state diagram
For this sequential circuit

D-type

Assume D type FFs:
ROM provides 1 O/P per FF

Present State   I/P          Next State          O/P



16

Chapter 3 - Part 1        32

Programmable Array Logic (PAL)

• PAL is the opposite of the ROM, having a set of 
programmable ANDs combined with a set of fixed ORs-

(Programmable = has selectable I/Ps)
• PAL has some outputs from OR terms that can be fed back    

(as internal inputs) to all other AND terms, allowing 
implementation as multi-level (>2) logic circuits

• Some PALs have outputs that can be complemented, 
allowing F implementation as a POS:     

F = F
 Advantages over ROM

• Allows optimized implementation as Sum of a few Products
(usually not all minterms would be available)

• For a given total # of gates, a PAL can support larger n and 
m than a ROM

Limitation: 1. Functions with many products: may not be possible
2. Sharing of products between sections is not possible!                             
 multiple generation! 

SOP



17

Chapter 3 - Part 1        33

PAL 
Example

X

XX

XX

XX

X XX

X X X

XX X

X X X

AND gates inputs

A C WProduct
term

1

2

3

4

5

6

7

8

9

10

11

12

A

B

C

D

W

F1

F2

All fuses intact
(always 5 0)

X Fuse intact

X

A B B C D D W

A C WA B B C D D W

1 Fuse blown

For this totally unused product,
Leave all connections intact
Why? 

=

Opposite of ROM:
AND I/Ps: programmable
OR I/Ps: Fixed

For Unused Section:

O/P = 0 or 1?

Handling 
a sum of > 3 products

Remove all unused connections

sum of > 3 products

F1: Deceptively
2-level! but its is not!

For a totally unused product,
Leave all connections intact

Chapter 3 - Part 1        34

Product
term

AND Inputs

OutputsA        B       C        D W

1
2
3

W =        C 

4
5
6

F1 = X = A    
+    B     + W

7
8
9

10
11
12

—
—
—

—
—
—

—
—
—

—
—
—

—
—
—

A B

C

+ ABC 

F2 = Y 
= AB + BC +AC

B C
A

1
0
—

0
1
—

0
0
—

—
—
—

—
—
1

— —

0
1

0
1

1
1
—

—

—

—
—
—

—

1
—
1

1
1
—

—
1
1

—

—

—
—
—

—

 Equations: F1 = A        +    B    +         C + ABC
F2 = AB + BC + AC

 F1 was
factored
- has four
terms (> 3)

 Factor out
last two
terms as W

A BB C C A = W

PAL Programming Table

Keep Complement. & remove other  

Keep True & remove other. 

Remove both connections 

PAL comes with all 
Connections made.
Connections that are 
not needed should 
be removed How many connections are removed for product 1?, for product 3?

Full gate not used. 
Keep both

PAL Programming Table 

* * * * *

Unused Section
Keep All Connections  0 O/P 

Section



18

Chapter 3 - Part 1        35

c. Programmable Logic Array (PLA)
Programming at both the product and the sum levels

PLA with 3-inputs, 4 product terms,  
2-outputs, & programmable output 
inversions

 What are the equations for F1 and F2?

Fuse intact

Fuse blown

1

F1

F2

X

A

B

C

C C B B A A 0

1

2

3

4X

XX

X X

X

X

X

X

X

X

X

X

X A B

A C

B C

A B

X

3 groups of 
Programmable 
Connections,

Get size of  each 
group of connections
for a PLA with:
n inputs, p products,
m outputs 

Programming 
the Output inversions

Express F2 as a SOP and POS

n inputs
(n = 3)

m outputs
(m = 2)

p products
(p = 4)

F2

Note: Now Products can be shared among O/Ps

Chapter 3 - Part 1        36

Programmable Logic Array (PLA)

 Compared to ROMs and PALs, PLA is the most flexible & 
economical programmable device: having programmable
ANDs,  programmable ORs, and even programmable
output inversions!

 Advantages
• More concise implementations than ROM – Uses K-map optimized 

products 
• Allows larger 2-level sums than with PALs: All product terms are 

available for sharing by all summing Ors
• You do not have to generate a product more than once as in PAL
• PLAs have outputs that can be complemented, so a SOP can be 

that of either F or F’, whichever  proves  more  optimal - globally

 But still
• The limited # of product terms can limit the application of a PLA.        

Solution:  Use global multiple-output optimization to reduce the 
number of product terms required to fit it into the PLA.



19

Chapter 3 - Part 1        37

PLA Global Optimization Example
F1(A,B,C), F2(A,B,C), PLA: (3 inputs, 4 products, 2 outputs  

with programmable o/p inversion)

 K-map
specifications

 How can this
be implemented
with only four products?

 Complete the 
programming table

 Choose implementations

(F or F) that has the largest

# of shared products!

 Is this PLA enough

if we choose to implement

F1 & F2 directly?

Outputs

1

2

3

4

F2

1

1

–
1

AB

AC

BC

Inputs

–

1

1

C

1

1

–

A

1

–

1

B

PLA programming table

(T)
F1

(C)Product
term

F1 = A BC + A B C + A B C
F1 = AB + AC + BC + A B C

0

C

0

1

0 1

0 0

00 01 11 10
BC

A

0

B

1

1A

0

C

0

1 0

1 1

00 01 11 10
BC

A

1

B

0

1A

F2 = AB + AC + BC
F2 = AC + AB + B C

0

ABC

1

1

1

1

00 0

SUM (OR)
Programming
(Vertically)

Product (AND)
Programming
(horizontally)

F1 map F2 map

Chapter 3 - Part 1        38

Programmable Logic Array (PLA)
Example, Contd.

X Fuse intact

1 Fuse blown

0

1

F1

F2

A

B

C

C B AC B A

1

2

4

3

X X

X X

X X

X XX

X

X

X X

X

X

X

X

X

AB

AC

BC

ABC

The 4 products

F1F2

We implement F1 as a SOP
Using the PLA and then invert it
, as this is more economical

But we actually 
need F1 as an O/P, 
not F1- So invert F1
With the XOR

Good sharing
of products!

Give algebraic expressions 
of  F1 and F2


