# EE 200: Digital Logic Circuit Design 

Dr Radwan E Abdel-Aal, COE

## Unit 3 <br> Combinational Logic

- Introduction to Analysis \& Design with Examples
- Arithmetic Functions and Circuits
- MSI Functional Blocks: Decoders, Encoders, etc.
© 2004 Pearson Education, Inc.
Terms of Use
(Hyperlinks are active in View Show mode)


## Unit 3: Combinational Logic (CL) Design Contents

1. Procedures for Analysis and Design of CL circuits. Example: BCD to Excess-3 Code Converter
2. Iterative Arithmetic Circuits: Half \& Full adders, Ripple Carry Adder, Carry Look-ahead adder
3. CL MSI Functional Blocks: Decoders, Demultiplexrs, Encoders, Multiplexers, in addition to adders/subtractors, Decimal Adder, Magnitude comparator
4. Implementing combinational functions using: Decoders and Multiplexers

## Combinational Logic Circuits

- A combinational logic circuit that has:
- A set of $m$ Boolean inputs,
- A set of $n$ Boolean outputs

Performs $n$ logic functions, each mapping the $2^{m}$ input combinations to an output

- Outputs are determined only by the present inputs (appearing after some delay)
- No feedback paths
- No memory elements

Each Output $=F$ (the $m$ inputs)


Luple and Camputsr Denlgn Fundamantals


## CL Circuit Analysis Procedure:

Analysis:
Given:
a CL Circuit* (logic diagram),
Determine:
the logic function implemented by the circuit
We can describe such a logic function by:

- A set of Boolean Equations, or
- A truth table, or
- A word description
*Ensure circuit is combinational: It should not have O/P to I/P feedback through storage elements


## 4-Step Procedure to get O/P Function:

1. Label the outputs of gates that are functions of only the circuit inputs and obtain the Boolean function of each output
2. Label the outputs of gates that are functions of the inputs and the
 outputs of gates in step 1, and obtain the Boolean function of each output
3. Repeat 2 until you obtain the final output of the circuit
4. Use direct substitution to determine each output as a function of the external circuit inputs, e.g. as a SOP

## O/P Function: Example



## Truth Table: Example



## CL Design Procedure: 5 Steps

## Given:

A specification of required functionality (as a Word description, Truth table, Boolean Equations),
Determine:
The logic diagram for an optimal circuit that provides the functionality

1. From the Specification given, determine the number of inputs, number of outputs and label them
2. Work out the truth table specification for each output (if not given)
3. Obtain an optimized* logic expression for each outputs (using K-maps etc.). Global optimization if multiple outputs
4. Get logic diagram and truth table of circuit used and verify that it fulfils the required specification - manually or using a simulator
5. Implement with a universal gate if required
*Note: In practice, other physical parameters need also to be optimized and verified, e.g. propagation delay, area on the chip, power consumption, etc.

## Design Example: <br> BCD to Excess 3 Code Converter

## Specifications

- The circuit should convert a BCD input code (decimal digits 0-9) to the corresponding Excess-3 code
- Inputs: BCD code words for digits 0 through 9: 4-bit patterns 0000 to 1001, respectively
- Outputs: Excess-3 code words for digits 0 through 9: 4-bit patterns obtained by adding 3 (binary 0011) to each BCD code input
- Utilize Don't cares!

Lupic suic Cumputer Denign Fundanautals
Pawarpain siltiss
-snas Peurrun Eduration ine

## Design Example: BCD to Excess 3 Code Converter

1, 2: Formulation

- How many outputs we need? Name them
$\rightarrow$ The Truth Table
- I/P Variables
- BCD:

A,B,C,D

- O/P Variables
- Excess-3 W,X,Y,Z
- Don't Cares
- BCD codes 1010 to 1111
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Index } & \begin{array}{c}\text { Input BCD } \\ \text { A B C D }\end{array} & \begin{array}{c}\text { Output Excess-3 } \\ \text { WXXYZ }\end{array} \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & & 0 & 0\end{array}\right)$


