EE 200: Digital Logic Circuit Design

Unit 2
Binary Logic and Gates

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

W N

»

~

Unit 2: Binary Logic and Gates
Contents

Binary logic and gates, Boolean Algebra, Basic identities of Boolean
algebra 2.1, 2.2

. Boolean functions, Algebraic manipulation, Complement of a function 2.2

Canonical & Standard forms, Minterms & Maxterms, Sum of products,
Product of Sums. Algebraic simplification of logic functions 2.3

Physical properties of gates: Fan-in, Fan-out, Propagation Delay, HiZ
(Tristate) outputs 6.1, 6.2.

Map method of logic circuit optimization:
¢ Two-, Three-, and Four-literal K-Map 2.4

® Optimization procedure: Essential prime implicants, Selected
Additional prime implicants 2.5
¢ Simplification with Don’t care conditions 2.5
. Other Gate Types: Universal gates (NAND and NOR), 2-level Complex
gates (AO, AOI, OA. OAI) 2.7

. Exclusive-OR (XOR) and Equivalence (XNOR) gates, Parity generation and
checking 2.8

1. Binary Logic and Gates: Definitions

= Binary literals take on one of two values: e.g. (1,0)
(T.F)

= Logical operators operate on binary values and
binary literals

= Basic logical operators perform the logic functions
AND, OR and NOT

= L ogic gates: Circuits that implement logic functions

= Boolean Algebra: a useful mathematical system for
specifying and transforming logic functions

= We will study Boolean algebra as a foundation for
designing and analyzing digital systems

Chapter 2 3

Binary literals

A literal is a binary variable or its complement and therefore
takes only one of two possible values

Recall from Unit 1 that these two binary values can have
different names:

® True/False

¢ On/Off

® Yes/No

° 1/0

We use 1 (=true) and O (false) here to denote these two values
literal identifier examples:

® A B,y, z, or X, for now A Logic y
® RESET, START_IT, or ADD1 later B C'r?: ” B
ircui

More meaningful names that describe function of literal G "

Input literals Output literal

Chapter 2 4

Logical Operations on Binary literals

= The three basic logical operations are:
® AND

°OR

°* NOT
= AND is denoted by a dot ()
= OR is denoted by a plus (+)

= NOT is denoted by an overbar (), a single

quote mark (') after, or (~ or #) before the
literal, e.g. A, ‘A, ~A, or #A

Chapter 2

Notation Examples- Logical Operators

- Examples: /If no ambiguity is caused, we may omit the dot: Y = AB

Product, ® ., _ . isread “Y is equal to A AND B”
intersection Y (Y is True when Both A & B are True)
sum, ®z=x+y isread ‘zis equal to x ORy”

Union _— (Zis True when either X or Y are True)
Negation, * X =A s read “X is equal to NOT A”

Complementing (X is True when Y is Not True)

Note that both the “.” (dot) and the “+” operators
also have mathematical functions of

multiplication and addition, respectively

Chapter 2 6

Definitions of the 3 Basic Logic Operations

Operations are defined on the values "0" and "1" for each operator:

The only way to get

&> a0isto ORALL Os _
AND () &% OR(+) NOT ()
= 3 -
0-0=0] 32 0+0=0 83 0=1
= Q5 -
0-1=08% O+1=1| 53 1=0
S o o .
— - = - Q O
1-0=0 g z 1+0=1 g @ No corresponding
1.-1=1 =~ ol 1+1=1 ® & Math operator for
\M @5 NOT
The only’'way to get c 5
alisto ANDALL 1s -
Multiplication and Addition and OR
AND give identical give different
results Results for 1+1 Chapter 2 7

Truth Tables

= Truth table - A tabular listing of the values of a
logic function for all possible combinations of the
values of its argument (input) variables

= Truth tables for the three basic logic operations:

AND OR NOT
X|Y|Z=XY| |X|Y|Z=X+Y X |7=X
00 0 00 0 0 1
01 0 01 1 1 0
10 0 10 1
11 1 1|1 1 Chapter 2 8

Logic Gates

= Electronic devices that implement logic operators are called Gates:

i 3 ND gate
¢ AND gate Impl ements AND gate Symbol SN 3
AND operation
ll'_
X —] i Z=NX1
Z=XY =
) ¥
® OR gate implements OR gate Symbol 3-Input OR gate
OR operation

" » w

b) Z=M+X+}
Z=x+y X

Y ¥

® NOT gate (or smply an INVERTER) implements NOT operation

»
X—|>wz=?
Chapter 2 9

Practical Implementation of the
Basic Logic Gates

Basically...Using Switches Switches in series

Input/Output Definitions - -
¢ Input: - AND
= logic 1 is switch closed =
= logic 0 is switch open Switches in parallel
¢ Output: o— i
= logic 1 is lamp on -i-_é -
= logic 0 is lamp off. T i
In today’s computers, NOT |* Switch Across
Switches are implemented % i Lamp
using transistors, e.g. 2 __—c/o-&
0 = Low Voltage, e.g. 0 V U —)1 % $

1 = High Voltage, e.g. 3V = Chapter 2 10

2. Boolean Algebra- Formal Definitions

= The algebra that deals with binary literals and logic functions
= literals: Denote by letters of the alphabet, e.g. A, B, X, Y, Z
= Basic Logic operations (operators) on those literals: AND, OR, NOT
= A Boolean Expression (e.g. X+YZ) is Formed by:
- Binary literals
- Logic operations (operators) on the literals and constants
- Parenthesis
- Constants 0,1
= A Boolean Function can be described by a Boolean Equation of the
form: Output = Boolean Expression (not unique)
= Each Function can be represented as a logic diagram (not unique)
= A Boolean Function can be uniquely expressed as a truth table that
maps each possible combination of the input literals to the
corresponding output literal (n input literals > 2" combinations)
= Later in this unit, we will consider optimization methods to derive the
simplest Boolean functions that implement a given truth table

= Simplest functions require the smallest number of the smallest gates
and therefore are most economical to implement

Boolean Algebra

Truth Table
5 (unique)
g Implementation 1 Implementation 2
o R T bbbl sl
o . L P .
i Equation «— Logic Diagram ! i| Equation L
i Expression 1| Expression
\ Literals 1| Literals
Several equivalent implementations Optimization will be basically

- Use the optimum one to implement the function simplification

Inputs

Boolean Function: Represented by many
Equations, Logic Diagrams, but a single Truth Table
Truth Table (Unique)

Equation/Diagram Pair

XYZ | OutputF .
000 0 _ F=X 1Y Z
001 1 Design One—to-onz
mmmmmmp \any Corresponding porresponcence
010 0 between the
0 Logic Diagrams equation and the
011 0 Analvze logic diagram
100 1Unique <—y 1 0 0
101 1 Y F
1
110 1 7 — 0
111 1

Oth ible Equation/Di Pai
Unique truth table er possible Equation/Diagram Pairs

listing function output * F%?Ieag equgtiorr:s, logic dliagra?ns, and t'ruth
i ables describe the same logic function!
for aII_pos_S|bIe n;p_ut Truth tables are unique; but equations and logic
combinations (2°=8) djagrams are not. They can be manipulated to
produce simpler expressions requiring fewer
gates - Optimization

Boolean Algebra Identities

Comments

1. X+0=X OR «=AND 2. X-1=X 0opensOR, 1opensAND
s 3 X+1=1 AND<++OR , x.9-9 1blocks OR, 0 blocks AND
% 5 X+X=X S : ? 6. X:-X =X Duplicating a literal has no effect
-(,g; 7.);Jr X=1 Complementing is 8. X:X=0 Order of inputs is

9. X=X not changed irrelevant
£10. X+Y=Y+X 11 XY =YX Commutative
© 12, X#Y4Z= (X +Y) +Z =X+ (Y +2) 13.XYZ= (XY)Z =X(YZ) Associative
S 14 X(Y+2Z) = XY+XZ 15 x4+ YZ = X+ Y)(X +2) Distributive
§16. X+Y =X-Y 17, x Y=X+Y DeMorgaris

This Does not hold in Associativity:

ordinary Algebra: e.g. An n-input operation can be performed as

5+(3*4) # (5+3)*(5+4) a sequence of 2-input operations in any
order, e.g. a 3-input OR }

Some Properties of Identities & the Algebra

= If the meaning is unambiguous, we leave out the symbol “-”

= The identities above are organized into pairs. These pairs
have names as follows:

1-4 Existence of 0 and 1 5-6 ldempotence

7-8 Existence of complement 9 Involution
10-11 Commutative Laws 12-13 Associative Laws
14-15 Distributive Laws 16-17 DeMorgan’s Laws

= The dual of an algebraic expression is obtained by
interchanging + and - and interchanging O’s and 1’s.

