
1

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use

(Hyperlinks are active in View Show mode)

Chapter 3 – Combinational
Logic Design

Part 1 – Implementation Technology and Logic
Design

Logic and Computer Design Fundamentals

EE 200: Digital Logic Circuit Design
Dr Radwan E Abdel-Aal, COE

Unit 5

Registers and Counters

Chapter 3 - Part 1 2

Unit 5: Registers and Counters
Useful MSI blocks made of Flip-Flops

Chapter 6: Registers and Counters

1. Registers with parallel load
2. Shift Registers

3. Counters
- Asynchronous (Ripple)
- Synchronous

2

Chapter 3 - Part 1 3

Registers

 Register – a set of binary storage elements

 Used to perform simple operations on data such
as storage, movement, and processing
Examples: load, shift, rotate, increment, etc.

 A processor processes data by performing
operations on registers, e.g. ADD A, B where
A and B are say 32-bit registers

Chapter 3 - Part 1 4

Examples: - 4-bit Register, with Clear
- Selective Parallel Load by gating the clock

Reset (Cleared)
Asynchronously with
A 0 pulse on the (normally
High) Clear input

Loaded with
Data at the inputs
(D Q)
at every clock edge

What is the problem
With this?

We need controlled
loading, e.g. only when
input data is valid and a
Load Signal arrives -
(not on every clock pulse!)

One Solution: Gate the clock to the
flip flops so that clock pulses
reach the FFs only when Load = 1

Clock input to FFs

D3-D0
4-bit Data to be loaded

Q

Encapsulate
As a Register
Function Block

3

Chapter 3 - Part 1 5

Better Approach
Avoid clock gating. Apply Load control at D input

Avoid clock gating if you
can! Why?

It causes clock skew –
clock pulses may arrive to
various registers in the
system at different times

So such flip flops will
change state at different
times

No good- could lead to
erroneous state transitions
or data transfers!

Load now does not gate the clock,
But controls what goes into the D input
Load = 1 EN = 1, D = Ext. input data will be loaded

on the next clock edge
Load = 0 EN = 0, D = present Q, so no change

on the next clock edge

EN = 1 for Load
EN = 0 for no change

External Data
to be loaded

Clock pulses
go all the time
Unobstructed
To all FFs

But we now control what
Clock pulses do using
The EN control on D

I3-I0
Data to be loaded

2-to-1 MUX

I1

I0

I2

I3

I

Register with Parallel Load
& no clock skew

Chapter 3 - Part 1 6

Shift Registers

 A Shift Registers moves data laterally () within the register
FFs toward the MSB or LSB position

 In its simplest form, the shift register is a set of
D flip-flops having a common clock & connected in a row like this:

 Data input, In, is the serial input (the shift right input).
 Data output, Out, is the serial output (=D).
 The vector (ABCD) is called the parallel output of the register.

D QD QD QD Q
In

CP

A B C OutSerial
Serial

D

Shift Right

Performs
Shift Right

Shift Register Serial Loading

4

Shift Registers: Serial Loading
 Behavior of the

4- stage serial shift
register
Initial register
state just before
the first clock
pulse arrives

 Assume Register
was cleared to 0000
initially, e.g. by S-R

 T1: State after the
first pulse and
before the second

 Complete the last two
rows of the table

T7

D QD QD QD QIn

Clock CP

A B C Out

CP In A B C D: Serial Out
0 0 0 0 0

T1 1 0 0 0 0
T2 1 1 0 0 0
T3 0 1 1 0 0
T4 1
T5 1
T6 1

0
1
1
0

2. Serial I/P

Starts to
appear
Serially
at O/P
(after
4T delay)

0 1 1

After 4
Clock
Pulses:

1. 4-bit Serial I/P
Appears in parallel
In register after 4 clock pulses
(serial loading of the register)

Applications: Delay, Serial to Parallel
conversion

Gates..Feedback

Chapter 3 - Part 1 8

Some Applications
of n-stage Shift Register

 Delay:

 Serial input sequence starts to appear at output
after n-clock cycles (i.e. is delayed by nT ns)

 Parallel to Serial and Serial to Parallel conversion:

 Arithmetic:

 Shifting 1 place to the right (feeding in 0s) = dividing by ?

