

Tr	uth	ר ז	ables								
 Tru logi valu 	<i>th t</i> ic fi ues	tak un of	ole - A tak ction for f its argu	ou a m	ilar II p en	r lis Dos t (i	sting of th sible com nput) vari	e va bin able	alues atior es	s of a ns of th	ne
• Tru	th t	ab	les for th	ne	th	ree	e basic loç	gic	oper	ations:	
		I	AND				OR	Γ	N	ТО]
	X	Y	$\mathbf{Z} = \mathbf{X} \cdot \mathbf{Y}$		X	Y	$\mathbf{Z} = \mathbf{X} + \mathbf{Y}$		X	$Z = \overline{X}$	
	0	0	0		0	0	0		0	1	
	0	1	0		0	1	1		1	0	
	1	0	0		1	0	1				-
	1	1	1		1	1	1		C	hapter 2	8

	В	oolean /	Algebra Io	den	tities		
			Dual			Comments	
single literal	1. 3. 5. 7.	$X + 0 = X$ $X + 1 = 1$ $X + X = X$ $X + \overline{X} = 1$	$\begin{array}{c} OR \leftrightarrow AND \\ AND \leftrightarrow OR \\ 1 \leftrightarrow 0 \\ 0 \leftrightarrow 1 \end{array}$ Complementing is	2. 4. 6. 8.	$X \cdot 1 = X$ $X \cdot 0 = 0$ $X \cdot X = X$ $X \cdot \overline{X} = 0$	0 opens OR, 1 1 blocks OR, 0 Duplicating a literal Order	opens AND blocks AND has no effect of inputs is
<u>م</u>	9.	$\overline{X} = X$	not changed			irrelev	rant
Two or more literal	10.) 12.) 14.) 16.)	$X + Y = Y + X$ $X + Y = Z + X$ $X + Y = Z + Z$ $X + Y = \overline{X} \cdot \overline{Y}$	Y) + Z = X + (Y) $Y + XZ$	11. + Z) 15. 17.	XY = YX 13. $XYZ =$ X + YZ = $\overline{X \cdot Y} = \overline{X} +$	$(XY)Z = X(YZ)$ $(X + Y)(X + Z)$ $+ \overline{Y}$	Commutative Associative Distributive DeMorgan's
		This <mark>Doe</mark> ordinary / 5+(3*4) ≠	s not hold in Algebra: e.g. : (5+3)*(5+4)	Ass An a se orde	ociativity: n-input ope equence of er, e.g. a 3-	ration can be per 2-input operatior input OR	formed as is in any

Proof of Consensus

• $AB + \overline{AC} + BC = AB + \overline{AC}$ (Consensus Theorem) **X** Justification (identity # or theorem) **Proof Steps** $AB + \overline{A}C + BC$ $= AB + \overline{A}C + 1 \cdot BC$ 2 $= AB + \overline{A}C + (A + \overline{A}) \cdot BC$ 7 $= AB + \overline{A}C + ABC + \overline{A}BC$ 11, 14 $= AB + ABC + \overline{A}C + \overline{A}BC$ 12 $= AB (1+C) + \overline{A}C (1+B)$ 14 $= AB + \overline{A}C$ 3, 2

Chapter 2 23

Deriving the Truth Table	of	~ [20	oloar		otion	
	01	aı	50	oleai	i i ui		
$F1 = xy\overline{z}$	X	у	Z	F1	F2	F3	F4
$\mathbf{F2} = \mathbf{x} + \overline{\mathbf{y}}\mathbf{z}$	0	0	0	0	0		
$\mathbf{F3} = \overline{\mathbf{x}} \overline{\mathbf{y}} \overline{\mathbf{z}} + \overline{\mathbf{x}} \mathbf{y} \mathbf{z} + \mathbf{x} \overline{\mathbf{y}}$	0	0	1	0	1		
$\mathbf{F4} = \mathbf{x}\overline{\mathbf{y}} + \overline{\mathbf{x}}\mathbf{z}$	0	1	0	0	0		
	0	1	1	0	0		
Function of 3 input variables	1	0	0	0	1		
\rightarrow 2 ³ = 8 input combinations	1	0	1	0	1		
\rightarrow Truth table has 8 rows	1	1	0	1	1		
\rightarrow Table lists all possible	1	1	1	0	1		
combinations of the input	ts				ļ	1	
and the corresponding or	utpi	ut					
_						Chapter 2	26

Complementing Functions, Contd.