= The identities appear in dual pairs. When there is only one
identity on one line the identity is self-dual, i. e., the dual
expression = the original expression, e.g. No. 9.

Chapter 2 15

Some Properties of Identities & the Algebra (Continued)

Unless it happens to be self-dual, the dual of an
expression does not equal the expression itself.

Example: F=(A+C)-B+0
dualF= (A-C)+B)-1=A-C +B
Example: G=X-Y + (EZ) When taking the dual,
dual G = (X+Y) . (WX) Complementing is
Example: H=A -B+A - C+B - C "otchanged
dual H = (A+B) . (A+C) . (B+C)

Are any of these functions self-dual?
Check if truth tables for (F) and (dual F) are identical

Chapter 2 16

Boolean Operator Precedence

= The order of evaluation in a Boolean
expression is:

1. Parentheses

2. NOT
3. AND
4. OR

= Consequence: Put parentheses
around OR expressions when they have
to be evaluated first

= Example: F =E + A(B + C)(C + D)

Chapter 2 17

Boolean Algebraic Proofs: Example

Show algebraically that the LHS is logically equivalent to the RHS

N N — i.e. will have same truth table
" X+Y)Z+XY=YX+Z)
Proof Steps Justification (identity # or theorem)
X+ Y)Z+XY

= 6(?) Z+XY 16 (DeMorgan’s)
=Y (X+XZ) 10, 14

=Y [X+X) X+Z)] 7. 10

=Y (X+7Z)

Verify equivalence of 1 and 2 Compare circuit costs of both sides
By comparing the truth tables to show Benefit of simplification

Chapter 2 18

Useful Theorems (in Dual forms)

Expression Dual

= X-ytX-y=y (x+y)(i+y)=y Minimization
X+X'y=Xx x-(x+y)=x Absorption

= XtX-y=x+ty x-(i+y)=x-y Simplification

s X-y+tX-zt+ty-z=x- y+i /4 Consensus
(x+y) G+z) (y+2)=(G+y) G+2)
= Xty=Xx'y x'y=x+y DeMorgan's Laws
Chapter 2 19

Proof of Minimization

xy+tx-y=y G+y)&+y)=y
= Consider the LHS form

Xy+txXy=yx+x)=y
1

Chapter 2 20

Proof of Absorption

= A+A-B=A (Absorption Theorem)
i.e. B is irrelevant (redundant, absorbed) in this expression!

Proof Steps Justification (identity or theorem)
A+AB
=A-1+A-B X=X-1
=A-(1+B) X-Y+X-Z=X-(Y + Z)(Distributive Law)
=A-1 1+X=1
=A X-1=X

= Qur primary reason for doing proofs is to learn:

® Careful and efficient use of the identities and theorems of
Boolean algebra, and

® How to choose the appropriate identity or theorem to apply
to make forward progress, irrespective of the application.

Chapter 2 21

Proof of Simplification

x+X-y=x+y x(F+y)=x.y Simplification

= Consider the LHS form
X+Xy=x+X)(x+Yy)
= 1.(x+Yy)
=(x+y)

Chapter 2 22

Proof of Consensus

= AB+ AC + BC = AB + AC (Consensus Theorem)

Proof Steps * Justification (identity # or theorem)
AB + AC + BC

=AB+AC+1-BC 2

= AB+AC + (A +A) - BC 7

=AB+AC+ABC+ABC 11,14

=AB+ ABC+AC+ABC 12

= AB (1+C) + AC (1+B) 14

=AB+AC 3,2

Chapter 2 23

Proof of DeMorgan's Laws X'y =X+ Yy

Given the Basic Identities X X’ =0 and X + X’ =1,
we can prove any theorem Y = X, if we can show that X Y’ =0and X+ Y’ =1,

DeMorgan's Theorem states that: (A B’ =A’+ B’
ie. hereY=(AB)Yand X=A"+DB

So we need to show that:
1L N+B)YABY' =N +B)YAB)=0:
AN +B)YAB=A'"AB+B AB=A"AB+B'BA=0+0=0(Q.ED.)

2.(A+B)+ABY=A'+B)+AB) =1

(A’ + B) + (A B)= (A’ + B") + (A B) + (A B) (since X + X = X)
=A’+AB+B +AB
= (A™+A) (A*+B) + (B’ + A) (B'+B)
=1 (A+B)+ 1 (B'+ A)
=(A+A)+B+B)=1+1=1 (Q.ED)

Chapter 2 24

AND-Invert = OR of inverts

DeMorgan’s Laws X'y= X+ y
Verification by Truth Tables:

Xy xy | xy)| ¥ |y |X+¥Y

00, 0 1 1 1 1

01, 0 1 1 0 1

1/0, 0 1 0 1 1

11 1 0 0 0 0

Note: DeMorgan’s is also valid for any number of variables

>
vs)
(@]
T

Il
>
+
v)
+
(@)
+
T

Chapter 2 25

Deriving the Truth Table of a Boolean Function

F1= xyz F1 | F2 | F3 | F4
F2=x+Yyz

F3=Xyz+Xyz+txy

F4= xy +Xxz

Function of 3 input variables

- 23 = 8 input combinations

- Truth table has 8 rows

ek [| e | D DD D@ M
— | D D - - | |
— O = O = D = DN
[— W I —N AN I BN RN)
| k| ek | e | D | D e [D

- Table lists all possible

combinations of the inputs

and the corresponding output
Chapter 2 26

Exercise: Verify

Expression S|mp||f|Cat|on Equivalence with Truth Table

= An application of Boolean algebra

= Simplify to contain the smallest number of
literals (complemented and 6 aatos
uncomplemented variables):
AB+ACD+ABD+ACD+ABCD
=AB+ABCD+ ACD+ACD+ABD
=AB+AB(CD)+ACMD+D)+ABD
=AB+A C+ABD=B(A+AD)+AC °'teras

4 (smaller

=B(A+D)+XC gates)

Simpler Expressions > Fewer gates, Fewer gate inputs, and simpler
circuits....This improves reliability and reduces power consumption 27

Simplification

Complementing Functions

= Use DeMorgan's Theorem to complement a
function:
1. Interchange AND and OR operators
2. Complement each constant value and literal
= Example: Complement F = XyZ + XyZ

F=x+7+2z)(X+y+2)

Note: Here we used Verify Result Using
DeMorgan’s 3 times Truth Tables
at two levels!

Chapter 2 28

Complementing Functions, Contd.

= Example: Complement G = (a + bc)d + e
G = [(@+ be)d+e]’ = [(@+ be)d]’. e’
=[(a’ + be)’+d’’]. €
=[a’’. (bc)’ +d].
= [a. (b’+¢’) + d]. €’
=ab’¢’ +ac’e’ +de’ Verify Result Using

Truth Tables
Chapter 2 29

Towards a more systematic treatment....
3. Canonical Forms- Overview

= What are Canonical Forms?

Minterms and Maxterms

Index Representation of Minterms and
Maxterms

Sum-of-Minterm (SOm) Representations
Product-of-Maxterm (POM) Representations
Representation of Complements of Functions

= Conversion between various Representations

Chapter 2 30

Canonical Forms

= |t is useful to specify a Boolean function in
a form that:
® Has a direct correspondence to the truth table
¢ Allows comparison for equality

= Two main Canonical Forms in common
use:
¢ Sum of Minterms (SOm)
® Product of Maxterms (POM)

Chapter 2 31

Minterms of n Variables

= Minterms are AND (product) terms that contains ALL
the inputs (each in either true or complemented form)
which is equal to 1 for only one input combination and
equal 0 otherwise

= Given that each binary literal may appear as normal
(e.g., x) or complemented (e.g.,X), there are 2"
minterms for n variables.

