
1

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use

(Hyperlinks are active in View Show mode)

Chapter 3 – Combinational
Logic Design

Part 1 – Implementation Technology and Logic
Design

Logic and Computer Design Fundamentals

EE 200: Digital Logic Circuit Design
Dr Radwan E Abdel-Aal, COE

Unit 3
Combinational Logic

- Introduction to Analysis & Design with Examples
- Arithmetic Functions and Circuits
- MSI Functional Blocks: Decoders, Encoders, etc.

Chapter 3 - Part 1 2

Unit 3: Combinational Logic (CL) Design
Contents
1. Procedures for Analysis and Design of CL circuits.

Example: BCD to Excess-3 Code Converter

2. Iterative Arithmetic Circuits: Half & Full adders, Ripple Carry
Adder, Carry Look-ahead adder

3. CL MSI Functional Blocks: Decoders, Demultiplexrs, Encoders,
Multiplexers, in addition to adders/subtractors, Decimal Adder,
Magnitude comparator

4. Implementing combinational functions using: Decoders and
Multiplexers

2

Chapter 3 - Part 1 3

Combinational Logic Circuits

 A combinational logic circuit that has:
• A set of m Boolean inputs,

• A set of n Boolean outputs

Performs n logic functions, each mapping the 2m input
combinations to an output

 Outputs are determined only by the present inputs

(appearing after some delay)

- No feedback paths

- No memory elements

Each Output = F (the m inputs)

Effect of Previous inputs
is NOT “remembered”

Chapter 3 - Part 1 4

CL Circuit Analysis Procedure:
Analysis:

Given:
a CL Circuit* (logic diagram),

Determine:
the logic function implemented by the circuit

We can describe such a logic function by:
- A set of Boolean Equations, or
- A truth table, or
- A word description

*Ensure circuit is combinational: It should not have O/P to I/P
feedback through storage elements

3

Chapter 3 - Part 1 5

4-Step Procedure to get O/P Function:

1. Label the outputs of gates that are
functions of only the circuit inputs and
obtain the Boolean function of each
output

2. Label the outputs of gates that are
functions of the inputs and the
outputs of gates in step 1, and obtain
the Boolean function of each output

3. Repeat 2 until you obtain the final
output of the circuit

4. Use direct substitution to determine
each output as a function of the
external circuit inputs, e.g. as a SOP

Chapter 3 - Part 1 6

O/P Function: Example

4

Chapter 3 - Part 1 7

Truth Table: Example

Truth Table: 2 Ways:
1. Step by step- T1, T2 etc.
2. Get eqn. of the final output

and plot it on the table

O/P1 O/P2

Chapter 3 - Part 1 8

CL Design Procedure: 5 Steps
Given:

A specification of required functionality (as a Word description,
Truth table, Boolean Equations),

Determine:
The logic diagram for an optimal circuit that provides the functionality

1. From the Specification given, determine the number of inputs, number
of outputs and label them

2. Work out the truth table specification for each output (if not given)

3. Obtain an optimized* logic expression for each outputs (using K-maps
etc.). Global optimization if multiple outputs

4. Get logic diagram and truth table of circuit used and verify that it fulfils
the required specification – manually or using a simulator

4. Implement with a universal gate if required

*Note: In practice, other physical parameters need also to be optimized and
verified, e.g. propagation delay, area on the chip, power consumption, etc.

5

9

Design Example:
BCD to Excess 3 Code Converter

Specifications
• The circuit should convert a BCD input code

(decimal digits 0-9) to the corresponding
Excess-3 code
 Inputs: BCD code words for digits 0 through 9: 4-bit

patterns 0000 to 1001, respectively

 Outputs: Excess-3 code words for digits 0 through 9:
4-bit patterns obtained by adding 3 (binary 0011) to
each BCD code input

 Utilize Don’t cares!

Code
Converter

4 ?

BCD
Input

Excess 3
Output

????

Chapter 3 - Part 1 10

1, 2: Formulation
• How many outputs

we need? Name them
 The Truth Table
• I/P Variables

- BCD:
A,B,C,D

• O/P Variables
- Excess-3

W,X,Y,Z
• Don’t Cares

- BCD codes 1010
to 1111

Design Example:
BCD to Excess 3 Code Converter

6

Chapter 3 - Part 1 11

3. Logic Optimization

2-level using
K-maps

W = A + BC + BD

X = C + D + B

Y = CD +

Z =

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

11

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

11

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1

1

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1

1

X X X

X X

X

1

1

W map

z

B CDB

CD

D

Design Example 1:
BCD to Excess 3 Code Converter

X map

Y mapZ map

Standard SOP 2-level Form
(Directly from the K-maps)

Optimized each O/P separately

Chapter 3 - Part 1 12

3. Contd. Global Logic Optimization
b. Further optimization through multi-level, from:

W = A + BC + BD
X = C + D + B
Y = CD +
Z =

• By taking common factors:
Let T1 = C + D
W = A + BT1

X = T1 + B
Y = CD +
Z =

B CDB
CD

D

B CD
CD

D

Design Example 2:
BCD to Excess 3 Code Converter

Simpler but non-standard Form
(no longer SOP,
i.e. > 2 logic levels-
(multi-level logic)
 Now (C+D) is generated only once
and used by the 2 outputs W, X!