## Design Example 1: <br> BCD to Excess 3 Code Converter



## Design Example 2: <br> BCD to Excess 3 Code Converter

## 3. Contd. Global Logic Optimization

b. Further optimization through multi-level, from:
$\mathbf{W}=\mathbf{A}+\mathbf{B C}+\mathbf{B D}$
$\mathbf{X}=\overline{\mathbf{B}} \mathbf{C}+\overline{\mathbf{B}} \mathbf{D}+\mathbf{B} \overline{\mathbf{C}} \overline{\mathbf{D}}$
$\mathbf{Y}=\mathbf{C D}+\overline{\mathbf{C}} \overline{\mathbf{D}}$
$\mathbf{Z}=\overline{\mathbf{D}}$

For circuits having
Multiple Outputs (here 4)

- By taking common factors:

Let $\mathrm{T}_{1}=\mathrm{C}+\mathrm{D}$
$\mathrm{W}=\mathrm{A}+\mathrm{BT}_{1}$
$\mathrm{X}=\overline{\mathbf{B}} \mathrm{T}_{1}+\mathbf{B} \overline{\mathbf{C}} \overline{\mathbf{D}}$
$\mathbf{Y}=\mathbf{C D}+\overline{\mathbf{C}} \overline{\mathbf{D}}$
$\mathbf{Z}=\overline{\mathbf{D}}$
Simpler but non-standard Form (no longer SOP, i.e. > 2 logic levels-
(multi-level logic)
$\rightarrow$ Now (C+D) is generated only once and used by the 2 outputs $\mathrm{W}, \mathrm{X}$ !

## Design Example 2: BCD to Excess 3 Code Converter

Let $\mathrm{T}_{1}=\mathbf{C}+\mathrm{D}$
$\mathbf{W}=\mathbf{A}+\mathrm{BT}_{1}$
$\mathbf{X}=\overline{\mathbf{B}} \mathrm{T}_{1}+\mathbf{B} \overline{\mathbf{C}} \overline{\mathrm{D}}$
$\mathbf{Y}=\mathbf{C D}+\overline{\mathbf{C}} \overline{\mathbf{D}}$
$\mathbf{Z}=\overline{\mathbf{D}}$


Multilevel (non-standard) implementation
Optimizes the logic but can increase propagation delay

## Design Example 1: BCD to Excess 3 Code Converter

4. Verification- Get the truth table of the actual circuit implemented (analysis) and show it satisfies the specified truth table:

| Input BCD | Output Excess3 |
| :---: | :---: |
| ABCD | WXYZ |
| 0000 | 0011 |
| 0001 | 0100 |
| 0010 | 0101 |
| 0011 | 0110 |
| 0100 | 0111 |
| 0101 | 1000 |
| 0110 | 1010 |
| 0111 | 1011 |
| 1000 | 1100 |
| 1 | 001 |

[^0]
## Arithmetic Combinational Circuits: Iterative Cells (Repeated - in space or time)

- Practical Arithmetic Functions:
- Operate on binary bit vectors (e.g. a 32-bit adder adds two 32-bit numbers and produces a 32-bit sum)
- Use same basic sub-function for each bit position
- Designing circuits that handle the I/P vectors directly can be very difficult (large \# of inputs \& outputs! $\rightarrow$ large K-maps, Huge truth tables!)
- Solution: Design functional block for sub-function (e.g. for a bit) and repeat it (iterate it, reuse it) to obtain a functional block for the overall operation
- Cell = sub-function block
- Iterative array = An array of interconnected such cells

- Number of inputs = ? (K-map size)
- Truth table rows = ?
- Equations in up to ? input variables
- Equations with a huge number of literals
- Flat Design: impractical!
- Iterative array takes advantage of regularity to make designs more feasible


## Functional Blocks: Addition

- Binary addition is used frequently in computers
- "Adder" Design:
- 1-bit adder cell (i.e. does the addition for 1 digit)
- Half-Adder (HA), a 2-input bit-wise addition functional block
- Full-Adder (FA), a 3-input bit-wise addition functional block
- For an n-bit iterative adder: Combine n 1-bit FA adder cells together- Two ways:
- Ripple Carry Adder (RCA): Carry ripples through the adder from LSB to MSB $\rightarrow$ slows down the addition operation
- Carry-Look-Ahead Adder (CLA), Speeds up addition by letting each bit stage generate its carry input from scratch (i.e. from the input numbers directly) to avoid waiting for the carry to ripple through all previous stages
Chapter 3 - Part