 Shifting 1 place to the left (feeding in 0s) = multiplying by ?

n–bit
Shift RegisterClock

Parallel Loadn

n–bit
Shift Register

Parallel Read n

Serial Link or
a network

11001001

Clock

Load

T

TX RX

Serial In

5

Shift Registers with Feedback

Clock gating
is not a good practice

As it leads to Clock skew

Each of A, B is a 4-bit
Right-Shift register

Initial 4-bit value restored in A and serially loaded into B
After 4 clock pulses:

Rotate Right

Allow only 4 clock pulses
to both registers

Shift Right

Clock gating

X X X X

Regardless of initial
Contents in B (flushed out)

Chapter 3 - Part 1 10

P
a

ra
ll

e
l D

a
ta

 I/
P

Universal (Multi-purpose) Shift Register with 4 Functions:
- Parallel Load - Shift left - Shift Right - No Change

4-to-1
MUX

In
fo

 In
p

u
ts

S
el

ec
t

In
p

u
ts

Mode
Select

4-to-1
MUX

4-to-1
MUX

LSB

Right = LSB
Left = MSB

LSB LSB

Y

LSB

MSB Add other
Functions?
e.g. increment,
decrement

LSB

Shift Right
(Down)

Shift Left
(Up)

(Down)

(Up)

(Right)

(Left))

6

Serial (bit-by-bit) adder
1. Using shift registers, 1 Full Adder, and 1 FF

Chapter 3 - Part 1 11

Initially

Clock gating
To control the
FF clocking

Sum gets stored bit by bit in Reg. A, replacing augend

A new
number Z
Sneaking in!

New Old
Initial C0 =0

Ci

Bi

Ai

Si

Ci+1

Ripple adder
& CLA adder
were parallel adders
using 1 FA for each bit

Accumulates in reg. A the sum of the number
initially in A and a set of numbers, entered
sequentially into reg. B

Compare with the
Parallel adder in Unit 3

X X+Y

Y Z

Initially:
A has X, B has Y

1-bit

Serial Adder (bit-by-bit addition)
2. Using shift regs. and a sequential circuit

Chapter 3 - Part 1 12

Initial Ci =0

Q

Sequential
Circuit

State = Carry

External O/P = sum

2
E

xt
er

na
l I

/P
s

CL

CL

JK FF

7

Serial Adder (bit-by-bit addition)
Using shift regs. and a sequential circuit

Chapter 3 - Part 1 13

Sum Carry Out

JK Excitation

3 K-maps CL on previous slide

Carry IN

Chapter 3 - Part 1 14

 A counter is a register that has its parallel outputs go
through a specific count sequence as clock pulses arrive

 Counting sequences can be binary, BCD, etc.
 Counting can be up, down
 A modulo-n counter has n different counting states,

e.g. it goes through counts 0,1,2, …, (n-1),0,1,…
e.g. a modulo-10 up counter may count: 0,1,..,9,0,1,..
 Modulo n counter divides the clock frequency by n

Some Applications of counters:
 Counting events
 Timers
 Frequency division

Counters

000
001
010
011
100
101
000
001

Successive
Clock Pulses

ABC (LSB)

This is a modulo-?
Up/Down? Counter

Repeated counting cycle
of clock pulses sent = ?
of pulses at MSB (A) = ?

(show waveforms)

8

Chapter 3 - Part 1 15

 1. Asynchronous (Ripple) Counters
• The external clock is connected only to the clock input of the LSB

bit flip-flop (first counter stage)
• Then the output of a stage provides the clock I/P to the next stage
• i.e. circuit is not synchronous -

(since no common clock to all stages)
• Advantage:

- Simple circuit
• Disadvantages:

- Output changes are delayed further for each stage toward the
LSB (Ripple Effect)
- This ripple propagation delay limits the maximum clock
frequency that can be used
(same factor that limited speed of the ripple adder)

Implementing Counters
Two Basic Approaches: 1. Async (Ripple) & 2. Sync.

