EE 200: Digital Logic Circuit Design

Dr Radwan E Abdel-Aal, COE

Unit 4
 Sequential Circuits

Charles Kime \& Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use
(Hyperlinks are active in View Show mode)

Unit 4: Sequential Circuits (Finite State Machines FSM)

1. Sequential Circuit Definitions, Types of Latches: SR, Clocked SR, and D Latches
2. Flip-Flops: SR, D, JK, and T Flip-Flops
3. Flip-Flop Timing Parameters: Setup, hold, propagation, clocking
4. Flip-Flops: Characteristic Tables and Excitation Tables
5. Analysis of Sequential Circuits with various types of flip-flops: Deriving the input equations, state table, and state diagram. Timing.
6. Design of Sequential Circuits with various types of flip-flops: Determining the state diagrams and tables, State assignment, Combinational Logic

Introduction to Sequential Circuits

Outputs are functions of inputs and some previous
(state) outputs

- A Sequential Circuit (SC) consists of:
- Data Storage (memory) elements: The storage (memory) elements (Latches / Flip-Flops)
- + Combinatorial Logic: isolate the next state from the present state, So changes occur

Implements a multiple-output function only when desired

- External Inputs are signals from outside
- External Outputs are signals to outside
- State inputs (Internal to SC) = Present State at o/p of storage elements
- State outputs, Next State at \mathbf{i} / \mathbf{p} of storage elements

Introduction to Sequential Circuits (SC)

- Combinational Circuit outputs:
- Next state:

Next State $=\mathbf{f}$ (Inputs, State)

- External Output:- Two Possibilities:
- Mealy Circuits

Outputs = g(Inputs, State)

- Moore Circuits

Outputs = h(State only)

Timing of Sequential Circuits Two Approaches

- Behavior depends on the times at which the storage elements 'sense' their inputs and 'change' their outputs ("next state" becomes "present state")
- Asynchronous (No clock)
- Behavior defined from knowledge of inputs at any instant of time and the order in which inputs change in continuous time
- Synchronous (More common)
- Behavior is determined by the signals at discrete times (clock pulses)
- Storage elements sense their inputs / change state only according to a timing and synchronizing signal (a clock)
- Will use mainly the synchronous approach here

Data Storage Logic Structures for SCs

Basic NOR Set-Reset (SR) Latch

Set: Make Q = 1, Reset: Make Q = 0

- Cross-coupling two

- Which has the time sequence behavior: $00=$ Normal input condition No input change (show last stored $1 \times R$ Input R S stored (written) in $\overline{\mathrm{Q}} \mathrm{Q}$ (remains at O/P after input is removed) NOR gates gives the $S_{\text {et }}$ - Reset Latch:

Basic NOR Set-Reset (SR) Latch

Basic NAND $\overline{\text { Set }}-\overline{\text { Reset }}(\overline{\mathbf{S}} \overline{\mathrm{R}}$) Latch

$\bar{S}=0, \bar{R}=0$ simultaneously is a forbidden input pattern

Clocked (or Controlled) S-R NAND Latch

- Adding two NAND gates to the basic $\bar{S}-\overline{\mathrm{R}}$ NAND latch gives the clocked S - R latch:

- $\mathrm{C}=$ normally $0 \rightarrow \overline{\mathrm{~S}} \overline{\mathrm{R}}$ inputs to the latch = normally $\mathbf{1} 1$ (No output change)
So this prevents the forbidden conditions $\overline{\mathbf{S}} \overline{\mathbf{R}}=\mathbf{0} \mathbf{0}$ with $\mathbf{C}=\mathbf{0}$
- $C=1$ Opens the two input NANDs for the $S R$, inverting them.
This gives normal S R (not $\overline{\mathbf{S}} \overline{\mathbf{R}}$)
latch operation \rightarrow Allow changes in latch state
But here both $S R=11$ with $C=1$ is still a problem
 in SR affect the latch only during the clock pulse

From Latches to Flip-Flops

- The transparent latch timing problem
- Solution: Flip-Flop
- Master-slave flip-flop
- Edge-triggered flip-flop
- Standard symbols for storage elements
- Direct inputs to flip-flops
- Flip-flop timing
- Types of flip-flops: D, JK, T

The Transparent Latch as a Storage Element: Timing Problem

Consider this sequential circuit:

- Transparent latch The Combinationał is problematic here! Logic part

Suppose that initially $Y=0$. The latch was supposed to isolate outputs of the combinational circuit
As long as $\mathbf{C}=1$, the value of \mathbf{Y} keeps changing! from its inputs. Is it???

