
Chapter 2 – Digital
Computers and Information

Logic and Computer Design Fundamentals

EE 200: Digital Logic Circuit Design

Unit 2

Binary Logic and Gates

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use

(Hyperlinks are active in View Show mode)

Chapter 2 2

Unit 2: Binary Logic and Gates
Contents

1. Binary logic and gates, Boolean Algebra, Basic identities of Boolean
algebra 2.1, 2.2

2. Boolean functions, Algebraic manipulation, Complement of a function 2.2
3. Canonical & Standard forms, Minterms & Maxterms, Sum of products,

Product of Sums. Algebraic simplification of logic functions 2.3
4. Physical properties of gates: Fan-in, Fan-out, Propagation Delay, HiZ

(Tristate) outputs 6.1, 6.2.
5. Map method of logic circuit optimization:

• Two-, Three-, and Four-literal K-Map 2.4
• Optimization procedure: Essential prime implicants, Selected

Additional prime implicants 2.5
• Simplification with Don’t care conditions 2.5

6. Other Gate Types: Universal gates (NAND and NOR), 2-level Complex
gates (AO, AOI, OA. OAI) 2.7

7. Exclusive-OR (XOR) and Equivalence (XNOR) gates, Parity generation and
checking 2.8

Chapter 2 3

1. Binary Logic and Gates: Definitions

Binary literals take on one of two values: e.g. (1,0)
(T,F)
 Logical operators operate on binary values and

binary literals
Basic logical operators perform the logic functions

AND, OR and NOT
 Logic gates: Circuits that implement logic functions
Boolean Algebra: a useful mathematical system for

specifying and transforming logic functions
We will study Boolean algebra as a foundation for

designing and analyzing digital systems

Chapter 2 4

Binary literals

 A literal is a binary variable or its complement and therefore
takes only one of two possible values

 Recall from Unit 1 that these two binary values can have
different names:
• True/False
• On/Off
• Yes/No
• 1/0

 We use 1 (=true) and 0 (false) here to denote these two values
 literal identifier examples:

• A, B, y, z, or X1 for now
• RESET, START_IT, or ADD1 later

yA
B

Logic

Circuit
G

Input literals Output literal
More meaningful names that describe function of literal

Chapter 2 5

Logical Operations on Binary literals

 The three basic logical operations are:

• AND

• OR

• NOT

 AND is denoted by a dot (·)

 OR is denoted by a plus (+)

 NOT is denoted by an overbar (¯), a single
quote mark (') after, or (∼ or #) before the
literal, e.g. A, ‘A, ∼A, or #A

Chapter 2 6

 Examples:
• is read “Y is equal to A AND B”

(Y is True when Both A & B are True)
• is read “z is equal to x OR y”

(Z is True when either X or Y are True)
• is read “X is equal to NOT A”

(X is True when Y is Not True)

Notation Examples- Logical Operators

Note that both the “.” (dot) and the “+” operators
also have mathematical functions of
multiplication and addition, respectively

= BAY .

yxz +=

AX =

If no ambiguity is caused, we may omit the dot: Y = AB

Product,
Intersection

Sum,
Union

Negation,
Complementing

Chapter 2 7

Definitions of the 3 Basic Logic Operations

Operations are defined on the values "0" and "1" for each operator:

AND (.)

0 · 0 = 0
0 · 1 = 0
1 · 0 = 0
1 · 1 = 1

OR (+)

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

NOT ()

10 =

01=

Multiplication and
AND give identical
results

Addition and OR
give different
Results for 1+1

No corresponding
Math operator for
NOT

A
nything ‘A

N
D

ed
’w

ith
zero gives a zero result

A
nything ‘O

R
ed

’w
ith

one gives a one resultThe only way to get
a 1 is to AND ALL 1s

The only way to get
a 0 is to OR ALL 0s

Chapter 2 8

01

10

X

NOT

XZ =

Truth Tables

 Truth table - A tabular listing of the values of a
logic function for all possible combinations of the
values of its argument (input) variables

 Truth tables for the three basic logic operations:

111

001

010

000

Z = X·YYX

AND OR

X Y Z = X+Y

0 0 0

0 1 1

1 0 1

1 1 1

Logic Gates

 Electronic devices that implement logic operators are called Gates:
• AND gate implements

AND operation

• OR gate implements

OR operation

• NOT gate (or simply an INVERTER) implements NOT operation

Chapter 2 9

Chapter 2 10

Basically…Using Switches

Input/Output Definitions

• Input:

 logic 1 is switch closed

 logic 0 is switch open

• Output:

 logic 1 is lamp on

 logic 0 is lamp off.