For circuits having
Multiple Outputs (here 4)

7

Chapter 3 - Part 1 13

Design Example 2:
BCD to Excess 3 Code Converter

Multilevel (non-standard) implementation
Optimizes the logic but can increase propagation delay

Chapter 3 - Part 1 14

Input BCD
A B C D

Output Excess-3
WXYZ

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 0 1 1

4. Verification- Get the truth table of the actual circuit implemented
(analysis) and show it satisfies the specified truth table:

Truth table matched that for the specifications

Input BCD
A B C D

Output Excess-3
WXYZ

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

Design Example 1:
BCD to Excess 3 Code Converter

1 1 0 0

8

Chapter 3 - Part 1 15

Arithmetic Combinational Circuits:
Iterative Cells (Repeated - in space or time)

 Practical Arithmetic Functions:
• Operate on binary bit vectors (e.g. a 32-bit adder adds two 32-bit

numbers and produces a 32-bit sum)
• Use same basic sub-function for each bit position

 Designing circuits that handle the I/P vectors directly can be
very difficult (large # of inputs & outputs!  large K-maps,
Huge truth tables!)

 Solution: Design functional block for sub-function (e.g. for a
bit) and repeat it (iterate it, reuse it) to obtain a functional
block for the overall operation

 Cell = sub-function block
 Iterative array = An array of interconnected such cells

Chapter 3 - Part 1 16

Cell n-1

Xn-1

Yn-1

A n-1Bn-1

Cn-1

Xn

Yn
Cell 1

X1

Y1

A 1

C1

Cell 0
X0

Y0

B0

C0

X2

Y2

A 0B1

Block Diagram of a 1-D Iterative Array
Adder/Subtractor for two n-bit integers: C=A+/-B

 Example: n = 32: Direct Implementation
• Number of inputs = ? (K-map size)

• Truth table rows = ?

• Equations in up to ? input variables

• Equations with a huge number of literals

• Flat Design: impractical!

 Iterative array takes advantage of regularity to make
designs more feasible

9

Chapter 3 - Part 1 17

Functional Blocks: Addition
 Binary addition is used frequently in computers
 “Adder” Design:
 1-bit adder cell (i.e. does the addition for 1 digit)

• Half-Adder (HA), a 2-input bit-wise addition functional block
• Full-Adder (FA), a 3-input bit-wise addition functional block

 For an n-bit iterative adder: Combine n 1-bit FA
adder cells together- Two ways:
• Ripple Carry Adder (RCA): Carry ripples through the adder

from LSB to MSB  slows down the addition operation
• Carry-Look-Ahead Adder (CLA), Speeds up addition by

letting each bit stage generate its carry input from scratch
(i.e. from the input numbers directly) to avoid waiting for the
carry to ripple through all previous stages

Chapter 3 - Part 1 18

The Functional Blocks: Half-Adder (HA)

 A 2-input (no carry input), 1-bit wide binary adder that
performs the following computations:

 A half adder adds two bits, giving two outputs: S & C

 The result is expressed as a
sum bit S and a carry bit C

 The half adder can be specified by

the truth table 

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

X Y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

1-bit
Adder

XY

S
C

I/Ps O/Ps

• Applications:
- Use as the 1st stage of n-bit adder (no carry I/P)
- Use two HAs to make a full adder (FA)- see later

10

Chapter 3 - Part 1 19

Logic Simplification: Half-Adder (HA)

 The K-maps for S, C are:

 By inspection:

Y

X

0 1

321

1

S Y

X

0 1

32 1

C

YXYXYXS  YXC 

Chapter 3 - Part 1 20

Functional Block: Full-Adder

 A full adder is similar to a half adder, but includes a
carry-in bit from the lower stage. Like the half-adder,
it computes a sum bit, S and a carry bit, C.

• For a carry-in (Z) of
0, it is the same as
the half-adder:

• For a carry- in
(Z) of 1:

Z 0 0 0 0

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

Z 1 1 1 1

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 1 1 0 1 0 1 1
1-bit

Adder

Y

Z

S
C

X

11

Chapter 3 - Part 1 21

Logic Optimization: Full-Adder

 Full-Adder Truth Table:

 Full-Adder K-Maps:

X Y Z C S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

X

Y

Z

0 1 3 2

4 5 7 6
1

1

1

1

S map

X

Y

Z

0 1 3 2

4 5 7 6
1 11

1

C map

ZYXS 

Generated
Carry

Propagated
Carry

The Odd function

Carry-In

Chapter 3 - Part 1 22

Full-Adder (FA): Implementation Using
two Half-Adders (HAs) + OR Gate

ZYXS  . Z)YX(YXC 
Full-Adder

Half-Adder

YXSh 
YXCh

ZSh  . Z Ch Sh
Generated
Carry

Propagated
Carry

HA1 HA2

12

Chapter 3 - Part 1 23

Worst Case (Critical Path) Propagation Delay
for a FA Stage

Assume:
XOR: 3 standard gate delays
OR: 1 standard gate delay, AND: 1 standard gate delay

3
3

1
1

1

3+3 = 6

3+1+1 = 5

Path from input (X,Y,Z) to S is the critical path (largest delay to output)
Hence propagation delay is 6 standard gate delays
If this gate delay is 5 ns  FA propagation delay = 6 x 5 = 30 ns.

- How many additions per sec??

critical delay path for the FA

for S

for C

Chapter 3 - Part 1 24

4-bit binary adder block using 4 FA stages
1. The ripple carry approach (simple but slow)

- Mimics what we do when adding multiple bits
with paper and pencil

- Carry output from FA stage i is fed
as carry input to FA stage (i+1)

1011
+0011
1110

13

25

4-bit Ripple-Carry Binary Adder

 Four-bit Ripple Carry Adder made from four
1-bit Full Adder cells:

B3 A 3

FA

B2 A 2

FA

B1

S3C4

C0

C3 C2 C1

S2 S1 S0

A 1

FA

B0 A 0

FA

Problem: Carry has to ripple through till the end stage for the final result to appear
 Slow addition speed for large number of stages (bits) n

26

4-bit Ripple-Carry Binary Adder
Propagation Delay Analysis

Total Worst Case Delay = 3 + 2 + 2 + 2 + 3 = 12 gate delays = 6 + (n-1) 2, n = 4 stages

0

14

Chapter 3 - Part 1 27

Full-Adder Alternative Formulation
Carry: Generated or Propagated

 Output carry occurs if either:

• Carry is generated on the stage (if Ai=Bi=1). or

• Input carry to the stage (Ci=1) is propagated through it if Pi=1

 Note: Ai, Bi (hence Pi and Gi) and C0 are not affected by ripple delay

 We can avoid carry ripple delay problem if we generate Ci+1 from Pis,
Gis and C0

Input Carry

Generated
Carry

Input Carry
Propagation Control

Input Carry
Propagated Output Carry

27

Chapter 3 - Part 1 28

Carry Lookahead Binary Adder
Speed up at the expense of more complex hardware

 Ci+1 outputs by all stages are derived in parallel with a
set of equations using A, B, C0 inputs only

 Beginning at cell 0 with carry in C0:

C1 = G0 + P0 C0

C4 = G3 + P3 C3 = G3 + P3G2 + P3P2G1+ P3P2P1G0 + P3P2P1P0 C0

C2 = G1 + P1 C1 = G1 + P1(G0 + P0 C0)
C2 = G1 + P1G0 + P1P0 C0

C3 = G2 + P2 C2 = G2 + P2(G1 + P1G0 + P1P0 C0)
C3 = G2 + P2G1 + P2P1G0 + P2P1P0 C0

Carry does not ripple anymore!
All 4 carry outputs can be generated
in one go from: C0 and the two input
numbers to be added (A,B)

Note: All Pi, Gi are functions
of (Ai, Bi) Only!

2-Level logic
(Only 2 gate delays)

No Rippling Carry generated within the 4-bit block
Carry Propagated
through the 4-bit block

(No change)

15

Carry Lookahead Generator Box (for 4-bit adder)
C1 to C4 are generated - Only C1-C3 shown

Chapter 3 - Part 1
29Input Carry

Stage 0

Stage 1

Stage 2

See slide 27

Carry Lookahead Generator
Box

30

4-bit Carry Lookahead Adder: A+B = C4 S

Inputs:
A: A3….A0

B: B3…B0

Carry In: C0

End Carry Out: C4

See slide 27

Box

See Previous
Slide

16

Chapter 3 - Part 1 31

Delay reduction for the 4-bit
Carry Lookahead adder: Consider last stage

A3B3

C3

C4

G3

P3

S3

• Delay from {A,B, C0} to S3 (sum from last bit) is
3 ns (in XOR1) + max (delay of P3, Delay of C3)

•C3 = G2 + P2G1 + P2P1G0 + P2P1P0 C0

3 ns for inputs to SOP
+ 1 ns for the AND (Product)
+ 1 ns the OR (Sum)

5 Gate delays for C3

Critical delay path
= 3 + max (3,5) = 3 + 5 = 8 ns
(Regardless of the # of stages!!)

Vs 12 ns for the 4-bit carry ripple adder

Delay = ?