## The Functional Blocks: Half-Adder (HA)

- A 2-input (no carry input), 1-bit wide binary adder that performs the following computations:

$$
c^{c} \cdot \mathrm{~s}
$$

- A half adder adds two bits, giving two outputs: S \& C
- The result is expressed as a sum bit $S$ and a carry bit $C$
- The half adder can be specified by the truth table $\Rightarrow$


## Logic Simplification: Half-Adder (HA)

- The K-maps for S, C are:

- By inspection:

| X | Y | S | C |
| :--- | :--- | :--- | :--- |
| 0 | $\mathbf{0}$ | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |


(a) $\begin{aligned} S & =x y^{\prime}+x^{\prime} y \\ C & =x y\end{aligned}$
$\mathbf{C}=\mathbf{X} \quad \mathbf{Y}$

(b) $S=x \oplus y$ $C=x y$

## Functional Block: Full-Adder

- A full adder is similar to a half adder, but includes a carry-in bit from the lower stage. Like the half-adder, it computes a sum bit, $S$ and a carry bit, $C$.

- For a carry- in
(Z) of 1 :


$$
\begin{array}{rrrrr}
\mathrm{Z} & 1 & 1 & 1 & 1 \\
\mathrm{X} & 0 & 0 & 1 & 1 \\
+\mathrm{Y} & +0 & +1 & +0 & +1 \\
\hline \mathrm{C} \mathrm{~S} & \mathbf{0 1} & 10 & 10 & 11
\end{array}
$$

pownp. Co silit

## Logic Optimization: Full-Adder



## Full-Adder (FA): Implementation Using two Half-Adders (HAs) + OR Gate



## Worst Case (Critical Path) Propagation Delay for a FA Stage

## Assume: <br> XOR: 3 standard gate delays <br> OR: 1 standard gate delay, AND: 1 standard gate delay

critical delay path for the FA


Path from input ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ) to S is the critical path (largest delay to output) Hence propagation delay is 6 standard gate delays
If this gate delay is $5 \mathrm{~ns} \rightarrow$ FA propagation delay $=6 \times 5=30 \mathrm{~ns}$.

- How many additions per sec??

Lople Bid Cumputer Denign Fundumantals
Powarpainfo slitess

## 4-bit binary adder block using 4 FA stages 1. The ripple carry approach (simple but slow)

- Mimics what we do when adding multiple bits with paper and pencil
- Carry output from FA stage $i$ is fed
as carry input to FA stage (i+1) $\frac{+0011}{1110}$

| Subscript $\boldsymbol{i}:$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input carry | 0 | 1 | 1 | 0 | $C_{i}$ |
| Augend | 1 | 0 | 1 | 1 | $A_{i}$ |
| Addend | 0 | 0 | 1 | 1 | $B_{i}$ |
| Sum | 1 | 1 | 1 | 0 | $S_{i}$ |
| Output carry | 0 | 0 | 1 | 1 | $C_{i+1}$ |

## 4-bit Ripple-Carry Binary Adder

- Four-bit Ripple Carry Adder made from four 1-bit Full Adder cells:


Problem: Carry has to ripple through till the end stage for the final result to appear $\rightarrow$ Slow addition speed for large number of stages (bits) $n$
$\qquad$

## 4-bit Ripple-Carry Binary Adder Propagation Delay Analysis

Total Worst Case Delay $=3+2+2+2+3=12$ gate delays $=6+(n-1) 2, n=4$ stages


Powarpaint Slides


## Carry Lookahead Binary Adder

Speed up at the expense of more complex hardware

- $\mathrm{C}_{\mathrm{i}+1}$ outputs by all stages are derived in parallel with a set of equations using $A, B, C 0$ inputs only
- Beginning at cell 0 with carry in $\mathrm{C}_{0}$ :