Practical Implementation of the
Basic Logic Gates

In today’s computers,

Switches are implemented

using transistors, e.g.
0 = Low Voltage, e.g. 0 V

1 = High Voltage, e.g. 3 V

Chapter 2 11

 The algebra that deals with binary literals and logic functions
 literals: Denote by letters of the alphabet, e.g. A, B, X, Y, Z
 Basic Logic operations (operators) on those literals: AND, OR, NOT
 A Boolean Expression (e.g. X+YZ) is Formed by:

- Binary literals
- Logic operations (operators) on the literals and constants
- Parenthesis
- Constants 0,1

 A Boolean Function can be described by a Boolean Equation of the
form: Output = Boolean Expression (not unique)

 Each Function can be represented as a logic diagram (not unique)
 A Boolean Function can be uniquely expressed as a truth table that

maps each possible combination of the input literals to the
corresponding output literal (n input literals 2n combinations)

 Later in this unit, we will consider optimization methods to derive the
simplest Boolean functions that implement a given truth table

 Simplest functions require the smallest number of the smallest gates
and therefore are most economical to implement

2. Boolean Algebra- Formal Definitions

Chapter 2 12

Boolean Algebra

Truth Table

(unique)

F
un

ct
io

n

Literals

Expression

Equation Logic Diagram

Several equivalent implementations
- Use the optimum one to implement the function

Implementation 1 Implementation 2

Optimization will be basically
simplification

Chapter 2 13

Boolean Function: Represented by many
Equations, Logic Diagrams, but a single Truth Table

 Boolean equations, logic diagrams, and truth
tables describe the same logic function!

 Truth tables are unique; but equations and logic
diagrams are not. They can be manipulated to
produce simpler expressions requiring fewer
gates Optimization

X

Y F

Z

Corresponding
Logic Diagrams

Equation/Diagram Pair

ZYX F +=

Truth Table (Unique)

11 1 1

11 1 0

11 0 1

11 0 0

00 1 1

00 1 0

10 0 1

00 0 0

X Y Z Output F

0

1

1

0

0

0

Unique truth table
listing function output
for all possible input
combinations (23 = 8)

Many

Unique

In
p

u
ts

One-to-one
correspondence
between the
equation and the
logic diagram

Design

Analyze

Other possible Equation/Diagram Pairs

Chapter 2 14

1.

3.

5.

7.

9.

11.

13.
15.

17.

Commutative

Associative

Distributive

DeMorgan’s

2.

4.

6.

8.

X . 1 X=

X . 0 0=

X . X X=

0=X . X

Boolean Algebra Identities

10.

12.

14.

16.

X + Y Y + X=

(X + Y) Z+ X + (Y Z)+=
X(Y + Z) XY XZ+=

X + Y X . Y=

XY YX=

(XY) Z X(YZ)=

X + YZ (X + Y) (X + Z)=

X . Y X + Y=

X + 0 X=

+X 1 1=

X + X X=

1=X + X
X = X

Dual

AND OR

1 0

OR AND

0 1

Comments

0 opens OR, 1 opens AND

1 blocks OR, 0 blocks AND

Duplicating a literal has no effect

S
in

gl
e

lit
er

al
Tw

o
or

 m
or

e
lit

er
al

s

This Does not hold in
ordinary Algebra: e.g.
5+(3*4) ≠ (5+3)*(5+4)

XYZ =X+Y+Z=

Associativity:
An n-input operation can be performed as
a sequence of 2-input operations in any
order, e.g. a 3-input OR

Order of inputs is
irrelevant

Complementing is
not changed

Chapter 2 15

 The identities above are organized into pairs. These pairs
have names as follows:

1-4 Existence of 0 and 1 5-6 Idempotence

7-8 Existence of complement 9 Involution

10-11 Commutative Laws 12-13 Associative Laws

14-15 Distributive Laws 16-17 DeMorgan’s Laws

 If the meaning is unambiguous, we leave out the symbol “·”

Some Properties of Identities & the Algebra

 The dual of an algebraic expression is obtained by
interchanging + and · and interchanging 0’s and 1’s.

 The identities appear in dual pairs. When there is only one
identity on one line the identity is self-dual, i. e., the dual
expression = the original expression, e.g. No. 9.

Chapter 2 16

 Unless it happens to be self-dual, the dual of an
expression does not equal the expression itself.

 Example: F = (A + C) · B + 0
dual F = ((A · C) + B) · 1 = A · C + B

 Example: G = X · Y + (W + Z)
dual G = (X+Y) . (WX)

 Example: H = A · B + A · C + B · C
dual H = (A+B) . (A+C) . (B+C)

 Are any of these functions self-dual?
Check if truth tables for (F) and (dual F) are identical

Some Properties of Identities & the Algebra (Continued)

When taking the dual,
Complementing is
not changed

Chapter 2 17

Boolean Operator Precedence

 The order of evaluation in a Boolean
expression is:
1. Parentheses
2. NOT
3. AND
4. OR

 Consequence: Put parentheses
around OR expressions when they have
to be evaluated first

 Example: F = E + A(B + C)(C + D)

Chapter 2 18

Boolean Algebraic Proofs: Example

Compare circuit costs of both sides

to show Benefit of simplification

Verify equivalence of 1 and 2

By comparing the truth tables

Show algebraically that the LHS is logically equivalent to the RHS
i.e. will have same truth table