- Changes occur based on the delay in the Y-to-Y loop

If $\mathrm{t}_{\mathrm{Y}-\mathrm{Y}} \ll \mathrm{t}_{\mathrm{CW}}$ this causes several unwanted state changes to occur during the same clock pulse- unacceptable!

Desired behavior: Y should change only once per clock pulse, in order to get only one state transition per clock pulse!

Solving the Latch Timing Problem Flip flops instead of latches

- Two approaches:
- Break the path within the storage element into two successive (mutually exclusive) steps in time:
Step - 1. Register the change in input D (then stop)
Step - 2. Apply that change to the output Y (then stop)
This uses a master-slave (Pulse Triggered) flip-flop
OR
- Use an edge-triggered flip-flop:

Change in D is sensed and applied to the Q output in one go at the edge of the clock pulse (+ ive or - ive edge)
i.e. Effectively as if we have a Zero-width clock pulse, which obviously solves the problem (see previous slide)
Pownrpainfo slides

S-R Master-Slave (Pulse-Triggered) Flip-Flop

- Consists of two clocked S-R latches in series, with the clock to the second latch inverted
- C = 1: - Master is open
${ }_{\text {of clock Pulse }}^{1 \text { shalf }}$. Slave is blocked

Only "input is sensed" by master for this pulse duration (\rightarrow pulse-triggered) while output is unchanged by slave

- C = 0: - Master is Blocked
${ }_{\text {of clock Pulse }}^{\text {ned half }}$. Slave is open \rightarrow "output is changed"
- The path from input to output is thus broken by the different 2 clock levels for the two latches ($\mathrm{C}=1$ and $\mathrm{C}=0$)
- Sensing I/P then changing O/P are now two separate steps not one transparent step as the case with the transparent latch

S-R Master-Slave
 Flip-Flop: Simulation

Edge-Triggered D-type Flip-Flop

- This is a Positive Edge-triggered D-type flip-flop
- Is currently the most preferred FF for building sequential circuits

circuit

- The D data input is transferred to the Q output only at the rising edge of the clock, subject to timing constraints on the D input relative to effective clock edge:
Setup time before edge and Hold time after edge
- Negative edge triggered D FF is also available

Flip-Flop Timing Parameters:
 - ive Edge Triggered FF (Section 6.3)

Requirements:

- t_{w} - clock
pulse width
(for both low \& high)
- t_{s} : setup time
- t_{h} : hold time
(usually 0 ns)
Outcomes:
- t_{p} : propagation delay

Standard Symbols for Storage Elements

a. Master-Slave (M-S) Pulse-Triggered:

(b) Master-Slave Flip-Flops
b. Edge-Triggered:
O / P determined \& changed on the indicated clock edge

In a sequential that uses different Types of FFs, Ensure that all FFs circuit change their outputs at the same clock edge. Invert clock signal to some FFs if needed

One problem with D type FF is that no D inputs produce "no change" at the output Solution:

- Block the clock pulses
- Feed back the Q to the D input when no change is required (See Unit 5)

FF Direct Inputs

- When power is turned ON, the state of a sequential circuit FFs could be anything!
- We usually need to initialize the circuit to a known state before operation starts
- This initialization is often done directly outside the clocked behavior of the circuit, i.e., asynchronously
- Direct S and/or R inputs that control the state of the latches within the flip-flops are added to FFs for this purpose

For the example the flip-flop shown of the clock

- 0 applied to $\overline{\mathrm{R}}$ directly ($\overline{\mathrm{S}}=1$): resets the flip-flop to the 0 state regardless of the clock
- 0 applied to $\overline{\mathrm{S}}$ directly $(\overline{\mathrm{R}}=1)$: sets the flip-flop to the 1 state regardless of the clock

Synchronous (b) Function table Powarpainto sides
Po zope Parsuin Ediation, ine. (clocked) action 3 - Part 1 20

Other Types of Flip-Flops

- We know about the master-slave S-R and D flip-flops
- We will briefly introduce the J-K and T flip-flops
- Implementation
- Behavior
- Characteristic Table/Equation: For use in SC Analysis
- Excitation Table/Equation: For use in SC Design

Basic Flip-Flop Descriptors

- In analysis: Given a Circuit:

Present state, I/Ps \rightarrow CL \rightarrow FF Inputs \rightarrow ? FF O/P (Next state)?
FF: FF Inputs \& Present output \rightarrow Next FF output?