Last stage of the CLA 4-bit adder

3

3

5

All Ps are calculated simultaneously

XOR1

Ps are the slowest
Inputs to the SOP
(3 ns)

1

1

1

Chapter 3 - Part 1 32

Adder/Subtractor Combined Hardware
In Signed 2’s Complement Notation

 Only one adder computes A + B or A– B, as specified by Sub/Add I/P
 For Control input = 0 (add):

B is passed through to the adder as is, C0 = 0

i.e. result = A+B
 For Control input = 1 (subtract):
 2’s complement
of B is obtained using
XORs to form
the 1’s comp, + 1
applied to C0 of
1st stage

 A + 2’s comp. of B,
i.e. result = A-B

Subtract/Add

Where is the sign bit?

All inputs and result are
represented in the
2’s Complement
Notation

A +/- B

Control I/P

= 1 when
the 2 end carries
are different

17

Chapter 3 - Part 1 33

BCD Decimal Adder

A circuit that adds two decimal digits (0-9)
(in BCD) with a possible carry input and gives
the sum as a BCD + a carry out

9 inputs, 5 outputs

6
2

8

+

0
carry

BCD Adder Stage
(1 BCD Digit)

44

4

0

7
4

2

+

1
carry

1
9
9

8

+

1
carry

0

Cin

Cout

= 12 (>9) = 18 (>9)= 8 (<9)

BCD

BCD

34

Using a standard 4-bit binary adder -
What changes are needed?

 For sums  1001
binary and BCD
are identical- No
correction

 For sums  1010 ,
we should subtract
10)d and send a
carry to next
BCD stage

 Instead of
subtracting 10)d, =
1010, we add its
2’s complement
which is 0110

 Use the binary
adder o/ps to
determine if
correction is
needed

sum

adderadder

Binary
Carry BCD

Carry

Required BCD Performance

Id
en

ti
ca

l-
N

o
 C

h
an

g
e

C
o

rr
ec

ti
o

n
s

N
ee

d
ed

For sum  10
Subtract 10 (add 6) and set Carry

Binary Adder Performance

18

35

BCD decimal adder

Numbers that need correction (add 6) are:
K Z8 Z4 Z2 Z1
0 1 0 1 0 (10)
0 1 0 1 1 (11)
0 1 1 0 0 (12)
0 1 1 0 1 (13)
0 1 1 1 0 (14)
0 1 1 1 1 (15)
1 0 0 0 0 (16)
1 0 0 0 1 (17)
1 0 0 1 0 (18)
1 0 0 1 1 (19)

C = K + Z8Z4 +Z8Z2

0

To next BCD Stage

(Add 0 or 6)

Binary
Carry

BCD
Carry

Correction
Decision

BCD Carry = 0  Add 0
= 1  Add 6

36

Binary Multiplier

 Binary multination is done in the same way
as decimal multiplication.

Multiplicand is multiplied by each bit of the
multiplier. Shift results 1-bit for each bit of
multiplier. Add.

19

37

Binary Multiplier: 2-bit x 2-bit

multiplier

multiplicand
multiplicand

m
ul

tip
lie

r

C = A * B

C does not
stand for Carry here

38

4-bit by 3-bit Binary Multiplier

B3 B2 B1 B0
A2 A1 A0

0 A0B3 A0B2 A0B1 A0B0

A1B3 A1B2 A1B1 A1B0

A2B3 A2B2 A2B1 A2B0

0

Carry

Carry

S1S2S3 S0

S1S2S3 S0

Carry

C6 C3C4C5 C2

Largest Results:
15 x 7 = 105

(7 bits are enough)

20

39

4-bit Magnitude Comparator

xi = bit equality
= x XNOR y

LSB

LSB

LSB

A=0111
B=0010

A > B: if

A3>B3
or
A3=B3 & A2>B2
or
A3=B3 & A2=B2 & A1>B1
or
A3=B3 & A2=B2 & A1=B1 & A0>B0

A3>B3

A3<B3

A3=B3
Based on
Bit-level
Operations

MSB

An alternative way
(from the other
two outputs?)

40

4-bit Magnitude Comparator

for an n-bit comparator

(Bit-level Operations)

21

Chapter 3 - Part 1 41

Other Combinational Logic Functions

 Functions & Functional Blocks that
implement them

• Enabling

• Encoding, Encoding with Priority in mind

• Decoding, Demultiplexing (Data routing)

• Multiplexing (Data selecting)

 Implementing any combinational function using:

• Decoders & OR gates

• Multiplexers (with inverters if needed)

 MSI Functional Block Applications

Chapter 3 - Part 1 42

Functions and Functional Blocks

 We consider here functions that are useful in
designing and building other (higher-level)
combinational and sequential circuits

 Such functions may exist as functional blocks

• In the past, many such blocks were implemented as
discrete integrated circuits (ICs): SSI (small scale
integration), MSI, and LSI e.g. the 7483 is a 4-bit CLA
adder, 74157 is a 4-bit Multiplexer

• Today, they are often available as components in a
design library for use within larger VLSI circuits