= Example: Two variables (X and Y) produce 22 = 4
combinations (i.e. 4 minterms):

XY (both normal, m = 1 only for 11)
XY (X' normal, Y complemented, m =1 only for 10)
)_(Y (X complemented, Y normal, m =1 only for 01)
i? (both complemented, m = 1 only for 00)
Chapter 2 32

Maxterms of n Variables

* Maxterms are OR (sum) terms that contain all the input
variables (each in either true or complemented form) which is
equal to 0 for one input combination and equal 1 otherwise

= Given that each binary variable may appear as normal (e.g., X)
or complemented (e.g., X), there are 2" maxterms for n variables.

= Example: Two literals (X and Y) produce 2? = 4 combinations
(i.e. 4 maxterms):

X+Y (both normal, M = 0 only for 00)

X+§' (X normal, Y complemented, M = 0 only for 01)
)—("'Y (X complemented, Y normal, M = 0 only for 10)
)_(+? (both complemented, M = 0 only for 11)

Chapter 2 33

Maxterms and Minterms from the Truth Table

* Example: minterms and Maxterms for Two Variables

Input Combination A product that gives 1 A sum that gives 0
Index Xy minterm, | Maxterm
0 00 Complemente 4 y
1 01 X+y
) 10 Xty
3 11 X+y
Index represents the m, M2
Input combination in decimal AND that gives 1 OR that gives 0
Reason for min and Max names? Note: m; is the complement of M, and
See slide 40 vice versa, e.g. for my:

xy =X +y (Use Demorgan’s Theorem) 34

Minterm and Maxterm Relationship

* Review: DeMorgan's Theorem

X'y=x+tyandxty=x'y

* Two-literal example:

M,=x+y andm,=x'y
Thus M is the complement of mj and vice-versa.

= Since DeMorgan's Theorem holds for n literals, the

above holds for terms of n literals

= giving:

M, =m, ;g M, =M,
Thus M; is the complement of m;.

Chapter 2 35

Truth Tables for minterms and Maxterms
for two literals x, y

minterms Maxterms
Xy Xy xv XY Xty x+y T4y X+y
Index || Xy 'mg |my | m; mg xy | My | M, | M; | M;
0 00 1 0|0 0 00| O 1 1 1
1 01 0 (1[0 O 01| 1 0 1 1
2 10| 0 0 1 0 10 1 1 0 1
3 11 0 0|0 1 11| 1 1 1 0

Verify that m; and M; are complements of one another
Observe how to derive the logic function for m; and M, from its
index i expressed in binary, e.g. m, = m,, = Xy,
Reason for the names min and Max:
® aminterm has a minimum of 1's in its truth table: Only one 1
while a Maxterm has a maximum of 1's in its truth table: 2"-1 1's

M, = My, = X+y

Standard order of variables

Minterms and maxterms are designated with a subscript

The subscript is a decimal number that represents the binary
pattern of input literals in the straight binary (e.g. 8421) code

The bits in the pattern represent the complemented or normal
state of each literal listed in a standard fixed order (MSB...LSB)

All input variables will be present in a minterm or maxterm and

will be listed in the same order (usually alphabetically)

Standard Order
SB

—— |
Examples of Standard forms: For 3 variables: a,b,c—
® Maxterms: (a+b+c¢)=My,=M,, (@+b+7)=M,, =M,
® Minterms: a b ¢= m;,=m,, abc=my, =m,

Examples of non-standard forms for 3 variables:
® Terms: (a+c),bc,and (a+b) do not contain all literals
® Terms: (b+a+¢),ach,andb ca notin standard order

Standard Order

-
Index Example in Three literals: X, Y, and Z LsB

= The standard order is: X, then Y, then Z

XYz

= With Index 5 = 101),
® As aminterm (AND): Complement literals
corresponding to 0 2 m, = XYZ
® As a Maxterm (OR): Complement literals
corresponding to 1 > Mg = X+Y+Z

My, =My, =7
¢ Ms_f Moy =7
*XYZ=m,

* X+Y+Z = M,

Index Examples — Four literals

Index Binary Minterm Maxterm

i Pattern m; M;

0 0000 abcd a+b+c+d Verifyusing
1 0001 abed ? DeMorgan’s
3 0011 ? a+tb+c+d

5 0101 abcd atb+etd

7 0111 ? a+tb+c+d

10 1010 abecd a+b+c+d

13 1101 abcd ?

15 1111 abed a+b+c+d

abcd

Chapter 2 39

Minterm Function Example: 3 Variables XYZ

. or
= Truth Table for the Function F; = m; + m4 + m,

Fl=Xyz+xyZ+xyz

o
=

And the truth table is; XY Z index m; +'m, + m;, =F,
000 0 0 + 0 + 0 =
Functionis 1 ateach of (01 1 1 + 0 + 0 =
its specified minterms 010 2 0 + 0 + 0 =
So, given a truth table, 011 3 g + 0 + 0 =
How to determine the
function? 100 4 0 + 1 +0 -
> As the sum of all 101 5 6 + 0 + 0 =
minterms for which the _
functionis 1!.... 110 6 0 + 0 + 0 =
111 7 o + 0 + 1 =

Maxterm Function Example

" Example: Implement F1in maxterms: and
Fi= My M, - M; - Ms * Mg/
Fi=(x+y+z) (x+ty+2z) (x+y+2)
R+y+2) R+ +2) -
Xyz i MO'Mz'Mg,!Ms'MG:Fl
And the truth table is: 000/00-1-1-1-1 =
T 001 | 1 ' . . . =
Function is O at each of Ly 1-1-1-1 _
its specified maxterms 01012 1% 0 -1-1-1 =
o11(3}1-1-0-1-1 =
So, given a truth table, 100/ 41/1-1-1-1-1 =
Howlto determine the 1o1ls|1-1-1-0-1 =
function? _
> As the product of all 1royé6 1 1-1-1-1-0 =
maxterms for which the 1mirjy7f{1r-1-1-1-1 =
functionis 0!.... Chapter 2 41

Observations from the Truth Tables

In the function tables:

® Each minterm has one and only one 1 present in the 2" rows
(@ minimum of 1s). All other entries are 0

® Each maxterm has one and only one O present in the 2" rows
All other entries are 1 (a maximum of 1s)
We can implement any function by "ORing" the minterms
corresponding to "1" entries in the function table. These are
called the minterms of the function> Sum of Minterms (SOM)

We can implement any function by "ANDing" the maxterms
corresponding to "0" entries in the function table. These are
called the maxterms of the function—> Product of Maxterms
(POM)
This gives us two canonical forms for a Boolean function:
® Sum of Minterms (SOM)
® Product of Maxterms (POM)

Minterm Function Example: 5 literals

= F(A,B,C,D,E)=m, + mg+ my;+ my,,
= 5 literals, so express each index as 5 bits
= F(A,B,C,D,E) =

Mooo10 ¥ Mo1o01 ¥ Migoo1t Mio111
= F(A, B, C, D, E)inthe SOM canonical form =

ABCDE+ABCDE+ABCDE+ABCDE
= Short-hand Form
F(A.B.C.D.E) = Z m(2.9,17,23)

Standard order Sum minterms
of input literals Chapter 2 43

Maxterm Function Example: 4 literals

m F(A,B,C,D) =M; Mg M, M,

= F(A, B,C,D) = Mygp11- Myggo- Mig11- Myg1g
= (A+B+C+D). (A+B+C+D). (A+B+C+D). (A+B+C+D)

= Short-hand Form

F(A.B.C.D)=TIM (3,8,11,14)
i S

Standard order Product Maxterms
of input literals

Chapter 2 44

Observations on complementing
and form Conversion

1. Complementing a function

2. Form Conversion for the same function

F(x,y,z) =I1(1,3,5,7)
C | t Oth
i IRl I i
F(X9 Y, Z) = Zm(1939597) «— Start
C [t S C | t
i il B Ryl
F(x,y,7) = 2u(0,2,4,6)

F(X, Yy, Z) = HM(0,29496)
m Other Complemen
Fﬁr?cti?)n I _ F:Jr; I I olngilsese t

Standard (as opposed to canonical) Forms

Standard Sum-of-Products (SOP) form: equations are
written as ORing of Products (not minterms)
Standard Product-of-Sums (POS) form: equations are
written as ANDing of Sums (not maxterms)