• Example: Complement
$$G = (\overline{a} + bc)\overline{d} + e$$

 $\overline{G} = [(\overline{a} + bc)\overline{d} + e]' = [(\overline{a} + bc)\overline{d}]'. e'$
 $= [(a' + bc)' + d'']. e'$
 $= [a''. (bc)' + d]. e'$
 $= [a. (b'+c') + d]. e'$
 $= ab'e' + ac'e' + de'$
Verify Result Using
Truth Tables

Maxterms of n Variables

- <u>Maxterms</u> are OR (sum) terms that contain all the input variables (each in either true or complemented form) which is equal to 0 for one input combination and equal 1 otherwise
- Given that each binary variable may appear as normal (e.g., x) or complemented (e.g., x), there are 2ⁿ maxterms for n variables.
- Example: Two literals (X and Y) produce 2² = 4 combinations (i.e. 4 maxterms):
 - X+Y (both normal, M = 0 only for 00)
 - $\mathbf{X} + \overline{\mathbf{Y}}$ (X normal, Y complemented, M = 0 only for 01)
 - +V (X complemented, Y normal, M = 0 only for 10)
 - $+\overline{V}$ (both complemented, M = 0 only for 11)

Chapter 2 33

	Tru for	th Ta two li [,]	bles teral	for s x,	mint y	tern	າຣ	and	Max	terms		
	m	intern	ns					Maxt	erms			
			$\overline{x}\overline{y}$	хy	хy	хy	_		x + y	$\mathbf{x} + \overline{\mathbf{y}}$	$\overline{\mathbf{x}} + \mathbf{y}$	$\overline{\mathbf{x}} + \overline{\mathbf{y}}$
	Index	xy	m ₀	m ₁	m ₂	m3		ху	M ₀	M ₁	M ₂	M ₃
	0	00	1	0	0	0		00	0	1	1	1
	1	01	0	1	0	0		01	1	0	1	1
	2	10	0	0	1	0		10	1	1	0	1
	3	11	0	0	0	1	1	11	1	1	1	0
•	Verify Obser index Reaso • a m whi	that m ve how i expre on for t <mark>iinterm</mark> ile a Ma	n _i and v to c essec he na has a <u>xterm</u>	l M _i a lerive l in b ames a mini a has	e the binary min imum a ma	ompl logi /, e.ç and of 1 ximu	ien icf g.r M 'si im	nents function n ₂ = n ax: ax: of 1's	of one on for $n_{10} = x$ ruth ta in its t	e anoti m _i and y, M ble: On ruth tal	her d M _i fro ₂ = M ₁₀ oly one ble: 2 ⁿ -	om its = X+y 1 1 1's

Index	Binary	Mintern	n Maxterm	
i	Pattern	m _i	$\mathbf{M}_{\mathbf{i}}$	
0	0000	abcd	a+b+c+d	Verify using
1	0001	abcd	?	DeMorgan's
3	0011	?	$a+b+\bar{c}+\bar{d}$	
5	0101	abcd	$a+\overline{b}+c+\overline{d}$	
7	0111	?	$a+\overline{b}+\overline{c}+\overline{d}$	
10	1010	abcd	$\overline{a} + b + \overline{c} + d$	
13	1101	abīd	?	
15	1111	abcd	$\overline{a} + \overline{b} + \overline{c} + \overline{d}$	
	a b c d			
				Chapter 2