- Characteristic table - defines the next output of the flip-flop given its present output and its inputs
- Or Characteristic equation - defines the next output of the flip-flop as a Boolean function of its present output and its inputs
- In design: Given a state transition behavior \rightarrow ? CL?

FF: Present output \& Next output \rightarrow ? FF inputs? (that give such behavior)

- Excitation table - defines the flip-flop inputs that give a required present-to-next output behavior

J-K Flip-Flop- Improvements on SR and D types
\rightarrow on SR: Avoids the "SR = 11", JK = $11 \rightarrow$ Toggle, i.e. $\mathrm{Q}(\mathrm{t}+1)=\mathrm{Q}(\mathrm{t})$
\rightarrow on D type: Allows a 'No Change' condition

T (Toggle) Flip-Flop

D FF with only "No change" \& "toggle" capabilities

- Characteristic Table

	$\overrightarrow{\mathbf{Q}}(\mathbf{t} \mathbf{1})$	Operation	\mathbf{T}
0	$Q(t)$	No change	
1	$\bar{Q}(t)$	Complement (Toggle)	

- Characteristic Equation

$$
\mathbf{Q}(\mathbf{t}+\mathbf{1})=\mathbf{D}(\mathbf{t})=\mathbf{T} \oplus \mathbf{Q}(\mathbf{t})
$$

- Excitation Table

$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	\mathbf{T}	Operation
$Q(t)$	0 No change	
$\bar{Q}(t)$	1	Complement (Toggle)

$Q(t)$	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

Sequential Circuit Analysis \& Design

Analysis:
Given a circuit. \rightarrow Describe how it behaves, in terms of: Present State, Inputs \rightarrow Next State? Outputs?

Design:
Given how a circuit behaves, in terms of:
Present State, Inputs \rightarrow Next State, Outputs,
\rightarrow Determine the circuit

Sequential Circuit Analysis: With D-type FFs

- General Model
- Present State (state) at time (t) are the O/Ps of an array of flip-flops
- Next State at ($\mathrm{t}+1$) are $\mathrm{O}(\mathrm{t})$ combinational fns of $\{$ State \& Inputs\}
- (External) Outputs at time (t) are a combinational function of State (t) only (Moore) and also Inputs (t) (Mealy)

Sequential Circuit Analysis

- Given a sequential Circuit
- Objective: Obtain outputs \& state behavior (External outputs and next state) from (External inputs and present state) for all combinations of I/Ps \& present state
- Two equivalent approaches to represent the results of the analysis:
- State table: A truth table-like approach
- State diagram: A graphical, more intuitive way to represent the state table and express sequential circuit operation

Analysis Example using D FF:
Given a Sequential Circuit \rightarrow Determine how it behaves

Analysis Example 1: A Mealy Circuit, Ext. Output = F(state, inputs) Deriving flip flop input equations

- Right at the outset, there are things we can do:
We can derive Boolean equations for all outputs of the combinational logic (CL) circuits
- Two types of CL outputs:
\rightarrow Flip flop inputs
(Will determine the next state based on FF characteristics)
$D_{A}=A X+B X$
$D_{B}=\bar{A} X$
\rightarrow External Outputs:
$Y=(A+B) \bar{X}$

Note: Flip flop inputs needed to determine next state depend on the type of flip flop used, e.g. D, SR, etc.