16
How to make an Up/Down ripple counter by adding
MUXs?

Ripple (asynchronous) Counters
Modulo-16 binary counter (n = 4) using D FFs

In-stage
Toggling link

Inter-stage
Clocking
links

Toggle at
+ ive edge
on Q0
Connect
Q to
next C
of a +ive
Edge FF

Toggle at
- ive edge
on Q0
Connect
Q to
next C
of a +ive
Edge FF

Repeat
Cycle

Up Down

fc = Clock Frequencyfc/2fc/4fc/8fc/16
Frequency Division Properties

Every Stage is wired to always Toggle with clock
& we connect the suitable clock signal to it!fc

16 clk
cycles

Down
Counter

Q

9

Chapter 3 - Part 1 17

With T FFs- Toggling obtained with T = 1
(no need to externally connect Q’ to D for each FF)

Binary Up Counter
0000 1111 (16 Counts)

Q

But for Up counting, Clock is taken
from Previous Q not Q’-
Why?

T FF Advantage: No need for an external
Q’ to D connection for each FF to toggle

Chapter 3 - Part 1 18

 Counts 0, 1, …8, 9, 0 (modulo 10)
 4-bits 4 FFs

BCD UP (Decade) Ripple Counter

Identical to 4-bit binary counter up to here

Only 10 used states 6 unused states

6 unused states

10

Chapter 3 - Part 1 19

**

BCD (Decade) UP Ripple Counter
with JK FF

JK Characteristic

To
gg

le
s

A
lw

ay
s

To
gg

le
s

on
 ↓

at
 Q

1
if

Q
8

=
 0

, o
th

er
w

is
e

R
es

et

↓ at Q1, Q8=1 Q2 to 0*

*

To
gg

le
s

on
 ↓

at

Q
2

(A
s

us
ua

l)

↓ at Q1:**
- (Q4 Q2)=11: Toggle
- Else: reset to 0

↓ edge triggered FFs

**

1

0
↓

Next pulse at end count

19

Cascading Ripple Counters
3-Decade Ripple Up Counter (000-999)

On 100th clock pulse

(clock) ↓

On 10th clock pulseOn1000th clock pulse

1s 10s 100s

1

0

Starting with stages
Cleared to all 0s

1

0

1

0

Clock Rippling at 2 levels:
- Within each decade stage
- and also between the stages

Each stage is a BCD up
Decade Counter (last slide)

Divide-by-1000
Counter

11

Chapter 3 - Part 1 21

• The same System clock is connected directly to the clock
inputs of ALL flip-flop stages(truly synchronous)

• No fiddling with clock- instead, we control operation of
individual FFs through data or control inputs e.g. D, JK, T

• Any counter can be systematically designed as a
sequential cct – see Unit 4

- A combinational logic circuit is used to implement the
desired state sequencing through inputs to the Ds of the
flip-flop stages

• But simpler ad hoc approaches can be used for regular
counting patterns e.g. binary up or down

2. Synchronous Counters

Synchronous Binary Counter- Up

Q0 Toggles at every
Clock pulse

Clock is
Common, always
reaching all stages

1=Count
0= Stop Counting

(all JKs = 00
(No Change)

“Terminal Count” (1=1111)
To “Enable” of Next Block

Q1 Toggles at the next
Clock pulse if Q0 = 1

Q2 Toggles at the next
Clock pulse if Q0 Q1= 1

Q

Q1 Always
Toggles

12

Synchronous Binary Counter- Down

Q0 Toggles at every
Clock pulse

Clock is
Common
To all stages

1=Count
Q’

“Terminal Count” (1=0000)
To “Enable” of Next Block

Chapter 3 - Part 1 24

Always toggles with every clock pulse
(for up or down)

Synchronous Binary Counter- Up/Down
With T Flip Flop

Down
0
1

Up
1
0

13

Chapter 3 - Part 1 25

BCD UP Counter: …8 9 0 1 … with T FFs
For a binary counter: Irregular counting pattern here

To
gg

le
s

A
lw

ay
s

To
gg

le
s

w
he

n
Q

1=
1

&
 Q

8
=

 0

Additional O/P with 1 pulse of 1 clock period
duration every counting cycle (divide by 10)

From T
K-maps
(use Xs)

A more systematic approach to Design,
compared to slide 19 (Async)

Chapter 3 - Part 1 26

Binary UP Counter
with Parallel Load (Functional Block)

1 at “terminal count”
(1111) to enable
Next 4-bit stage (for cascading)

Direct Clear
(asynchronous)
Active Low (1 for normal operation)

Synchronous Load Enable (1)

Count Enable (1)

E
xt

er
na

l D
at

a
to

 b
e

lo
ad

ed
 in

S
R

Select between
Load/Count Conditions

Count cond. for the FF

I A

LSB

Note: JK FF is more cumbersome
than D For loading data!