22

Chapter 3 - Part 1 43

1. Enabling Function

 Enable: Allow an input signal to pass through to
an output

 Disable: block an input signal from passing through to an
output, replacing it with a fixed state. This could be HiZ,
1, 0, depending on the gate used)

 Later we use the enable function to implement decoders and
multiplexers

 Two Examples: EN = 1  Enable, EN = 0  Disable

• When I/P disabled, output = 0

• When I/P disabled, output = 1

Tri-State Buffer

Chapter 3 - Part 1 44

Encoding & Decoding

m

Encoder: For each unique
activated input line, Generate
the corresponding code

Decoder: For each input code,
Activate the unique
corresponding output line

Decoder
n

Input
Code

Output
Lines

Encoder
nm

Code of
activated
line

I/P Lines
(only
one active
at a time)

Only the
line
Corr. to the
I/P code is
activated

n-to-m
decoder

Smallest
decoder is?

Will start with Decoding

m = 2n

For full
Decoders/Encoders

Encoder is the opposite of Decoder

23

Chapter 3 - Part 1 45

 A decoder converts an n-bit input code to a unique
state on m outputs where
2 m  2n (with m = 2n we call it a Full Decoder)

 For each valid input code, only one unique output
line is activated

 Decoder functional blocks:
• Are called n-to-m line decoders, where m 2n, and

• Generate 2n (or fewer) minterms from the n input
variables

2. Decoding Decoder
n m

Code
Input

Output
Lines

Chapter 3 - Part 1 46

Decoder Design: 3-to-8 Example
Direct Approach: Generate All Minterms of the code I/Ps

m0

m7

0

1

1

LSB

For this input combination,
Which is the
Output that will be 1?

Function Table
Notice that each output line
is the minterm corresponding to
the input code, e.g. D5 is m5

24

Chapter 3 - Part 1 47

 1-to-2-Line Decoder

1 to 21 - The simplest

Decoder

 2-to-4-Line Decoder

 Note that the 2-4-line
made up of 2 1-to-2-
line decoders and 4 AND gates.

Hierarchical Decoder Design (Decoder Expansion)
Using simpler decoders to build more complex ones

A D0 D1

0 1 0

1 0 1

(a) (b)

D1 5 AA

D0 5 A

A1

0

0

1

1

A0

0

1

0

1

D0

1

0

0

0

D1

0

1

0

0

D2

0

0

1

0

D3

0

0

0

1

(a)

D0 5 A 1 A 0

D1 5 A 1 A 0

D2 5 A 1 A 0

D3 5 A 1 A 0

(b)

A 1

A 0

=

=

=

=

=

=

4 minterms
1-2 Decoder

4 AND Gates

Decoder Expansion
1-2 Decoder

1

0
1

For the 2-to-4: Logically, we get same
Circuit of the formal design
(the 4 minterms!)

Enabling/Disabling Block of ANDs

LSB

1-to-2 Decoder

Basic 1-to-2

Controlling 1-to-2

MSB

Chapter 3 - Part 1 48

 Use the EN input to open/close the minterm-forming gates

 See truth table below for function

• Note use of X’s to denote both 0 and 1 at the inputs
• Combination containing two X’s represent four input binary

combinations
EN

A 1

A 0

D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0

1

1

1

1

X

0

0

1

1

X

0

1

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

(a)

n-to-m Decoder with Enable (EN)

Decoder is disabled

Decoder Enabled:
Normal Operation

4 minterm-forming & Enabling gates

We better design each decoder to have its own enable input!

2-to-4 with Enable

All 0s (Disabled)

2-to-4 with Enable:
Disabled decoder has all outputs = 0
 Allows simple expansion e.g. to 3-to-8
 Also, will use to make a demultiplexer (see later)

25

Chapter 3 - Part 1 49

Decoder Expansion
Example: 3-to-8 from two (2-to-4 with EN)

• Using two 2-to-4
decoders
& one 1-to-2 decoder

1-to-2
decoder

Top 2-to-4
decoder

Bottom 2-to-4
decoder

Top

Bottom

D0

D1

Chapter 3 - Part 1 50

2-to-4 Decoder With Enable
Polarities for E and O/Ps can be reversed
Note: Here polarity of the Enable I/P and the
decoder outputs is reversed….

Decoder is activated
with E = 0 - Not 1

NAND Gates (not ANDs):
 Selected Decoder O/P = 0 (not 1)

Correction

26

Chapter 3 - Part 1 51

4. Encoding

 Encoding - the opposite of decoding

 An encoder converts m input lines to an
n-bit output code where 2  m  2n - such
that each activated input line produces the
corresponding unique output code

 If the input lines have exactly only one
active line (e.g. at logic 1)  output is the
binary code corresponds to the position of
that input (exact opposite of decoder)
• If not, we need to consider priority

Encoder
nm

Code
of active
line

I/P Lines
(1 active)

What is the smallest
Encoder?