Note: All $\mathrm{P}_{\mathrm{i}}, \mathrm{G}_{\mathrm{i}}$ are functions of $\left(A_{i}, B_{i}\right)$ Only!
$\checkmark \quad \mathrm{C}_{1}=\mathrm{G}_{0}+\mathrm{P}_{0} \mathrm{C}_{0} \quad$ (No change)
$\mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{C}_{1}=\mathrm{G}_{1}+\mathrm{P}_{1}\left(\mathrm{G}_{0}+\mathrm{P}_{0} \mathrm{C}_{0}\right)$
$\mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{0}$
$\mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{C}_{2}=\mathrm{G}_{\mathbf{2}}+\mathbf{P}_{2}\left(\mathrm{G}_{1}+\mathbf{P}_{1} \mathbf{G}_{\mathbf{0}}+\mathbf{P}_{1} \mathbf{P}_{0} \mathrm{C}_{0}\right)$
$\checkmark \quad \mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{0}$



## 4-bit Carry Lookahead Adder: A+B = C4 S

Inputs:
A: A3....A0

B: B3...B0
Carry In: C0



## Delay reduction for the 4-bit Carry Lookahead adder: Consider last stage



Vs 12 ns for the 4-bit carry ripple adder

## Adder/Subtractor Combined Hardware In Signed 2's Complement Notation

- Only one adder computes A + B or A-B, as specified by Sub/Add I/P
- For Control input = 0 (add):
$B$ is passed through to the adder as is, $\mathrm{C}_{0}=0$ i.e. result $=\mathbf{A}+\mathbf{B}$
- For Control input = 1 (subtract):

All inputs and result are represented in the 2's Complement Notation
$\rightarrow$ 2's complement of $B$ is obtained using XORs to form the 1's comp, + 1 applied to $\mathrm{C}_{0}$ of $1^{\text {st }}$ stage
$\rightarrow$ A + 2's comp. of $B$,
i.e. result $=\mathbf{A}-\mathrm{B}$


## BCD Decimal Adder



## A circuit that adds two decimal digits (0-9) (in BCD) with a possible carry input and gives the sum as a BCD + a carry out

9 inputs, 5 outputs

carry

PRWarpainf Silidss
O2nas Parnul Edasation ine

## Using a standard 4-bit binary adder What changes are needed?



## BCD decimal adder

Numbers that need correction (add 6) are:
K Z8 Z4 Z2 Z1



Fig. 4-14 Block Diagram of a BCD Adder

## Binary Multiplier

Binary multination is done in the same way as decimal multiplication.

Multiplicand is multiplied by each bit of the multiplier. Shift results 1-bit for each bit of multiplier. Add.

| Multiplicand | 1011 | 11 |
| :--- | ---: | ---: |
| Multiplier | $\frac{101}{1011}$ | 5 |
| Partial Products | $0000-$ |  |
|  | $\frac{1011--}{110111}$ | 55 |

## Binary Multiplier: 2-bit x 2-bit

| multiplicand multiplier | $B_{1}$ | $B_{0}$ |
| :---: | :---: | :---: |
|  | $A_{1}$ | $A_{0}$ |
|  | $A_{0} B_{1}$ | $A_{0} B_{0}$ |
| $A_{1} B_{1}$ | $A_{1} B_{0}$ |  |
| $C_{3} \quad C_{2}$ | $C_{1}$ | $C_{0}$ |

$C=A$ *

C does not stand for Carry here


4-bit by 3-bit Binary Multiplier


## 4-bit Magnitude Comparator



## 4-bit Magnitude Comparator

The comparison of two numbers

- outputs: $A>B, A=B, A<B$
- Design Approaches
- the truth table for an n-bit comparator
- $2^{2 n}$ entries - too cumbersome for large $n$
- use inherent regularity of the problem
- reduce design efforts (Bit-level Operations)
- reduce human errors