Examples: For 3 variables A,B,C
* SOP: BC+ABC+B Standard, Still 2-level
*pOs: (A+B)-(A+B+C)-c oM
The following “mixed” forms are neither SOP nor POS
° (A B_+ C) (A + C) Non-Standard, > 2-level
° ABC+AC(AtB) Form
i.e. these are not in the standard 2-level from
Chapter 2 46

Transforming Standard to Canonical SOm
1. Algebraically

= Any Boolean function can be expressed as a Sum
of Minterms

® From the function’s truth table, the minterms used are
the terms corresponding to the 1's of the function From
expression, expand all terms first to explicitly include all
minterms

- Do this by “ANDing” any term missing variable v with
aterm (v+v) (=1) (Easier way with K-maps later)
= Example: Express f=x+x y as sum of minterms
First expand terms: I =x(y+ y):L X Y Note: Complementin
Then distribute terms: =Xy +Xy+ Xy Minterm - Varis 0
Express as sum of minterms: f = m; + m;;+ my,
=mg+m,+m,

Transforming Standard to Canonical SOm
2. Using the Truth Table

= Example: F=A+BC _Truth Table for F
= There are three variables, A, B, and C A |B|C|Index| F
which we take to be the standard order ololol o |o
= Construct the truth table for the function |[o¢o|o|1]| 1 1
= Minterms are the standard terms where |0 |1|0| 2 0
the function is 1 ol1l1l 3 o

= For minterms we complement a literal 1lolol 4 |1
when it is 0 101l 5 1

= F(&%C):TL+m4_+m5+r16+m7 11100 6 1
= ABC + ABC + ABC + ABC + ABC 1l 7 1

= |n the standard short hand form:
F(A, B, C) — Zm(1,4,5,6,7) Ex§rC|se: Do by mclgdmg rmssmg
JRERA variables as on previous slide
Standard order N
of input literals Sum minterms —should get same result

Transforming Standard to Canonical SOm
3. Algebraically, again!

= Example: F=A + B C F has three input variables; A, B and
C - any term in F missing one variable, corresponds to four
minterms, and terms that are missing one corresponds to two
minterms! So lookingat F=A+BC

T

Missing two variables; B and C Missing A
A2 put al combinations of B and C _BC-> put all combinations of A
- ABC, ABC, ABC, ABC - ABC, ABC
m; mg mg m7 m, m,

Hence F (A,B,C) = m, + m, + mz; + mg + m, (do not repeat
redundant minterms)

F(A,B,C) = 2u(1,45,6,7)

Standard order
of input literals Sum mlnterms Chapter 2 49

Transforming Standard to Canonical POM
1. Algebraically

= Any Boolean Function can be expressed as a
Product of Maxterms (POM)

® From function table, the maxterms used are the terms corresponding to
the 0's of the function

® From function expression, Expand all terms to explicitly include all
maxterms by: 1. Applying the second distributive law -

2. “ORing” terms missing literal v with a term equalto V - V (=0) and
then applying the distributive law again

= Example: Convert to product of maxterms:
f(X, y, Z) =X + X y Variable z is missing in
Apply the distributive law: expression
XtXy =(x+x)x ty) =1-(x 1y) X+y
Introduce missing literal z by ORing with z.Z :
Add a0to an OR (X+)_l_Z Z (X+y +Z) (X+y +Z) Not a maxterm
Express as POM f= M . MOll Note: Complement in Maxterm

- Varis 1
_|\/|2.|\/|3

Transforming Standard to Canonical POM
2. Using the Truth Table

= Example: F=A+BC Truth Table for F
= There are three variables, A, B, and C A |B|C|Index| F
which we take to be the standard order ololol o |o
= Construct the truth table for the function |¢o|0|1]| 1 1
= Maxterms are the standard terms where |0 |1]|0| 2 0
the function is 0 ol1l1] 3 0
= For Maxterms we complement a literal 1lolo]l 4 |1
when it is 1 101l 5 1
-F(A,B,C)=M0.M£.M3 L 11ol 6 |1
= (A+B+C) . (A+B+C) . (A+B+C) 111l 7 1

= |n the standard short hand form: Exercise: Do by including missing

F(A,B,C) :/1,_[1\[[(0,2, 3) variables as on previous slide

Standard order —should get same result
of input literals Product Maxterms Chapter 2 51

Implementing the Complement of a Function

= For a function (F) expressed as a canonical sum of
minterms, the complement of the function (F) can
be constructed as either:
® A sum of the minterms missing in the given sum-of-

minterms canonical form for F

¢ A Product of the Maxterms having the same indices

= Example: Given F(x,y,z) = X,(1,3,5,7)

» Then we have: F is 1 for these indices

. Fis 1 for the remaining indices

-]E(X, y, Z) = Zm(0,2,4,6) é -, Fis 0 for the these indices
F(x,y,z) =1In(1,3,5,7)

— / §
Standard order Product

of input literals Maxterms

Conversion Between the Two Canonical Forms

To convert between sum-of-minterms and product-of-
maxterms form (or vice-versa) we follow these steps:

® Find the function complement by swapping terms in
the list with terms not in the list

® Change from products to sums, or vice versa

Example: Given F as: E(Xa y>z) = Zm(1,3,5,7)
F in the same form is: F(x,y,z) = Zu(0,2,4,6)

fz F in the other form is:
this is the original function F(x,y,z) =1Iv(0,2,4,6)

in the other form of

Chapter 2 53

Logic Implementation of SOM form

A sum of minterms (SOm) expression for a function of n
variables can be written down directly from its truth table

® Implementation of this form is a network of gates in two
levels:

® Level 1 consists of a maximum of (2" — 1) identical
AND gates, each with n-input and

® Level 2is a single OR gate (with a maximum of 2" — 1
inputs).
This form can often be simplified to a smaller standard

SOP expression (Fewer and smaller level 1 gates, smaller
level 2 gate = smaller circuits)

Two approaches to do this simplification:
® Manipulations using Boolean Algebra
¢ Graphical approach using Karnaugh maps (K-maps)

SOm - SOP Simplification Example
1. Using Boolean Algebra manipulations

* Obtain sum of minterms from Truth Table:
F(A,B,C) =2m(1,4,5,6,7)

* Write the minterms as algebraic ex
F=ABC+ABC+ABC+

= Simplifying:

ions:
15 literals,
6 gates

F=ABC+ AB +AB ;

=A E—
F=A+ABC — ¥
F=(A+X)(A+§C)=A+§C, 3 literals,

‘ 2 (smaller) gates
= Simplification reduced circuit cost from (15,6)

to only (3,2) ‘Standard or not?

Canonical (SOm, POM) forms can be costly to implement. Luckily,
they can be greatly simplified into standard (SOP, POS) forms

AND/OR Two-level Implementation of SOP Expression

* The two implementations for F are shown

below — it is quite apparent which is simpler!
A—

=
Cc— A F
A— B

%:j_ c Simplified
A Standard
C— 3 Literals
A & 2 (much
B—) Canonical simpler)
Cc— SOm: Gates
A 15 Literal

B—j_ & 6 Gates

C_

Chapter 2 56

Two Logic-Level Implementation of
Standard Forms (SOP & POS)

= SOP - AND-OR Implementation
= POS - OR-AND Implementation

¥ X
. T
Y — } | F

r—__/ “—JL_..> Z —z'__> r_/’
- =

(a) Sum of Products (b) Product of Sums

5. 2-Level Logic Circuit Optimization and K-maps

= Goal: To obtain the simplest implementation for a
given function

= Optimization is a more formal approach to
simplification.