Minterm Function E	xampl	e: 3 V	aria	ble	s X	ΥZ		
• Truth Table for $F1 = \overline{x} \ \overline{y} \ z + x \ \overline{y}$	the F 7 z +	unction	on F z	7 ₁ =	= m	11 1	· m	7 or $4 + m_7$
And the truth table is:	хуz	index	m ₁	+*	m ₄	+	m ₇	$= \mathbf{F}_1$
	000	0	0	+	0	Ŧ	0	= 0
Function is 1 at each of	001	1	1	+	0	+	0	= 1
its specified minterms	010	2	0	+	0	+	0	= 0
So, given a truth table,	011	3	0	+	0	+	0	= 0
How to determine the function?	100	4	0	+	1	+	0	= 1
\rightarrow As the sum of all	101	5	0	+	0	+	0	= 0
minterms for which the function is 1 !	110	6	0	+	0	+	0	= 0
	111	7	0	+	0	+	1	= 1 40

Maxterm Function	n Exar	mpl	le
• Example: Implem $F_1 = M_0 \cdot M_2$ $F_1 = (x + y + z) \cdot (x + y + \overline{z}) \cdot (\overline{x} + y $	ent F1 \cdot N $\cdot \overline{y} + z$) $\cdot \overline{y} + z$)	in 1 1 ₃ (x+	maxterms: and $\cdot M_5 \div M_6$ $-\overline{y} + \overline{z}$)
And the truth table is: Function is 0 at each of	x y z 000 001 010	i 0 1 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
So, given a truth table, How to determine the function?	011 100 101 110	3 4 5 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
\rightarrow As the product of all maxterms for which the function is 0 !	111	7	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$ Chapter 2 41

Three-literal Map	S				
• A three-literal K-n	nap:				
	MSB	yz=00	yz=01	yz=11	yz=10
xyz is the Standard order	x=0	⁰⁰⁰ m ₀	001 m ₁	⁰¹¹ m ₃	⁰¹⁰ m ₂
of the literals	x=1	¹⁰⁰ m ₄	¹⁰¹ m ₅	¹¹¹ m ₇	¹¹⁰ m ₆
 The distribution of mir adjacency (note position) 	nterms tions o	on the l f m ₃ and	K-map s d m ₇).	atisfies I	ogical
• Note that m ₂ is adjace	ent to <mark>n</mark>	n _o and t	hat <mark>m₆ is</mark>	adjace	nt to <mark>m₄:</mark>
Wrap-around effect		ا م		11	1 10
 Each minterm represe 	ents	yz=00	yz=01	yz=11	yz=10
the corresponding product term:	x=0	x y z	$\overline{\mathbf{x}}\overline{\mathbf{y}}\mathbf{z}$	x y z	x y z
P	x=1	x y z	$x \overline{y} z$	xyz	xyz
				Chaj	pter 2 66

 Minimize the overlap among prime implicants as much as possible. In particular, in the final solution, make sure that each prime implicant selected includes at least one minterm not included in any other prime implicant selected

Note: Good solutions are not necessarily unique

Chapter 2 93

Two-Level Logic Implementation: Using AND & OR gates

- For SOP forms: AND gates in the first level and a single OR gate in the second level.
- For POS forms OR gates will be in the first level and a single AND gate will be in the second level.

- If we express the function in AND-OR-Invert form, then it can be implemented directly as AND-NOR (AND gates for product terms and a NOR gate for Oring them and then inverting)
- To Obtain F in AND-OR-Invert Format: 1st Obtain F' in SOP by combining the 1's of F' in the K-map → then F is simply obtained by complementing the SOP expression of F' and we get the AND-OR-INVERT representation of F.