Algorithm -> logic

- $A=A_{3} A_{2} A_{1} A_{0} ; B=B_{3} B_{2} B_{1} B_{0}$
- $A=B$ if $A_{3}=B_{3}, A_{2}=B_{2}, A_{1}=B_{1}$ and $A_{0}=B_{0}$
- equality: $x_{i}=A_{i} B_{i}+A_{i}^{\prime} B_{i}^{\prime}$
- $(A=B)=x_{3} x_{2} x_{1} x_{0}$
- $(A>B)=A_{3} B_{3}{ }^{\prime}+x_{3} A_{2} B_{2}{ }^{\prime}+x_{3} x_{2} A_{1} B_{1}{ }^{\prime}+x_{3} x_{2} x_{1} A_{0} B_{0}{ }^{\prime}$
- $(A<B)=A_{3} B_{3}+x_{3} A_{2}{ }^{\prime} B_{2}+x_{3} x_{2} A_{1}{ }^{\prime} B_{1}+x_{3} x_{2} x_{1} A_{0}{ }^{\prime} B_{0}$


## Other Combinational Logic Functions

- Functions \& Functional Blocks that implement them
- Enabling
- Encoding, Encoding with Priority in mind
- Decoding, Demultiplexing (Data routing)
- Multiplexing (Data selecting)
- Implementing any combinational function using:
- Decoders \& OR gates
- Multiplexers (with inverters if needed)
- MSI Functional Block Applications


## Functions and Functional Blocks

- We consider here functions that are useful in designing and building other (higher-level) combinational and sequential circuits

- Such functions may exist as functional blocks
- In the past, many such blocks were implemented as discrete integrated circuits (ICs): SSI (small scale integration), MSI, and LSI e.g. the 7483 is a 4-bit CLA adder, 74157 is a 4-bit Multiplexer
- Today, they are often available as components in a design library for use within larger VLSI circuits


## 1. Enabling Function

- Enable: Allow an input signal to pass through to an output
- Disable: block an input signal from passing through to an output, replacing it with a fixed state. This could be HiZ, 1,0 , depending on the gate used)

- Later we use the enable function to implement decoders and multiplexers
- Two Examples: EN = $1 \rightarrow$ Enable, EN $=0 \rightarrow$ Disable
- When I/P disabled, output = 0

(a)
- When I/P disabled, output = 1

(b)


## Encoding \& Decoding

Encoder: For each unique activated input line, Generate the corresponding code


Decoder: For each input code, Activate the unique corresponding output line

Encoder is the opposite of Decoder


Will start with Decoding

## 2. Decoding

- A decoder converts an $n$-bit input code to a unique state on $\mathbf{m}$ outputs where $2 \leq \mathrm{m} \leq 2^{n}$ (with $\mathrm{m}=2^{\mathrm{n}}$ we call it a Full Decoder)
- For each valid input code, only one unique output line is activated
- Decoder functional blocks:
- Are called $n$-to- $m$ line decoders, where $m \leq 2^{n}$, and
- Generate $2^{n}$ (or fewer) minterms from the $n$ input variables


## Decoder Design: 3-to-8 Example

Direct Approach: Generate All Minterms of the code I/Ps


## Hierarchical Decoder Design (Decoder Expansion) Using simpler decoders to build more complex ones

- 1-to-2-Line Decoder

1 to $\mathbf{2}^{1}$ - The simplest
Decoder


- 2-to-4-Line Decoder MSB $\longleftarrow$

| $\mathbf{A}_{1}$ | $\mathbf{A}_{0}$ | $\mathbf{D}_{0}$ | $\mathbf{D}_{1}$ | $\mathbf{D}_{2}$ | $\mathbf{D}_{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |


| 0 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 |

Decoder Expansion

- Note that the 2-4-line made up of 2 1-to-2-


We better design each decoder to have its own enable input!

## n-to-m Decoder with Enable (EN)

- Use the EN input to open/close the minterm-forming gates
- See truth table below for function
- Note use of X's to denote both 0 and 1 at the inputs
- Combination containing two X's represent four input binary combinations

2-to-4 with Enable
2-to-4 with Enable:

Disabled decoder has all outputs $=0$
$\rightarrow$ Allows simple expansion e.g. to 3-to-8
$\rightarrow$ Also, will use to make a demultiplexer (see later)

|  | EN | $\mathrm{A}_{1} \mathrm{~A}$ |  | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decoder is disabled | 0 |  | $\times$ | 0 | 0 | 0 | 0 |
| Decoder Enabled: Normal Operation | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
|  | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
|  | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
|  | 1 |  | 1 | 0 | 0 | 0 | 1 |
| Latic and Camputar Powntpainfos sides |  |  |  | ) |  |  |  |

92004 Parran Edination, in
(a)


4 minterm-forming \& Enabling gates


## 2-to-4 Decoder With Enable Polarities for E and O/Ps can be reversed

Note: Here polarity of the Enable I/P and the decoder outputs is reversed....