= |tis performed using a specific systematic
procedure or algorithm as opposed to the
ad hoc approach of algebraic manipulation

= Optimization requires a distinct cost criterion to
measure the simplicity of a logic circuit

= Two useful cost criteria we will use:
¢ Literal cost (L)
® Gate input cost: (G)

Boolean Function Optimization

= Minimizing the gate input (or literal) cost of Boolean
equations reduces circuit cost

= We will use the gate input G as the cost criterion

= Boolean Algebra and graphical techniques are tools to
minimize cost criteria values

= Will cover optimum or near-optimum cost functions
for two-level (SOP and POS) circuits

= Will Introduce a graphical optimization technique using
Karnaugh maps (K-maps, for short)

Karnaugh Maps (K-map)

= A K-map is a collection of cells
* Each cell represents a minterm

* The collection of cells is a graphical representation of a
Boolean function

* Adjacent cells differ in the value of one literal only
* Alternative algebraic expressions for the same function
are derived by recognizing patterns of cells
= The K-map can be viewed as
® A reorganized version of the truth table
¢ A topologically-warped Venn diagram

Chapter 2 60

Some Uses of K-Maps

For functions with small numbers of literals,
e.g. up to 5 literals:

® Finding optimum or near optimum implementations
= SOP and POS standard forms
- Two-level AND/OR and OR/AND logic circuits

¢ Visualizing concepts related to manipulating
Boolean expressions

® Demonstrating concepts used by computer-aided
design programs to simplify larger circuits

Chapter 2 61
K-Map for two variables (x,y)

* Minterm m, and y=0|y=1
minterm m, are “adjacent” = =

. . x=0|[|[Z0" || —

- They differ in the value of the xv I xvllIx
variable y x=1|m,=|m, =

* Similarly, minterm m, and ISSEIRMEIRy

<

minterm m, differ in the x variable y
* Also, m, and m; differ in the x variable
* Finally, m, and m; differ in the variable y
™ Are mO and m3 adjacent') Each square represents an input

Combination (index value) which
Can possibly be a minterm for a
function Chapter 2 62

K-Map and Truth Tables

The K-Map is just a different form of the truth table.
= Example — Two literal function:

* For a given function F(x,y), output assumes
values a,b,c and d from the set {0,1}

Function Table

for the corresponding minterm

Chapter 2

o K-Ma

E Input | Function P

g V(alue):s }?lue; Y= 0 Y= 1
c X’y X’y <.. 0 1

< 22 X=0[a b

5 00 a 23 ; ;

E 01 b es x=1 ¢ d

bt ©3

E 19 < Sé Enter functi tput at the b
£ 11 d nter runction output a e DoX

63

K-Map Function Representation

= Example: F(x,y)=x F=x Iy = 0|y — 1|

® For function F(x,y), the two adjg/c%n/t,céil/sé/ontaining 1's
can be combined using the Minimization Theorem:

" i.e. algebraic simplification is achieved graphically by
simply combining “adjacent” cells as this allows
omitting literals with different values

Chapter 2

64

K-Map Function Representation

= Example: G(x,y) =x+y G=x+y|y=0|y=1
x=0 0

Theorem:

- S
G(x,y) = (xy+xy)+ (xy+xy)=x+y

Duplicate xy

Chapter 2 65

Three-literal Maps

A three-literal K-map:
l\iISB

MSB
Xyz is the :
Standard order ~_X=0
of the literals x=1

The distribution of minterms on the K-map satisfies logical
adjacency (note positions of m; and m,).

Note that m, is adjacent to m, and that mg is adjacent to m,:
Wrap-around effect
Each minterm represents yz=00 | yz=01 | yz=11 | yz=10

the corresponding 0|37z | xvz | vz | Xvz
product term: y y y y

x=1| xyz | xyz | xXyz | xyz
Chapter 2 66

Alternative Map Labeling

= Will use maps for:
¢ Entering function output values on the map
¢ Reading off simplified product terms from the map
= Alternative useful map labeling:

_ yz ,L\ TXZ
y y 00 01 11 10
-X_ 0 1 3 2 olo __,yz
x|« |5 [7 s [14 log; (2)+2=3
X L
- = 1
7| z Z y . xyZ

of literals in expression = Total # of variables - log, (# of cells in rectangle)
- Which is the most complex expression? Is it a minterm? How many literals?, cells?
- Which is the simplest expression? How many literals?, cells?

Representing a Logic Function on the K-map

= By convention, we represent the minterms of F by a "1" in the map and
leave the remaining cells blank

= Example:

MSB LSB y
F(x,y,2) =Zm(2,3,4,5) o B 1 2 1
= Example: X 41 5 1 7 6
G(a,b,¢) = Zu(3,4,6,7) -
= Learn the locations of the 8 b
indices based on the literal 0 1 3 2
order shown (e.g. x, most significant
and z, least significant) on the alt 1 5 7 1 6 1
map boundaries
C

Chapter 2 68

Combining cells

® By combining cells, we reduce number of literals in a product
term, reducing the literal cost and the gate input cost

® On a 3-literal K-Map:
® One cell represents a minterm with three literals

¢ Two “adjacent” cells represent a product term with two
literals

® Four “adjacent” terms represent a product term with one
literal

¢ Eight “adjacent” terms is the function of all ones (zero
literals — but here output is not a function of the inputs)

of literals in expression = Total # of variables - log, (# of cells in rectangle)

Chapter 2 69

Example: Simplifying by Combining cells
Graphical Vs Boolean Simplification
-

= Example: Let F=Xm(2,3,6,7) y

0 1 31 21

= Applying the Minimizagiaﬁ T/he(/)rem/""thre%
times: ,

e y _ /_ | _
F(x,y,z)=xyztxyz+txyz+xyz
=yztyz
* Thus the four te¥ms that form a 2 X 2 cell
correspond to the term "y".

Chapter 2 70

Rules for combining cells to larger rectangles

- Combine only “pair-wise adjacent”

cells
- Combine cells only up to a Pair-wise adjacency
rectangle/square with a size that is “
a power of 2 cells.
For 3 variables, this means: vz y ¥z
¢ 20=1 cell (3 literals) 00 o1 11 10°
¢ 21=2cells (2 literals) ol Q s e yz
® 22=4cells (1 literal) [1 T s 7 e | 'os=-@+2=3
Check: Result of combination — i
should give only a single product term” z Xyz
A grouping can include cells that are
not directly adjacent, but are related
together through pair-wise adjacency,
e.g. cells 1 (001) and 4 (100) i
Chapter 2 71

Three-literal Maps

= Topological warps of 3-literal
K-maps that show all adjacencies:
® Venn Diagram = Cylinder = 2-D K-Map

e i
Gy o N
Y]

Standard order: XYZ XZ
MSB
Adjacency needs Common line Boundary,

e.g. (7 and 3,5,6). 3 is not adjacent to 5 or 6 Chapter 2 7

Three-literal Maps

= Example Shapes of valid 2-cell groupings:

5

X

001

.

Xyz

y

011

C

[-

XZ

4
X

‘111 7\ 6

7
Z yz

= Two Ways to read off the product term for a rectangle shown:
1. Express the joint area on the map (Venn diagram mentality)
2. The product includes each variable that has the same value in all cells
of the rectangle. A variable that is equally divided between 1 and 0 in the

cells of the rectangle is excluded

Three-literal Maps: 4-Cell Groupings

= Example Shapes of 4-cell Rectangles:

y_ |z ¥

=

U

)
SN

L

Z

Chapter 2 74

Function Simplification with a 3-literal Maps

= K-Maps can be used as a systematic method to simplify
Boolean functions. Cells are combined to form a set of the
largest possible pair-wise adjacent rectangles/squares that
cover all the “1s” of the function

= Example: Simplify F(x,y,z)=2m(1,2,3,5,7)

z\ y /iy

0 r«\‘ 2 4
11U
4 5 7 6
x| |11
4
F(x,y,z)= z+Xxy Chepter 2

75

Function Simplification with a 3-literal Maps

= Use a K-map to find an optimum SOP
equation for F(X, Y, Z) =Xn(0,1,2,4,6,7)

Xy y

‘UIT 1 1 3 2 1

x|*11F 11 [*l1

NI

zZ ‘Xy
F(X,y,Z) =_Z+Xy+i§7

Chapter 2

76

Four-literal Maps

= Map and location of minterms:

NZ
00 01 11 10

WX 0 1 3/ 2
00

o1 4 5/7 6

IiteralOrde‘z 12 13 /15 14

11

— .
' 8 9 { 1| 10
Note Cell
Standard order: WXYZ .
vz Numbering
MSB Chapter 2 77

Four literal Terms

= On four literal maps we can have rectangles
corresponding to:

* A single cell = 4 literals, (i.e. Minterm)

* Two cells = 3 literals,

* Four cells = 2 literals

* Eight cells 2 1 literal,

* Sixteen cells = zero literals (i.e. Constant "1")

of literals in expression = Total # of variables (4) - log, (# of cells)

Chapter 2 78

Four-literal Maps

= Examples of valid 4-cell groupings:

- Rectangle should contain a
power of 2 (< 24) group of
pair-wise adjacent cells: 1, 2,

4,8

Each rectangle should be
expressible as a
single product term

Chapter 2

79

Four-literal Maps

= Example Shapes of Further Rectangles:

Y
=
—3 5 7 6,

- X

12 13 15 1
1T }
~ 3 9 181)

N JIN |\

Chapter 2

80

Simplification with a Four-literal Map : Example 1

“F(W, X, Y, Z)=Zn(0, 2,3,4,5,6,78,10,13,15)

How effective

Is our simplification?
L (# of literals) cost of
Implementing the

‘7

WY

Canonical, SOm

Xz L="7

— 4
given Logic WX 1
expression 17
Is Reduced

W kl_
from? To? S 9 1l

1 1
ZX
Z

Optimized, SOP
L="

F(W, X,Y, Z) = ZX + WY + XZ + WX

Chapter 2 81

Simplification with a Four-literal Map : Example 2

= F(W, X, Y, Z)=Zu(3,4,5,7,9,13,14,15)

WXY

Best way to
handle this 1?