EX: F'= AB+CD+E \rightarrow F=(AB+CD+E)' Then the AND-NOR is readily available (OR-INVERT is simply NOR) E

Other Two-Level Logic Implementation: NAND-AND

We could also have obtained the NAND-AND implementation from the AND-NOR through logic transformations: Inserting Bubbles in pairs!

AND-INVERT == NAND , INVERT-OR-INVERT = NAND-INVERT=AND

Other Two-Level Logic Implementation: OR-NAND

- If we express the function in OR-AND-INVERT form, then it can be implemented directly as OR-NAND (OR gates for SUM terms and a NAND gate for Anding them and then inverting)
- To Obtain F in OR-AND-Invert Format: 1st Obtain F' in POS by combining the 0's of F' in the K-map → then F is simply obtained by complementing the POS expression of F' and we get the OR-AND-INVERT representation of F.

EX: $F' = (A+B) (C+D) E \Rightarrow$ F = [(A+B) (C+D) E]'

Then the OR-NAND is readily available (AND-INVERT is simply NAND)

The NOR-OR implementation is very similar to the OR-NAND; we need to express the function in OR-AND-INVERT form, then expand the complement one level to get the NOR-OR form directly.

EX: $F' = (A+B)(C+D) E \rightarrow F = [(A+B)(C+D) E]' = (A+B)' + (C+D)' + E'$

Notice the single literals in F have inverters instead of NORs

Other Two-Level Logic Implementation: NOR-OR

We could also have obtained the NOR-OR implementation from the OR-NAND through logic transformations: Inserting Bubbles in pairs!

	the		
(b)*	Function	into	an Output of
NAND-AND	AND-OR-INVERT	Sum-of-products form by combining 0's in the map.	F
NOR-OR	OR-AND-INVERT	Product-of-sums form by combining 1's in the map and then complementing.	F
	NAND-AND NOR-OR	NAND-AND AND-OR-INVERT NOR-OR OR-AND-INVERT	NAND-AND AND-OR-INVERT Sum-of-products form by combining 0's in the map. NOR-OR OR-AND-INVERT Product-of-sums form by combining 1's in the map and then complementing.

Multi Logic-Implementation using NANDs & NORs, *Contd.*

- So when converting to NANDs:
 - Start from inputs, insert bubbles in pairs: at inputs of OR gates or at outputs of AND gates to convert them to NANDs
- And when converting to NORs:
 - Start from inputs, insert bubbles in pairs: at inputs of AND gates or at outputs of OR gates to convert them to NORs

6. Complex Gates: Exclusive OR/ Exclusive NOR

- The *eXclusive OR* (*XOR*) function is an important Boolean function used extensively in arithmetic & communication circuits
- XOR is associative and is represented as the XOR operator
 (⊕)
- The *eXclusive NOR* (XNOR) function is the <u>complement</u> of the XOR function.
- XNOR is not associative
- By our definition, XOR and XNOR gates are complex gates
- The XOR/XNOR functions may be implemented:
 - Directly as an electronic circuit (a true gate) or
 - Indirectly by interconnecting other gate types (used as a convenient representation)

Unit 2: Binary Logic and Gates Overview

- 1. Binary logic and gates, Boolean Algebra, Basic identities of Boolean algebra
- 2. Boolean functions, Algebraic manipulation, Complement of a function
- 3. Canonical & Standard forms, Minterms & Maxterms, Sum of products, Product of Sums. Algebraic simplification of logic functions
- 4. Physical properties of gates: Fan-in, Fan-out, Propagation Delay, HiZ (Tristate) outputs
- 5. Map method of logic circuit optimization:
 - Two-, Three-, and Four-literal K-Map
 - Optimization procedure: Essential prime implicants, Selected Additional prime implicants
 - Simplification with Don't care conditions
- 6. Other Gate Types: Universal gates (NAND and NOR), 2-level Complex gates (AO, AOI, OA. OAI)
- Exclusive-OR (XOR) and Equivalence (XNOR) gates, Parity generation and checking