NAND Gates (not ANDs):
$\rightarrow$ Selected Decoder O/P $=0($ not 1$)$


Decoder is activated ithels
with $E=0-$ Not 1

## 4. Encoding



- Encoding - the opposite of decoding
- An encoder converts $m$ input lines to an $n$-bit output code where $2 \leq m \leq 2^{n}$ - such that each activated input line produces the corresponding unique output code
- If the input lines have exactly only one active line (e.g. at logic 1) $\rightarrow$ output is the binary code corresponds to the position of that input (exact opposite of decoder)
- If not, we need to consider priority


## Example: 8-to-3 Encoder



- Inputs $\left(D_{0}, \ldots, D_{7}\right)$ : 8 lines corresponding to digits 0 through 7
- Outputs $\left(A_{2}, A_{1}, A_{0}\right): 3$ bits of the binary code
- Function: If the ith input line $D_{i}$ is a 1, the output $\left(A_{2}, A_{1}, A_{0}\right)=$ the binary code for $i$
- Initially for simplicity:

Assume that at least one and only one of the 8 inputs is active at any given time. So we have only 8 valid input combinations out of the $2^{8}=256$ possible combinations. Remaining rows are don't care $\rightarrow$ simplifies the design considerably


## Priority Encoder

- If none or more than one input line is active (at logic 1 ), then the encoder just described does not work properly
- An encoder that can accept all possible combinations of input values and still produces meaningful output is called a priority encoder
- Among all the 1s that appear at the I/Ps simultaneously, it selects the " 1 " I/P having the highest designated priority and produces its corresponding binary code- ignoring all other lower-priority " 1 "s that may exist with it.
- So the code generated is for the input of the highest priority that is active ( $=1$ ) (all higher priority inputs $=0$ ), regardless of the state of all lower priority inputs



## 4-to-2 Priority Encoder Example



## 5. Selecting (Multiplexing): $\mathbf{2}^{\text {n }}$-to-1

- A multiplexer (MUX) selects one of $2^{n}$ data input lines based on an n-bit address, directing it to one output line
- A typical multiplexer has:
- $2^{n}$ Information inputs $\left(I_{\left(2{ }^{n}-1\right)}, \ldots I_{0}\right)$ (to select $\underline{f r o m}$ )
- $n$ Select (control or address) inputs ( $\mathrm{S}_{\mathrm{n}-1}, \ldots \mathrm{~S}_{0}$ ) (to select with))
- 1 Information output $Y$ (to select to)
- Will implement it using a decoder, see next slide
- MUX selection circuits can be duplicated $m$ times (with the same selection controls) to provide m-wide data widths, e.g. select one of four input bytes using 8-wide 4-to-1 MUX


## The Simplest Multiplexer $\mathrm{n}=1 \boldsymbol{1} \mathbf{2}^{\mathbf{1}}$-to-1 MUX

- The single selection variable S has two values:
- $S=0$ selects input $I_{0}$
- $S=1$ selects input $I_{1}$
- 3-input K-map optimization gives the output equation:

$$
\mathrm{Y}=\overline{\mathbf{S}} \mathrm{I}_{0}+\mathrm{SI}_{1}
$$

Truth Table
$2^{\mathrm{n}}$ Minterms

- The circuit:
- Can also be seen As: 1-to-2 decoder
+ Enabling
+ Selection
Powapaino sides




## 2. MUX Expansion: Expanding the selection capability Example: Using 2-to-1 MUXs to do 4-to-1 Muxing

| S1 | S0 | $Y$ |
| :--- | :---: | :---: |
| 0 | 0 | 10 |
| 0 | 1 | $I 1$ |
| 1 | 0 | 12 |
| 1 | 1 | 13 |



Selection with the lower significant bits ( 10 or I1)/(i2 or I3)

Selection with the higher significant bits ( 10,11 ) or $(12,13)$

## 3. Demultiplexer- Opposite of Multiplexer



## 2-to-4 Decoder with Enable = 1-to-4 Demultiplexer!

- From Truth Table, decoder can be viewed as distributing the value of the EN input to 1 of 4 outputs
- From this perspective, it is a Demultiplexer !