Y Wz
0 il Tl‘ 2
BB 9
19 13 1) X
W] _ & = 1 = 110 T WXY
ZX 7

FW, X,Y, Z) = ZX + WYZ + WXY + WXY

Chapter 2 82

Systematic Simplification (minimization) of a logic function:
Implicants, Prime Implicants, and Essential Prime Implicants

" An Implicant is any single product term of a function obtained by
combining a number of pair-wise adjacent “1” cells in the map into a
rectangle with the number of cells a power of 2 (a minterm is the
smallest implicant)

" A Prime Implicant (PI) is a single product term obtained by combining
the maximum possible number of pair-wise adjacent cells in the map
into a rectangle with the # of cells a power of 2 (can 1 cell be a PI?)

= A prime implicant is called an Essential Prime Implicant if it is the
only prime implicant that covers (includes) one or more minterms
(cells)

" Prime Implicants and Essential Prime Implicants can be determined
by inspecting the K-Map.

= A set of prime implicants "covers all minterms" if, for each minterm of
the function (i.e. 1 of the function), at least one prime implicant in the
set includes that minterm....i.e. simplv if No 1’s are left out!

Examples of the three types of Implicants

2 1: An implicant
/ C ,1 3-4:PrimeImplicants
5-6: Essential Prime Implicants

1 Note: Any single cell
(minterm) is an implicant

B Give a situation that makes
3 implicant 1 a prime implicant

4 Does 7 represent a single product term?
D Is it an implicant? Why?

® Minterm covered by only one prime implicant

So minterm 5is ?
Chapter 2 84

Example: Find all Prime Implicants

CD Essential Pls
—_ C _
BDy | , _____________________ vBD\\ _ c
_].J ﬁt‘l 1J 1 ll
BD\\r—f..T}. >BD§\-EL_ 1
= B B
(1]]1) b 1
A = A
AB & l.f:l 1] 1]1 1 [1
| b o
AD EC @ Minterms covered by single prime implicant

Chapter 2 85

Another Example

= Find all possible prime implicants for:
GA,B,C,D)=2n(0,2,3,4,7,12,13,14,15)

® Hint: There are seven prime implicants!

L5 el WX WYZ Y , Wyz
those ~_ \ ,/
needed to
cover all 1's
XYZ
Any \%\%
essential
Pls?

Chapter 2 86

K-Maps for five or more Variables

= For five literal problems (32 cells), we use two adjacent K-
maps. It becomes harder to visualize adjacent minterms
for selecting Pls.

FW, XY, Z V)
V=0 V=1

Y Y Adjacent cells.
Only value of V
changes

X X
w W
Z 4

Chapter 2 87

Don't Cares in K-Maps

Sometimes a function table or map contains entries for
which it is known that:

® The input values for the minterm will never occur, e.g.
with 4-bit (0-9) BCD codes (10-15 input values not used)

¢ The output value of the function for that minterm will not
be used

In such cases, the output value of the function need not
be defined as 1 or 0

Instead, the output value is specified as a “don't care”

By placing “don't cares” (labeled as an “x” entry) in the
function table or map, the cost of the logic circuit may
be reduced

Chapter 2 88

Don't Cares in K-Maps

= Example: A logic function having the binary codes for
the BCD digits as its inputs. Only the codes for 0
through 9 are used. The six codes, 1010 through 1111
never occur, so the output values for these codes are “x”
to represent “don’t cares”

How can this help us minimize our circuits?

- Each “x” entry may be given either a 0 or 1 value in
resulting solution to an advantage

® For example, an “x” may be taken as “0” in an SOP solution

or as “1” in a POS solution
® An “x” can be taken as 1 to maximize the size of a PI

® A cell with “x” needs not be covered by any prime implicant

Chapter 2 89

Example: BCD “5 or More” (BCD codes 6,7,8,9)

* The map below gives a function F1(w,x,y,z) which
is defined as "5 or more" over BCD inputs.
With the don't cares used for the 6 non-BCD input

coml;lnatlons: Function Output:
0 for input=0to 4
0 olo 1forinput=5to 9
0 3 2 X (don’t care) for input = 10-15
0 1)

x Fl(wxyy,z)=w+Xxz+xy AlXs=1

= This is much lower in cost than F2 where
X[X the “don't cares” were treated as "0"

ﬁ
X
N = £>< U_IH] ©

F,(W, X,y,Z) =WXZ+WXy+wxy
All X's =0

Chapter 2 20

Product of Sums Example

* Find the optimum POS solution for F, given:
F(A,B,C,D)=2n(3,9,11,12,13,14,15) + 2d (1,4,6)

Don't care
¢ Hint: Use F and complement it to get the result
F map % = We still get the SOP, but for F_by
. . Constructing Pls containing its 1s
j 1 3 2 = h h fF
0 X 1 03 %z (these are the Os of F)
Taken 1 F)_(Z_+ V_VX
W 4 S 7 @ =
WX‘ Takeh O 0 0 Takg% 0) POS of F is obtained b
14 13 19 1 X " of F is obtained by
1] 1 1 1 Complementing F using DeMorgan’s
W | 5 T = = —
ol 1] 1Yo e
' ' =(XZ) . (WX) _
= (X+Z) . (W+X
Z ()-(%hapterz 91

Algorithm for Systematic Optimization

1. Find all possible prime implicants (Pls)

2. From these Pls, select:
— All essential Pls and mark all 1’s
covered by them
- A minimum cost set of non-essential Pls
that cover all minterms not yet covered by
the essential Pls above
® To obtain a good simplified solution:

(not necessarily optimum), use the
Selection Rule on next slide

Chapter 2 92

Prime Implicant Selection Rule

= Minimize the overlap among prime
implicants as much as possible. In
particular, in the final solution, make sure
that each prime implicant selected includes
at least one minterm not included in any
other prime implicant selected

Note: Good solutions are not necessarily
unique

Chapter 2 93

Example

= Simplify F(A, B, C, D) given on the K-map

Selected .
e Essential Pls additional Pls wit Essential Pls

Cminimum overlap C
o
AN L

1)
|| M US| L\| 1/
1) 0
" Ak e
1 | L

Possible D D

additional Pls to v Minterms covered by essential prime implicants

cover Notice No overlap amongst additional selected Pls
all remaining 1's Chapter 2 94

R

1]1)

Selection Rule Example with Don't Cares
= Simplify F(A, B, C, D) given on the K-map.
Selected Essential
C additionalsvge\n\ / C
minimum ovexlap I I
e
1 | x 1 xJ
[»1” x|lx | (¥ x/|x [1])
— B v B
X X
A 1—— A \\
1] 1] x . 1 |[1 x]|
This don’t care
POS.S?b|e D Is taken as O D |
additional Pls v~ Minterms covered by essentia primeimplicants
Chapter 2 95

6. Other Gate Types

= Why?

