

S-R	Flip-Flo	p f	Pulse or Edge -Trigger	- S				
• Cha	aracteristic	Table -1) Operation	Given the present F \rightarrow Next FF O/P = 3	FF I/Ps, O/P				
Sis Input	$0 \ 0 \ Q(t)$) No change	← Improvement o	n D !				
	0 1 0	Reset I	imitation:					
Ā	1 0 1	Set S	R=11: "Undesira	able" Condition				
	1 1 ?	Undefined						
 Characteristic Equation 								
$\mathbf{Q}(\mathbf{t+1}) = \mathbf{S} + \overline{\mathbf{R}} \mathbf{Q}(\mathbf{t})$								
↑ ■ Exc	citation Tal	ble ^G	iven Present, next O/P	$s \rightarrow FF$ Inputs = ?				
	Q(t) Q(t+	1) S R Opera	tion Ge	et from above				
	0 0	0 X No cha	nge, Or Reset					
	0 1	1 0 Set						
behavior-	1 0	0 1 Reset						
Logic and Com PowerPoint® \$ © 2004 Pearsu	n Education, Inc.	X 0 No cha	nge , Or Set	Chapter 3 - Part 1 24				

- Given a sequential Circuit
- Objective: Obtain outputs & state behavior (External outputs and next state) from (External inputs and present state) for all combinations of I/Ps & present state
- Two equivalent approaches to represent the results of the analysis:
 - State table: A truth table-like approach
 - State diagram: A graphical, <u>more intuitive</u> way to represent the state table and express sequential circuit operation Chapter 3 - Part 1

29

Example: A 3-bit binary up counter **Design with T Flip Flops** Design an *n*-bit up counter that counts from 0 to 2^{n} -1 (000)Assume n=3(001)(111 • A 3-bit counter counts from 0 to 7. State • Has no inputs. (010)Diagram **Present State Flip-Flop Inputs Next State** (011) A₀ (101) **T**_{A1} A₁ A₂ A₁ A₀ T_{A2} **T**_A0 A₂ (100)T FF Simplifies Designing Counter Q(t) Q(t+1) 0. 1 < Т **⇒**1 >0 -1 Required Desired State ⇒1 Logic and Computer Table Fundat PowerPoint® Stides Table Performance **FF Inputs**

State	Assign	ment: S	ymbo	ols –	Binary	
	Next State		Output		0	/0
Present State	e	<i>x</i> = 1	$\boldsymbol{x} = \boldsymbol{0}$	<i>x</i> = 1	- 0/0	a 0/0
а	а	b	0	0	- /	1/0
b	С	d	0	0	e	
С	а	d	0	0		1/0
d	е	d	0	1	0/0 1/	1 1/0
е	а	d	0	1		$(d)^{1/0}$
- 3 Possible	any. It arree		uit cost	F		
	e state codir	ng scheme:	uit cost s: FFs	t	5 FFs (1	FF/State)
	e state codir Ass State	ignment 1, Binary	uit cost s: FFS Assigni Gray	nent 2, Code	5 FFs (1 Assignment 3, One-Hot	FF/State) but simpler
	e state codir Ass State	ignment 1, 000	uit cost s: FFS Assigni Gray	ment 2, Code	5 FFs (1 Assignment 3, One-Hot	FF/State) but simpler CL circuit
	e state codir Ass State a b	ignment 1, 000 001	uit cost s: FFS Assigni Gray	ment 2, Code 00	5 FFs (1 Assignment 3, One-Hot 00001 00010	FF/State) but simpler CL circuit for the
	State Codir	alignment 1, Binary 000 001 010	uit cost s: FFS Assigni Gray 00 00 00	ment 2, Code 00 01 11	5 FFs (1 Assignment 3, One-Hot 00001 00010 00100	FF/State) but simpler CL circuit for the FF inputs
Logic and Con	e state codir Ass State a b c d	3 ignment 1, Binary 000 001 010 011	uit cost s: FFS Assigni Gray 00 00 01 01 01	ment 2, Code 00 01 11 10	5 FFs (1 Assignment 3, One-Hot 00001 00010 00100 01000	FF/State) but simpler CL circuit for the FF inputs