## Implementing Combinational Functions Using Functional Blocks

- Two implementation techniques from the SOm canonical form (no simplification):
- Using a Decoder + OR gates
- Using a Multiplexer + Inverters (if needed) We always said Canonical forms give complex implementations!

But now we have most of the complexity "hidden" inside the "ready-made" function block !! (e.g. decoder or MUX) $\rightarrow$ Utilize it!

## 1. Using a Decoder + OR Gates: From Canonical Form: <br> Truth Table (or $\Sigma$ m Form) <br> 

- Functions of $n$ inputs and $m$ outputs:
- Specification:
$\rightarrow$ As a Truth Table (has $n$ input columns and $m$ output columns)
$\rightarrow$ or m SOm expressions [ $\mathrm{Em}(\ldots)$ ]
- Implementation requires:
$\rightarrow$ One $n$-to- $2^{n}$-line decoder
$\rightarrow m$ "OR" gates: one gate for each output
- Procedure:
$\rightarrow$ From the truth table:
For each output: For a ' 1 ' in truth table row (i), connect the corresponding $D_{i}$ output of the decoder to the OR of that output Or $\rightarrow$ From the $m$ minterm expression [ $\mathrm{Im}(\ldots)$ ]:
Connect the decoder $D_{i}$ outputs corresponding to the minterms of each output to the OR of that output


## Decoder + OR Gates: Example 1-bit adder (with carries at I/P and O/P)



## Using Multiplexers: from Truth Table, or canonical Form

- Implementing a logic circuit of $n$ inputs and $m$ outputs requires:
- Specification: Truth table, or Som or PoM forms
- Implementation: Use m x $2^{n}$-to-1 multiplexer

Example: 5 input, 3 output circuit:

- Design: Need $3 \times{ }^{5}$-to-1 MUX
- In the same order they appear in the truth table:
- Apply the n input variables to the MUX select inputs $\mathrm{S}_{\mathrm{n}-1}, \ldots, \mathrm{~S}_{0}$ (i.e. Observe bit significance, i.e. LS variable goes to SO)
- Label the outputs of the multiplexer with the output variables
- Value-fix the I inputs to the multiplexer using the values from the truth table. For don't cares, use either 0 or 1.


## Using Multiplexers: Example:

1. Conventional approach, $n$ inputs $\rightarrow$ Use $2^{\text {n-to-1 }}$ MUX


## Using Multiplexers: Example: Full adder-

2. Smarter approach uses a smaller MUX: n input variables $\rightarrow$ Use $2^{\mathrm{n}-1}$-to-1 MUX ( $1 / 2$ previous size)
$\rightarrow$ Use $1 / 2$ the MUX size needed earlier: $2^{2}$-to- 1 MUX
$\rightarrow$ Connect MS 2 input variables to select, and express $F$ as 1,0 , $Z$, or $\bar{Z}$ for each value of XY and apply to the I inputs of the MUX.




Design Examples Using MSI Combinational Functional Blocks

1. Adding three 4-bit numbers
2. Adding two 16 -bit numbers using 4 -bit adders
3. Building a 4-to-16 Decoders using several 2 -to-4 Decoders (with Enable)
4. Selecting the larger of two 4-bit numbers
5. BCD to Excess-3 Code Converter using binary decoders and encoders only
6. Building multi-function combinational circuit (e.g. a cct that adds, subtracts, doubles, etc. according to a set of function select I/Ps)
Important in these problems: Must Label Clearly all inputs/Outputs of all function blocks