State Table Characteristics

- State table - a multi variable table with the following four "vertical" components: CL = Combinational Logic
\rightarrow CL Inputs: \quad FF = Flip Flop
- Present State (MSBs) - Values of the state variables (FF outputs) for each allowed state
- External Inputs
\rightarrow Outputs:
- Next-state - Value of the state (FF outputs) at time ($\mathrm{t}+1$). Determined by:
- FF inputs (outputs of CL)

MSB			MSB		
State Table for Circuit of Figure 6-17					
	State	Imput		State	Ouput
A.	8	*	A		Y
3	*	${ }^{3}$	a)	9.
\%	4	I	\because	1.	0
3	1	\%	6	\cdots	1
3	1	\%	1	1	9
4	\cdots	0	a	\because	3
1	${ }^{4}$	1	1	1	9
1	3	4	4	3.	3
11	1.	1	1.	\%	9

- the FF characteristics: Simplest for D-type FF: D \rightarrow Q
- CL External Outputs - the value of the outputs as a function of the present state only (Moore) or present state \& external inputs (Mealy)

Moore and Mealy Models

- Sequential Circuits are also called Finite State Machines (FSMs). Two formal models existaccording to dependencies of External Outputs
- Moore Model
- Named after E.F. Moore.
- External Outputs (O/Ps) are
functions of the state ONLY
- Mealy Model
- Named after G. Mealy
- External Outputs are functions of the state AND external inputs

In State
Diagram
In Timing。 Waveforms

O/Ps are shown next to the state	
value (inside the state node)	O/Ps are shown on the state
transition arcs- next to the I / P	

O/Ps change only with the state	O/Ps can change with $I / P s$
\rightarrow with the clock \rightarrow Sync. to clk	\rightarrow possibly asynchronous to clock

- In contemporary designs, FSM are sometimes mixed: Some O/Ps are Moore and some are Mealy

Analysis Example 2: A Moore Circuit Output $=\mathrm{F}$ (States only)

- Right at the outset, there are things we can do:
Derive Boolean expressions for all outputs of the combinational logic (CL) circuits
- These CL outputs are: \rightarrow Inputs to the flip flops $D_{A}=X \oplus Y \oplus A$ (the odd fn) \rightarrow Output to the outside world

$$
Z=A
$$

Depends only on state not on inputs, \rightarrow Moore

Sequential Circuit Analysis:
 Using other types of Flip Flops: JK, T

- D type FF was easy to use, as the Dinput from CL is the same as the Next state bit (e.g. $\mathrm{DA}(\mathrm{t})=\mathrm{A}(\mathrm{t}+1)$)
- For other types of FFs, this is not so, and you will have to go through either:
- The Characteristic Table
- Or the Characteristic Equation

Sequential Circuit Analysis Example: Using JK Flip Flops

Sequential Circuit Analysis Example: Using JK Flip Flops

Sequential Circuit Analysis Example: Using JK Flip Flops

Sequential Circuit Analysis Example: Using T Flip Flop

CL Equations for FF Inputs \& Ext O/P
$T_{A}=B x$
$T_{B}=x$
$y=A B$
T-FF Characteristic Eqn.
$\mathrm{Q}(\mathrm{t}+1)=\mathrm{T} \oplus \mathrm{Q}(\mathrm{t})$

- Substituting for FF A:
$A(t+1)=B x \oplus A=B x A^{\prime}+A(B X)^{\prime}=A^{\prime} B x+A\left(B^{\prime}+x^{\prime}\right)$ $=A^{\prime} B x+A B^{\prime}+A x^{\prime} \quad \leqslant A$ Next State
- Substituting for FF B:
$B(t+1)=x \oplus B \quad \leftarrow B$ Next State

One external O/P Mealy or Moore?

Sequential Circuit Analysis Example: Using T Flip Flop

CL Equations for FF Inputs \& Ext O/P

Sequential Circuit Analysis Example: Using T Flip Flop

Sequential Circuit Design: Steps in green The Design Procedure

1. Specification (Word Description) \rightarrow State Diagram (Can be symbolic at this "thinking" stage)
2. State Reduction: Try to reduce the number of states (Will cover later)

- This may reduce the number of FFs required $10 \rightarrow 8$?

3. State Assignment - Assign binary codes to the symbolic states
4. Obtain a Binary state table.
5. For the selected type of Flip Flops: Use the excitation table to obtain the binary FF inputs
6. Derive Optimized logic expressions for each of the:

- FF Inputs
- External Outputs

7. Generate the logic diagram for the complete sequential cct.

Sequential Circuits Analysis Versus Design

Given a circuit \rightarrow behavior [state table (state diagram)]:
\{Circuit, Present state, inputs\} \rightarrow Next state?, Outputs?
Flip Flop Consideration: (inputs \rightarrow outputs?)
\rightarrow FF: Use input-driven Characteristic tables/equations