® Feasibility and cost of implementing the gate circuit
in transistors

® Potential for implementing any Boolean function
using only a single gate type

¢ Convenient conceptual representation

= Gate classifications

® Primitive gate - a gate that can be described using
a single primitive operation type (AND or OR) plus
optional inversion(s), e.g. NAND

® Complex gate - a gate that requires more than one
primitive operation to describe it, e.g. XOR

‘Graphics Symbols

Nam Distinctive Algebraic Truth
shape equation table
Primitive gates =
X) oofo
AND v F F=XY o1lo
100
\/ 11l
XY|F
X R 000
OR v F F=X+7Y 011
101
\/ 11l
X|F
NOT . > o - -1
{inverter) X F F=X o
/ Lo
X|F
Buff: X—%F F=X alo
1l
EX|F

00 |H-Z

3-Slate Buffer X |} F 01 |Hi-Z
\/ E Lafo
110
XY|F
X 0o
NAND Y:D)—F F=X Y 011
101
1110
XY[F
x ool
NOR F F=XTY o 1o
¥ it
I

Buffer

= A buffer is a gate with the function F = X:

X

= |n terms of Boolean logic, a buffer is the same as a
direct connection!

= So why use it?
A buffer is an electronic amplifier that can be
used to:
= Improve circuit voltage levels e.g. of a received signal

= Increase current drive capability (i.e. get a larger fan out)
= Introduce desirable circuit delay

oL

Chapter 2 98

NAND Gate [NOT (AND)]

= The basic NAND gate has the following
symbol, illustrated for three inputs:

* AND-Invert (NAND)

}— F(X,Y,Z)=X"Y"'Z

= NAND represents AND NOT, i. e, an AND
function followed by an inverter (NOT). The
symbol shown isan AND-Invert. The small
circle (“bubble™) represents the invert function.

N < %

Chapter 2 99

NAND Gates (continued)

= Applying DeMorgan's Law gives Invert-OR (NAND)

X —_
Y% FX,Y,Z)=X+Y+Z
Z

= ThisNAND symbol is called Invert-OR, since inputs are
inverted and then ORed together

= Note the above symbol isstill for aNAND
= SoaNAND gate can be represented in two different but
equivalent forms. - AND-then-Invert form
- Invert-then-OR form

FX,Y,Z)=X"Y-Z =X+Y+Z
AND-Invert Invert-OR chapter2 100

Observations on the NAND Gate:
1. The NAND is not Associative

NAND usually does not have an operation symbol defined like the “.”
for the AND and the “+” for the OR

This is because NAND is not associative and we have difficulty
dealing with non-associative arithmetic!:

Z=A*BC # Z=(A-B)-C

C B A| Z CB A| Z
0 0 0 1 0o 0 0 1
0 0 1 1 0o 0 1 1
01 0 1 01 0 1
0 1 1] 1 # 01 1 1
1 0 0 1 1 0 0

1 0 1 1 1 0 1

11 0 1 1 1 0

1 1 1 0 1 1 1

i.e. the n-input NAND function can not be derived from a sequence of
2-input NAND operations

But it can be derived as a sequence 2-input AND operation (which is
associative) followed by a single final inversion

Observations on the NAND Gate:
2. The NAND is a Universal Gate

Universal gate —isa NOT \D X=X

gate that can be used to or 1
}mplement any Boolean %
unction through AND XY = XY
implementing the 3 Y —} Do

basic logic operations:

&AND, OR,)and NOT) % [>0
advantage o _
The NAND gateisa [p—FT-xe
universal gate as shown X Do

opposite

The NAND gate is the
natural implementation
for the simplest and
fastest electronic circuits

Chapter 2 102

NOR Gate [NOT (OR)]

= The basic NOR gate has the following
symbol, illustrated for three inputs:

® OR-Invert (NOR)]

X - ®
y DF(X,Y,Z)=X+Y+Z i
7

= NOR represents OR NOT, i. e, the OR function
followed by aNOT. The symbol shown isan OR-
Invert. The small circle (“bubble™) represents the
invert function.

Chapter 2 103

NOR Gate (continued)

Applying DeMorgan's Law gives Invert-AND (NOR)

FXY,) =X+Y+Z=X"Y - Z
OR-Invert Invert-AND

§_8} F(X,Y,2)=X"Y' Z
z —C

ThisNOR symbol is called Invert-AND, since inputs
are inverted and then ANDed together.

Note the above symbol is still for aNOR

So aNOR gate can be represented in two different but
equivalent forms: OR-then-Invert & Invert-then-AND

Observations on the NOR Gate:
1. The NOR gate is not Associative

NOR usually does not have an operation symbol defined like the “.

for the AND and the “+” for the OR

This is because NOR is not associative and we have difficulty dealing

with non-associative arithmetic!:

L-ATBIC # 7-ABC

C B A Z C B A

0 0 0 1 0 0 0

0 01 0 0 0 1

01 0 0 0 1 0
011 0 £ 011

1 0 0 0 1 00

1 0 1 0 1 01

1 1 0 0 11 0 0
111 0 111 0

i.e. the n-input NOR function can not be derived from a sequence of

2-input NOR operations

But it can be derived as a sequence 2-input OR operation (which is

associative) followed by a single final inversion

Observations on the NOR Gate:

2. The NOR is a Universal Gate

NOT X —
The NOR gate is a) > R

or0

universal gate as
shown opposite

The NOR gate is

another natural X
implementation for ™"
the simplest and Y
fastest electronic

circuits

X =
orR ") do—T]>o0—X
Y

=

Chapter 2 106

Two-Level Logic Implementation:
Using AND & OR gates

For SOP forms: AND gates in the first level and a single OR gate
in the second level.

For POS forms OR gates will be in the first level and a single
AND gate will be in the second level.

Level 1 L 1
eve
X = \ X
7 —
—j Level 2 z
a2
-] " i i
) : ’ >_._: Y | F
7 — ; i |
]] i !
S |
X _ﬁ X
Y — Y
Z _—/ Z

Two-Level Logic Implementation:
Using Universal Gates NANDs & NORs

SOP forms can be implemented using two-logic levels of only
NAND gates , while POS forms can be implemented using two-

logic levels of only NOR gates
F=XZ+YZ+XYZ F=X+Z) (Y’+Z) (X’+Y+Z)

O 1=

LY

Other Two-Level Logic Implementation:
AND-NOR

= If we express the function in AND-OR-Invert form, then it can be implemented
directly as AND-NOR (AND gates for product terms and a NOR gate for Oring
them and then inverting)

= To Obtain F in AND-OR-Invert Format: 15 Obtain F* in SOP by combining
the 1’s of F’ in the K-map - then F is simply obtained by complementing the
SOP expression of F’ and we get the AND-OR-INVERT representation of F.

A —
EX: F’= AB+CD+E > B }

F=(AB+CD+E)’

Then the AND-NOR is readily available . ¥35>; P
(OR-INVERT is simply NOR) D —

Other Two-Level Logic Implementation:
NAND-AND

= The NAND-AND implementation is very similar to the AND-NOR -- We need
to express the function in AND-OR-Invert form, then expand the complement
one level to get the NAND-AND form directly:

EX: F’= AB+CD+E > F=(AB+CD+E)’ = (AB)’ (CD)’ E’

Notice the single literals in F have A

inverters instead of NANDs B —] :
(' —
F
D—
p Do

Other Two-Level Logic Implementation:
NAND-AND

We could also have obtained the NAND-AND implementation from the AND-NOR
through logic transformations: Inserting Bubbles in pairs!

AND-INVERT == NAND ,
INVERT-OR-INVERT = NAND-INVERT=AND

miD: - o
D=1y Ebe= By
i 5 F—>o—

Other Two-Level Logic Implementation:
OR-NAND

= If we express the function in OR-AND-INVERT form, then it can be
implemented directly as OR-NAND (OR gates for SUM terms and a NAND
gate for Anding them and then inverting)

= To Obtain F in OR-AND-Invert Format: 15 Obtain F* in POS by combining
the 0’s of F’ in the K-map - then F is simply obtained by complementing the
POS expression of F’ and we get the OR-AND-INVERT representation of F.

A
EX: F’=(A+B)(C+D)E > %

F = [(A+B) (C+D)E |’

Then the OR-NAND is readily available c) >])C F
(AND-INVERT is simply NAND) D —

Other Two-Level Logic Implementation:
NOR-OR

= The NOR-OR implementation is very similar to the OR-NAND; we need to
express the function in OR-AND-INVERT form, then expand the complement
one level to get the NOR-OR form directly.