## Example 1: Adding three unsigned 4-bit digits

Problem: Add three 4-bit numbers (X, Y, Z) using 2 standard MSI 4-bit adders

## Solution:

Let the numbers be $X_{3} X_{2} X_{1} X_{0}, Y_{3} Y_{2} Y_{1} Y_{0}$,

$\mathrm{C}_{4} \quad \mathrm{~S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0} \quad \mathbf{D}_{4} \quad \mathbf{F}_{\mathbf{3}} \mathbf{F}_{\mathbf{2}} \mathbf{F}_{\mathbf{1}} \mathbf{F}_{\mathbf{0}}$
Note: $C_{4}$ and $D_{4}$ are generated in digit position 4 . They must be added in the same position to generate the most significant bits of the result
Lugice mad Campiter Dengen Fundumatals
Pawatpaint- Sititss
oresp Parsun Edication, ine

## Adding three unsigned 4-bit digits



## Example 2: Adding two 16-bit numbers using a number of 4-bit adders

## Solution:

Four 4-bit adder blocks are connected in cascade, with carries rippling in between


## Example 3:

Design a 4-to-16 Decoder
Using a number of 2-to-4 Decoders (each with Enable)

Problem: Design a 4-to-16 Decoder using a number of 2-to-4 Decoders with Enable

Solution:

- Four 2-to-4 decoders are fed with A1 A0 (in parallel) to generate the 16 output lines
- The remaining 2 input lines A3 A2 drive a $5^{\text {th }} 2$-to- 4 decoder to select (Enable) one of the 4 decoders to perform decoding for its group of 4 lines

| Select 1 of the 4 Common to all 4 2-to-4 decoders 2-to-4 decoders |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{A}_{3}$ | $\mathrm{A}_{2}$ | $A_{1}$ | $\mathrm{A}_{0}$ | Active Output |
| $A_{2} A_{2}=00$ | 0 | 0 | 0 | 0 | D. |
|  | 0 | 0 | 0 | 1. | D1 |
|  | 0 | 0 | 1. | 0 | $\mathrm{D}_{2}$ |
|  | 0 | 0 | 1 | 1. | $\mathrm{D}_{3}{ }^{\text {a }}$ |
| $A_{3} A_{2}=01$ | 0 | 1 | 0 | 0 | $\mathrm{D}_{4}$ |
|  | 0 | 1 | 0 | 1 | $\mathrm{D}_{5}$ |
|  | 0 | 1 | 1 | 0 | $\mathrm{D}_{6}$ |
|  | 0 | 1 | 1 | 1 | $\mathrm{D}_{7}$ |
| $A_{3} A_{2}=10$ | 1 | 0 | 0 | 0 | $\mathrm{D}_{\mathrm{S}}$ ] |
|  | 1 | 0 | 0 | 1. | D, |
|  | 1 | 0 | 1. | 0 | Dio. |
|  | 1 | 0 | 1 | 1 | $\mathrm{D}_{11}$ |
| $\mathrm{A}_{3} \mathrm{~A}_{2}=11$ | 1 | 1 | 0 | 0 | $\mathrm{D}_{12}$ |
|  | 1 | 1 | 0 | 1 | $\mathrm{D}_{13}$ |
|  | 1 | 1 | 1 | 0 | $\mathrm{D}_{14}$ |
|  | 1 | 1 | 1 | 1 | $\mathrm{D}_{15}$ |

[^1]Powarpaing sidiss

## 4-to-16 Decoder



Example 4:
Hardware that compares two unsigned 4-bit numbers and selects (passes) the smaller of the two to the O/P

Solution: We will use a magnitude comparator and a
Quad 2-to-1 MUX.


Luyic and Computar Dealẹ Fundamautale
Powarpaint 9 Slidss


## Example 5: BCD to Excess-3 Code Converter using a decoder and straight binary encoder



## Example 6: Building multiple-function combinational circuit (e.g. add, subtract, Max, ..)




[^0]:    Powntpainf ${ }^{5}$ Sidtei
    Truth table matched that for the specifications 4

[^1]:    Latic and Camputar Deaigu Fundamantais
    Powarpaint ${ }^{\text {E S Slides }}$