Chapter 3 - Part 1 52

Example: 8-to-3 Encoder

• Inputs (D0, …, D7): 8 lines corresponding to
digits 0 through 7

• Outputs (A2, A1, A0) : 3 bits of the binary code
• Function: If the ith input line Di is a 1, the output

(A2, A1, A0) = the binary code for i
• Initially for simplicity:

Assume that at least one and only one of the
8 inputs is active at any given time. So we have
only 8 valid input combinations out of the
28 = 256 possible combinations. Remaining
rows are don’t care  simplifies the design
considerably

Encoder
38

I/P Lines
(1 active)

Code

27

Chapter 3 - Part 1 53

 Equations:
A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7

Example: 8-to-3 Encoder
Octal-to-binary encoder

The 256-row
truth table is
thus reduced to
only these 8
valid rows

Assuming
only 1 (and at least 1)
Input line being
active at a time

Ambiguities arise if conditions above are not met:

1. O/P = 000 for: D0 active, also for no active line
2. If two lines become active simultaneously, O/P

code is wrong (represents neither of them!)
e.g. if both D3 and D6 are active, output=111
(wrong)  So, We need priority encoding….!

Encoder
3

8
I/P Lines
- At least 1
- Only 1 at a timerestrictions

Chapter 3 - Part 1 54

Priority Encoder

 If none or more than one input line is active (at logic 1),
then the encoder just described does not work properly

 An encoder that can accept all possible combinations
of input values and still produces meaningful output
is called a priority encoder

 Among all the 1s that appear at the I/Ps
simultaneously, it selects the “1” I/P having the highest
designated priority and produces its corresponding
binary code- ignoring all other lower-priority “1”s that
may exist with it.

 So the code generated is for the input of the highest
priority that is active (=1) (all higher priority inputs = 0),
regardless of the state of all lower priority inputs

28

Chapter 3 - Part 1 55

4-to-2 Priority Encoder
Example: 3  Higher Priority 0

Should be 24 = 16 rows/cells
in total!

K-map cells
Included

0
1
2,3
4,5,6,7
8,9,10,11,12,13,14,15

“Valid”
O/P
(= OR
of all
I/Ps)

A1 map A0 map

Note the difference
Between a don’t care (X)
in the inputs and a don’t
care (X) in the outputs!

LSB
Higher Priority

Lower:

Xs

Higher:

0s

Encoder
24I/P Lines

(no restrictions)
V

0 1 3 2

4 5 6 7

8 9 11 10

12 13 15 14

Chapter 3 – Par 56

4-to-2 Priority Encoder Example

V = D0 + D1 + D2 + D3

O/P
Code

Validity
1 = O/P Code
Valid

29

Chapter 3 - Part 1 57

5. Selecting (Multiplexing): 2n-to-1

 A multiplexer (MUX) selects one of 2n data input lines
based on an n-bit address, directing it to one output line

 A typical multiplexer has:
• 2n Information inputs (I(2n

– 1), … I0) (to select from)

• n Select (control or address) inputs (Sn - 1, … S0) (to select with))

• 1 Information output Y (to select to)

 Will implement it using a decoder, see next slide

 MUX selection circuits can be duplicated m times
(with the same selection controls) to provide m-wide
data widths, e.g. select one of four input bytes

using 8-wide 4-to-1 MUX

4-to-1 MUX

Chapter 3 - Part 1 58

The Simplest Multiplexer
n = 1  21-to-1 MUX

 The single selection variable S
has two values:
• S = 0 selects input I0
• S = 1 selects input I1

 3-input K-map optimization gives
the output equation:

 The circuit:
 Can also be seen As:

1-to-2 decoder

+ Enabling

+ Selection S

I0

I1

Decoder
Enabling
Circuits

Y

Truth Table

2n Minterms

Selection

2n I Inputs

OR

30

Chapter 3 - Part 1 59

Example: 4-to-1-line Multiplexer, Using

 2-to-4 decoder +

4  2-I/P AND-OR for Enabling/Selection

Size of the Select
Inputs = Log2 (4)

2-to-4 Decoder

4
In

fo
rm

at
io

n
I/P

s

1 O/P

2 Select
I/Ps
To MUX

But here the Decoder
gates are merged With
gates for MUX
information selection!

Or merged
Design

Chapter 3 - Part 1 60

1. Duplicating the MUX in Width: m-wide 2n-to-1 MUX
Example: Quad 2-to-1 MUX with E

A4

4

4

B

Y

1-to-2 Decoder
(for 2-to-1
Selection)

Enable here is
Active Low or
Active High?

S (select)
=0 ?, = 1 ?

I0

I1

E

Importance of labeling
inputs and outputs

2-to-1 Selection Logic
(Repeated
4 Times)

Selection
Capability
Is the same

Only widths extended

Or:
4 Layers
of 2-to-1
MUXs
2 1

Quad
2-to-1

One 2-to-1
(two 4-bits I/Ps)

31

2. MUX Expansion: Expanding the selection capability
Example: Using 2-to-1 MUXs to do 4-to-1 Muxing

Selection with the
higher significant bits
(I0, I1) or (I2,I3)

Selection with the
lower significant bits
(I0 or I1)/(i2 or I3)

How many 2-to-1 MUXs do you need?