EX: F’=(A+B) (C+D)E > F=[(A+B)(C+D)E |’ =(A+B)’ + (C+D)’ + E’

Notice the single literals in F have A
inverters instead of NORs B

VY
/

Other Two-Level Logic Implementation:
NOR-OR

We could also have obtained the NOR-OR implementation from the OR-NAND
through logic transformations: Inserting Bubbles in pairs!

OR-INVERT == NOR ,
INVERT-AND-INVERT = NOR-INVERT= OR

A . g
B B

E— O E —><>—

Other Two-Level Logic Implementation:

Summary
Equivalent
Nondegenerate Form Implements Simplify To Get
the F an Output
(a) (b)* Function into of

AND-NOR NAND-AND

OR-NAND NOR-OR

AND-OR-INVERT

OR-AND-INVERT

Sum-of-products

form by combining

0’s in the map. F
Product-of-sums

form by combining

I's in the map and

then complementing. F

*Form (b) requires an inverter for a single literal term.

Multi Logic-Implementation using NANDs & NORs

= ANY logic implementation could be converted to NAND-only or
NOR-only implementation using the following transformations:

¢ AND-Invert >
® Invert-AND
® OR-Invert >
¢ Invert-OR >
¢ Invert-AND-OR
¢ Invert-OR-AND

NAND o>

NOR I
NOR J)

NAND

—
—
— 2
—

> OR-AND-Invert
> AND-OR-Invert

B - B

Contd.

Multi Logic-Implementation using NANDs & NORs,

* So when converting to NANDs:

¢ Start from inputs, insert bubbles in pairs: at inputs of OR
gates or at outputs of AND gates to convert them to NANDs

* And when converting to NORs:

¢ Start from inputs, insert bubbles in pairs: at inputs of AND
gates or at outputs of OR gates to convert them to NORs

= e

Complex gates

Name Distinctive Algebraic Truth
shape symbaol equation table
XY|F
Exclusive-OR X E F=XY + XY 0ol
(XOR) Y =X@&Y 011
101
XOR 1110
XY|F
Exclusive NOR X E F=XY + XY 001
(XNOR) Y =Xa&v o1j0
oo
1

1
Inverted XOR = XNOR 11

AND.OR.INVERT
(AOT)

w Inverted SOH
X F F=WX+YZ

OR-AND _INVERT
(OAT)

I I
e

Inverted POS

F=(W+X)NY+Z)

w SOP
@EDR %‘%}—F F=WX+YZ

z

w POS
%}K?ND %%DﬁF F=(W+X)Y+Z)

Z

6. Complex Gates: Exclusive OR/ Exclusive NOR

= The eXclusive OR (XOR) function is an important Boolean
function used extensively in arithmetic & communication

circuits

= XOR isassociative and is represented as the XOR operator

(®)

= The eXclusive NOR (XNOR) function is the complement of
the XOR function.

= XNOR isnot associative
= By our definition, XOR and XNOR gates are complex gates
= The XOR/XNOR functions may be implemented:

® Directly as an electronic circuit (atrue gate) or

® Indirectly by interconnecting other gate types (used as a
convenient representation)

Definitions of XOR/XNOR as functions of 2 inputs:

Truth Tables

-Sum

XNOR

X

Y

(X®Y)
or X=Y

1 for equa

inputs

XOR - Parity
:)D_ X | Y| X8Y
1 for different
vy 00 |0 0 inputs vV
<[T2 10 |1 1 _ 0. 1.
— —T b1 |0 1 X1
X1 31 (1] 0 x[2 P21

The XOR function means:

X ORY, but NOT BOTH

— | DD

— | -

— || -

XNOR is called the equivalence function, operator (=): Why?
From the K-maps:

Prove

X@Y=X§+§Y - X@Y=XY+§? Algebraically

From egns above, notethat X®@y=Xx®Y =X®Y

7. Exclusive OR/ Exclusive NOR

= Usesfor the XOR and XNORs gate include:
® Parity generators/checkers
® Adders/subtractors
¢ Counters/incrementers/decrementers
= Functions (see previous slide)
® TheXOR functioniss X®Y=XY+XY
® The eXclusive NOR (XNOR) function, otherwise
known asequivalenceis. Y @y=XY+XY
= Strictly speaking, XOR and XNOR gates are
defined only for two inputs. For more than two
Inputs, we use the terminology odd and even
functions (considered later), respectively

XOR Implementations

= The simple SOP implementation uses the following structure:

KXY
X®Y=XY+XY —Jor>-xev

XY

Y Invert-then-AND
= A NAND only implementation: = OR-Invert

Output of top AND : X OR
= X (XY)
= X(X+Y) L X®Y
= XX + XY
=0+ XY Y

- xy asabove

XO R |d entltl @S Derive from the truth table

XOR can be used as Controlled Inverter (1's Complementer)

X=X ; similar to OR S
00

01
XPX =0 ; Inputs are always identical 10

X @i =1 ; Inputs are always different 11

X@1=X ;similarto NAND

= = = o |

Commutativity:

XoY=Y®X
Associativity: Sequence of 2-input operations: Yes!

XOYDZ = (XOY)OZ = XD(YDZ)

But for 3 or more inputs the function is called the odd function
(it is not called XOR) 123

XNOR Identities

Derive from the truth table XYI|F

Xa0 —x ;similar to NOR R
. 001
Xa@l=X ; similar to AND 01lo
XX = 1 ; Inputs are always identical 1L 00
1 111

X G—)i = ;Inputs are always different

Commutativity:

XY =Y®X Demonstrate that XNOR is NOT associative
Associativity: Sequence of 2-input operations: No!

XOYDPZ +(XOY)DZ XO(YDZ)

For 3 or more inputs the function is called the even function
(it is not called XNOR)

XOR for >2 Variables: The Odd Function
(for even parity generation and checking)

The XOR function can be extended to 3 or more literals. For more than

2 literals, it is called:))
. YZ Y D C i
- An odd function, or }\\ o o011 10 ARS 0D 0L 0110
- modulo 2 sum G Digtance]2 | 00 1 1
ve >
. X [l | | 1l | |

The odd function for |) r
3 inputs and 4 inputs z 1 : :

P P (XevYez Al

g 1 1

XOY®Z=XYZ+XYZ+XYZ+XYZ . _°

1s in the K-map correspond to minterms with indices having an odd
number of 1s in binary, hence the name. Use to generate even parity bit
and to check even parity (output = 1 for parity error)

Implementation: Utilize XOR associatively & :)
=, D
z] >-F -—

XNOR for >2 Variables: The Even Function
(for odd parity generation and checking)

The XONR function can be extended to 3 or more literals. For more than
2 literals, it is called: c

e Y
- An Even function ‘\\‘If o0 01 11 10 AE(\D w o111 10
of ! iStance,zl ool 1 1
The odd function for i l' : : & l :
3 inputs and 4 inputs = i I
. {oX®Y®Z A
XOYDPZ=XYZ+XYZ+XYZ+XYZ b

MAGBDCO®D
1s in the K-map correspond to minterms with indices having an even
number of 1s in binary, hence the name. Use to generate odd parity bit
and to check odd parity (output = 1 for parity error)

Implementation: Utilize associatively of the XOR *—)

X then invert! * — 7 DO_"-
Y ‘ o —2\
Z:)QL)D)_F o —

W N

»

~

Unit 2: Binary Logic and Gates
Overview

Binary logic and gates, Boolean Algebra, Basic identities of Boolean
algebra

. Boolean functions, Algebraic manipulation, Complement of a function

Canonical & Standard forms, Minterms & Maxterms, Sum of products,
Product of Sums. Algebraic simplification of logic functions

Physical properties of gates: Fan-in, Fan-out, Propagation Delay, HiZ
(Tristate) outputs

Map method of logic circuit optimization:
¢ Two-, Three-, and Four-literal K-Map

® Optimization procedure: Essential prime implicants, Selected
Additional prime implicants
® Simplification with Don’t care conditions
. Other Gate Types: Universal gates (NAND and NOR), 2-level Complex
gates (AO, AOI, OA. OAl)

. Exclusive-OR (XOR) and Equivalence (XNOR) gates, Parity generation and
checking