(async)

14

Chapter 3 - Part 1 27

Designing Larger Counters by cascading smaller ones
Using the Cout (Terminal Count) to EN of next stage

 Given two 2-bit (modulo-4) counter, how to design a 4-bit
(modulo-16) counter?

LS PartMS Part

LS Part MS Part

LS Part generates a single Cout pulse (lasting
for 1 clk Cycle only) every time it finishes its
counting cycle

MS Part is enabled to increment only once when
it receives this pulse at its EN I/P

Example: Design a 16-bit (0-255) binary counter
using two of the 4-bit (0-15) universal binary
counters on the previous slide

LSB MSB

A B C D (LSB)

D C B A

Enabled
Always

Enabled to count only once per
counting cycle of the LS part

(LSB)

Cout=1

Cout=1

Cout=1

Cout=1

To next
Stages

Chapter 3 - Part 1 28

Using this count/load/clr functional block
to implement a modulo-n Counter

Loading occurs
at next clock

Two Approaches for a BCD (0 to 9) Counter

(synchronous)
Asynchronous (direct) Clear

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9

Data In for Load

1 0 0 1 1 0 1 0

9 exists for a full clock cycle
and then gets 0000 loaded
at the next clock pulse

10 is immediately cleared to 0
Through the direct clear. May cause a
small brief glitch (spike) at A1

Not
Recommended

1001 9
1010 10
0000 CLR 0

or any other
starting # < Ending #

(Direct-
Async)
Forces
Start Count (0)

No
loading

End Count
Desired

Start Count Desired
Next
Clock
Pulse

momentarily

Up Counter Up Counter

(End Count +1)

15

Chapter 3 - Part 1 29

Modulo 6 Counter with Arbitrary Counting Sequence:
Investigate Effect of
Unused States on performance

Two Unused states:
Determine transitions
from circuit or eqns and

ensure safe return
to normal counting seq.

Three 3-variable K-maps
for CL Optimization, with Xs

Modulo?

At O/P A, Divide by ?

Count
Sequence?

Number of FFs Needed?

Used states?

Unused states?

Unused State 011 X X X
ABC

Unused State 111 X X X

Chapter 3 - Part 1 30

Generating a sequence of non-overlapping timing signals:
1. Ring counter (Shift-Right with Rotate - D-type FFs)

Q0 0 0 1 0

0

0

1

Initially loaded
through
directly Set-Rest of the D FFs

Shift right register with 4 D-type FFs
(i.e. Q to next RHS D),
+ Rotate Feedback: Q3 D0

0 1 2 3
0 0 0 1 Initially loaded by direct S/R
1 0 0 0 Pulse 1
0 1 0 0 Pulse 2
0 0 1 0 …
0 0 0 1
1

4 different
states

T

T = clock period

4 non-overlapping
Timing signals

T

0001

D input

Inserted directly with Set/Reset

1 0 0 0

n intervals
Need n FFs

16

Chapter 3 - Part 1 31

Generating a sequence of timing signals:
2. Counter-Decoder Implementation

Count
Sequence

0 0

0 1

1 0

1 1

4 non-overlapping
Timing signals

Chapter 3 - Part 1 32

Johnson Counter: 8 non-overlapping signals from
4-bit shift register with rotate - but E’ instead of E!

8 different states
not 4 as on normal ring counter!

8 non-overlapping
timing signals are
produced by the
8 AND gates shown
In the table opposite 8 non-overlapping

Timing signals

8 additional 2-input ANDs

n intervals
Need only n/2 FFs
- More efficient cct!