- Design to achieve a specified circuit performance Given desired behavior [(state diagram (State table)] \rightarrow get circuit (behavior: Present to next changes \rightarrow Needed FF Inputs? \rightarrow CL circuit?) Flip Flop Considerations: (behavior at O/P \rightarrow inputs that give behavior?) \rightarrow FF: Use output-driven Excitation tables/Equations

Complete Design Procedure

Example: "3 or more successive 1s" detector

Specification (word description) \rightarrow Symbolic State Diagram

Detect three or more consecutive 1's at the circuit inpu

- If input $=0$, stay $/$ go at/to a state_0/reset state.
- If input $=1$ after 0 , go to state_1.
- If input = 1 after 01, go to state_2.
- If input = 1 after 11 , go to state_3.
- We have 4 states (reset, state_1, state_2, state_3) $\left(S_{0}, S_{1}, S_{2}, S_{3}\right)$ respectively.

Square 1

गter 3 - Part 1

3 1s Detector Example: with D-type FFs

Circuit Details:

- Two D flip-flops (A, B) to represent the folur states.
- One input (x).
- One output (y).
- $Q_{(t+1)}=D_{Q} \quad(\mathrm{D}-\mathrm{FF})$

Powarpoinfo slites

Present	Input
State	0
S_{0}	1
S_{0}	0
S_{1}	1
S_{1}	0
S_{2}	1
S_{2}	0
S_{3}	1

Next State	State Output
S_{0}	o
S_{1}	o
S_{0}	0
$\mathrm{~S}_{2}$	0
$\mathrm{~S}_{\mathrm{o}}$	0
$\mathrm{~S}_{3}$	0
$\mathrm{~S}_{\mathrm{o}}$	1
$\mathrm{~S}_{3}$	1

State Assignment

Chapter 3 - Part 1

3 1s Detector Example

Luife sud Computar Denign Fundanantals

3 1s Detector Example

The Circuit

3 1s Detector Example Design with JK Flip Flops

3 1s Detector Example Design with JK Flip Flops

Luple and Cumputsr Denlgn Fundannatals
Pawnepaing Slitiss
Bs sipe peamun Eduration ine

Example: A 3-bit binary up counter Design with T Flip Flops

Design an n-bit up counter that counts from 0 to $2^{n}-1$ Assume $n=3$

- A 3-bit counter counts from 0 to 7 .
- Has no inputs.

T FF
Simplifies
Designing
Counter

Design with T Flip Flops Example: A 3-bit binary counter

State Reduction

When we are interested only in the input-output sequence and not in the state values themselves (in counters)

- Reducing the number of states may result in reduction in the number of flip-flops needed. (without affecting the in-out sequence)
- Sometimes, reduction in flip-flops result in a bigger combinational circuit to realize the next state and the outputs.

Input Sequence

- Consider the '01010110100' as your input

| State | a | a | b | c | d | e | f | f | g | f | g |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Input | | | | | | | | | | | |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | |
| Output | 0 | 0 | 0 | 0 | 0 | $\sqrt{1}$ | 0 | 1 | 0 | 0 | |

States e, g are equivalent, Same: -Next state - O/P

State Reduction

When we are interested only in the input-outputs sequences and not in state values (With counters we ARE interested in the states)

- Try to reduce the number of states without altering the input-output relationship.
- It is easier to work on state tables.
- Two states are equal/equivalent if, for each input combination, they give the same outputs and send the circuit to the same (or equivalent state).
- If we have two equivalent states, one of them should be removed:
- Remove its row from the truth table
- Replace its symbol everywhere in the tructh table with that of its equivalent state

Luple and Cumputsr Denlgn Fundannatals
© sine parnun Eduration ine

State Reduction

When we are interested only in the input-output sequences and not in state values (With counters we are interested in the states)

After State Reduction- Now using 5 states only

	Next State			Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$		$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$
a	a	b		0	0
b	c	d		0	0
c	a	d		0	0
d	e	d		0	1
e	a	d		0	1

Reduced
5-State FSM

- Consider the '01010110100' as your input

State	a	a	b	c	d	e	f	f	g	f	g	a
Input	0	1	0	1	0	1	1	0	1	0	0	
Output	0	0	0	0	0	1	1	0	1	0	0	

Maintains same input-output sequence as the original 8 -state circuit On slide 56

Pownrpainto slites
O2004 Pearsun Edication, ine.