Chapter 3 - Part 1 62

3. Demultiplexer- Opposite of Multiplexer

Multiplexer
Demultiplexer

MUX
De
MUX

MUX: Many-to-One One-to-Many



A decoder with Enable is
Called a:
Decoder/Demultiplexer

DeMUX

A device that moves data
arriving on a single input (E)
to one of m outputs (Ds)
determined by the value of
(log2 m) select inputs (As)

(Select Source Line) (Select Destination Line)

32

Chapter 3 - Part 1 63

 From Truth Table, decoder can be viewed as
distributing the value of the EN input to 1 of 4 outputs

 From this perspective, it is a Demultiplexer !

EN

A 1

A 0

D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0

1

1

1

1

X

0

0

1

1

X

0

1

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

(a)

2-to-4 Decoder with Enable
= 1-to-4 Demultiplexer!

Decoder is disabled No 1’s

Normal
Decoder
Operation

1 Data Input

2
A

d
d

re
ss

 I
/P

s

The 4 Data
Outputs4

Minterms

Chapter 3 - Part 1 64

Implementing Combinational Functions
Using Functional Blocks

 Two implementation techniques from the SOm
canonical form (no simplification):

• Using a Decoder + OR gates

• Using a Multiplexer + Inverters (if needed)

We always said Canonical forms give complex
implementations!

But now we have most of the complexity
“hidden” inside the “ready-made” function
block !! (e.g. decoder or MUX)  Utilize it!

33

Chapter 3 - Part 1 65

1. Using a Decoder + OR Gates:
From Canonical Form:
Truth Table (or  m Form)

 Functions of n inputs and m outputs:
• Specification:
 As a Truth Table (has n input columns and m output columns)
 or m SOm expressions [m(…)]

• Implementation requires:
 One n-to-2n-line decoder
 m “OR” gates: one gate for each output

• Procedure:
 From the truth table:
For each output: For a ‘1’ in truth table row (i), connect the
corresponding Di output of the decoder to the OR of that output
Or  From the m minterm expression [m(…)]:
Connect the decoder Di outputs corresponding to the minterms
of each output to the OR of that output

Combinational
Function

m
Outputs

n
Inputs

Chapter 3 - Part 1 66

Decoder + OR Gates: Example
1-bit adder (with carries at I/P and O/P)

3 Inputs 2 OutputsLSB

LSB

3 I/Ps and 2 O/Ps: 2 SOm expressions
We need:
 3-to-23 Decoder
 2 “OR” gates of appropriate # of inputs

)7,4,2,1()z,y,x(S m
)7,6,5,3()z,y,x(C m

Larger # of 1’s require larger
ORs. If so, Consider
expressing F and using a
NOR instead of the OR!

34

Chapter 3 - Part 1 67

 Implementing a logic circuit of n inputs and m outputs
requires:
• Specification: Truth table, or Som or PoM forms

• Implementation: Use m x 2n-to-1 multiplexer

 Design:
• In the same order they appear in the truth table:

 Apply the n input variables to the MUX select inputs Sn-1, … , S0

(i.e. Observe bit significance, i.e. LS variable goes to S0)

 Label the outputs of the multiplexer with the output variables

• Value-fix the I inputs to the multiplexer using the values
from the truth table. For don’t cares, use either 0 or 1.

Using Multiplexers:
from Truth Table, or canonical Form

Example: 5 input, 3 output circuit:
Need 3 x 25-to-1 MUX

Chapter 3 - Part 1 68

Using Multiplexers: Example:
1. Conventional approach, n inputs  Use 2n-to-1 MUX

3 Inputs 1 Output  23-to-1 MUX
LSBRow

Index

LSB

MUX Output

MUX
Information
I/Ps (8) Importance of labeling

inputs and outputs
What if we have 2 outputs?
We use a dual (i.e. x 2) 8-to-1 MUX

Select

Order 
Is important

Order 
Is important

35

Chapter 3 - Part 1 69

Using Multiplexers: Example: Full adder-
2. Smarter approach uses a smaller MUX:

n input variables  Use 2n-1-to-1 MUX (1/2 previous size)

Use ½ the MUX size needed earlier: 22-to-1 MUX
Connect MS 2 input variables to select, and express F as 1, 0, Z, or Z

for each value of XY and apply to the I inputs of the MUX.

3 Inputs Output

XY
Index

LSB

0

1

z

z

LSB

What if we have 2 outputs?
We use a dual 4-to-1 MUX

Chapter 3 - Part 1 70

Using Multiplexers: Example
F (A,B,C,D) = m(1,3,4,11,12,13,14,15)

16 rows in truth table
 16-to-1 MUX
(conventional
approach)

But using the more
efficient
approach … will use
only an 8-to-1 MUX
+ 1 inverter

36

Designing MUXes
Using 3-State Buffers for Selection

Chapter 1 71

1-to-2
Decoder

2-to-1 MUX

2 Tri-State Buffers

4-to-1 MUX
O/Ps
Connected
( Effectively

an OR gate)

O/Ps
Connected
( an OR gate)

This replaces the selection network:

Design Examples Using MSI Combinational Functional Blocks

1. Adding three 4-bit numbers

2. Adding two 16-bit numbers using 4-bit adders

3. Building a 4-to-16 Decoders using several 2-to-4
Decoders (with Enable)

4. Selecting the larger of two 4-bit numbers

5. BCD to Excess-3 Code Converter using binary
decoders and encoders only

6. Building multi-function combinational circuit (e.g. a
cct that adds, subtracts, doubles, etc. according to a
set of function select I/Ps)

Important in these problems: Must Label Clearly all inputs/Outputs
of all function blocks

37

Example 1: Adding three unsigned 4-bit digits

Problem: Add three 4-bit numbers (X, Y, Z)
using 2 standard MSI 4-bit adders

Solution:
Let the numbers be X3X2X1X0, Y3Y2Y1Y0,
Z3Z2Z1Z0 ,

X3X2X1X0

+ Y3Y2Y1Y0

C4 S3S2S1S0

S3S2S1S0

+ Z3Z2Z1Z0

D4 F3F2F1F0

Note: C4 and D4 are generated in digit position 4. They must be added
in the same position to generate the most significant bits of the result

SC

64
59 +

123
89 +

2121

Decimal Example:
64 + 59 + 89

Adding three unsigned 4-bit digits

6-bit Result

the 2 carries

15
+15
+15

45

 Needs 6 bits

X Wrong

38

Chapter 3 - Part 1

Example 2: Adding two 16-bit numbers using a number
of 4-bit adders

Solution:

Four 4-bit adder blocks are connected
in cascade, with carries rippling in
between

0

Example 3:
Design a 4-to-16 Decoder
Using a number of 2-to-4 Decoders (each with Enable)

Problem: Design a 4-to-16 Decoder using
a number of 2-to-4 Decoders with
Enable

Solution:
- Four 2-to-4 decoders are fed with A1

A0 (in parallel) to generate the 16
output lines

- The remaining 2 input lines A3 A2

drive a 5th 2-to-4 decoder to select

(Enable) one of the 4 decoders to
perform decoding for its group of 4 lines

A3 A2 A1 A0 Active
Output

0 0 0 0 D0

0 0 0 1 D1

0 0 1 0 D2

0 0 1 1 D3

0 1 0 0 D4

0 1 0 1 D5

0 1 1 0 D6

0 1 1 1 D7

1 0 0 0 D8

1 0 0 1 D9

1 0 1 0 D10

1 0 1 1 D11

1 1 0 0 D12

1 1 0 1 D13

1 1 1 0 D14

1 1 1 1 D15

A3A2 = 00

A3A2 = 01

A3A2 = 10

A3A2 = 11

Common to all 4
2-to-4 decoders

Select 1 of the 4
2-to-4 decoders

39

4-to-16 Decoder

2x4
Decoder

D0

D1

D2

D3

A0

A1

2x4
Decoder

D4

D5

D6

D7

A0

A1

2x4
Decoder

D8

D9

D10

D11

A0

A1

2x4
Decoder

D12

D13

D14

D15

A0

A1

2x4
Decoder

A2

A3

E

D0

D1

D2

D3

E
Enable for the
full 4-to16 decoder

LS I/P Bits are
Common to all
Output MUXs

A0

A1

Example 4:
Hardware that compares two unsigned 4-bit numbers
and selects (passes) the smaller of the two to the O/P

Solution: We will use a magnitude comparator and a
Quad 2-to-1 MUX.

Only 1 bit
Active at a
time

MSI
Block

S

Always mark inputs
& be careful with assigning
Them!

40

Example 5: BCD to Excess-3 Code Converter using
a decoder and straight binary encoder

BCD: 0 - 9

Excess-3:
3 - 12

Index
0
1
2
3
4
5
6
7
8
9

Excess-3BCD

Does it need to
be a Priority
Encoder?

Example 6: Building multiple-function
combinational circuit (e.g. add, subtract, Max, ..)

n
 m

-t
o-

1
M

U
X

n
O

I0

I1

Im-1

Function selection
Log2 (m) bits

Functional
unit mn

n

nInputs

Functional
unit 2n

n

nInputs

Functional
unit 1n

n

nInputs

General Architecture of an
m-function combinational
circuit with n-bit data width

add

subtract

Select 1 of the
m functions

etc.

S1S0 O is equal to

00 Max(A, B)

01 Min(A, B)

10 2  A

11 A – B

n-wide m-to-1 MUX

Example Function Table

S1S0