Chapter 2 19

Useful Theorems (in Dual forms)

()(

x y⋅y

) ninimizatioMyyyxyyyx =++=⋅⋅

() tionSimplificayxyxyxyx ⋅=+⋅+=⋅+

() Absorptionxyxxxyxx =+⋅=⋅+

Consensuszyxzyzyx ⋅+⋅=⋅+⋅+⋅
() () () () ()zyxzyzyx +⋅+=+⋅+⋅+

LawssDeMorgan'xx ⋅=+

+ x x

x x

x x

x x

y x= + y

DualExpression

Chapter 2 20

()() yyyxyyyx =++=⋅⋅ x+ x

Proof of Minimization

 Consider the LHS form

x y + x y = y (x + x) = y
1

Chapter 2 21

Proof of Absorption

 A + A·B = A (Absorption Theorem)
i.e. B is irrelevant (redundant, absorbed) in this expression!

Proof Steps Justification (identity or theorem)
A + A·B

= A · 1 + A · B X = X · 1
= A · (1 + B) X · Y + X · Z = X ·(Y + Z)(Distributive Law)
= A · 1 1 + X = 1
= A X · 1 = X

 Our primary reason for doing proofs is to learn:
• Careful and efficient use of the identities and theorems of

Boolean algebra, and
• How to choose the appropriate identity or theorem to apply

to make forward progress, irrespective of the application.

Chapter 2 22

Proof of Simplification

 Consider the LHS form

x + x y = (x + x) (x + y)
= 1. (x + y)
= (x + y)

Chapter 2 23

 AB + AC + BC = AB + AC (Consensus Theorem)
Proof Steps Justification (identity # or theorem)

AB + AC + BC
= AB + AC + 1 · BC 2
= AB +AC + (A + A) · BC 7
= AB +AC + ABC + ABC
= AB + ABC +AC + ABC 12

= AB (1+C) + AC (1+B)
= AB + AC 3, 2

11, 14

X

14

Proof of Consensus

Chapter 2 24

Proof of DeMorgan’s Laws ⋅ yyx x +=

Chapter 2 25

DeMorgan’s Laws ⋅ yyx x +=
Verification by Truth Tables:

AND-Invert = OR of inverts

Note: DeMorgan’s is also valid for any number of variables

A B C …..H A + B + C …..+ H=

Chapter 2 26

Deriving the Truth Table of a Boolean Function

x y z F1 F2 F3 F4

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 0 1

1 1 0 1 1

1 1 1 0 1

zxyxF4
xzyxzyxF3

xF2
xyF1

+=
+=

=
= z

yz+
y+

Function of 3 input variables

 23 = 8 input combinations

 Truth table has 8 rows

 Table lists all possible

combinations of the inputs

and the corresponding output

Chapter 2 27

Expression Simplification

 An application of Boolean algebra

 Simplify to contain the smallest number of
literals (complemented and
uncomplemented variables):

= AB + ABCD + A C D + A C D + A B D

= AB + AB(CD) + A C (D + D) + A B D

= AB + A C + A B D = B(A + AD) +AC

= B (A + D) + A C

++++ DCBADCADBADCABA

S
im

p
lif

ic
at

io
n

Simpler Expressions Fewer gates, Fewer gate inputs, and simpler
circuits….This improves reliability and reduces power consumption

15 literals,
6 gates

5 literals,
4 (smaller
gates)

Exercise: Verify

Equivalence with Truth Table

Chapter 2 28

Complementing Functions

 Use DeMorgan's Theorem to complement a
function:
1. Interchange AND and OR operators

2. Complement each constant value and literal

 Example: Complement F =

F = (x + y + z)(x + y + z)
 Example: Complement G = (a + bc)d + e

G = [

x+ zyzyx

Verify Result Using
Truth Tables

Note: Here we used
DeMorgan’s 3 times
at two levels!

Chapter 2 29

Complementing Functions, Contd.

 Use DeMorgan's Theorem to complement
a function:
 Example: Complement G = (a + bc)d + e

G = [(a + bc)d+ e]’ = [(a + bc)d]’. e’
= [(a’ + bc)’+ d’’]. e’
= [a’’. (bc)’ + d]. e’
= [a. (b’+c’) + d]. e’
= ab’e’ + ac’e’ + de’ Verify Result Using

Truth Tables

Chapter 2 30

3. Canonical Forms- Overview

 What are Canonical Forms?

 Minterms and Maxterms

 Index Representation of Minterms and
Maxterms

 Sum-of-Minterm (SOm) Representations

 Product-of-Maxterm (POM) Representations

 Representation of Complements of Functions

 Conversion between various Representations

Towards a more systematic treatment….

Chapter 2 31

Canonical Forms

 It is useful to specify a Boolean function in
a form that:
• Has a direct correspondence to the truth table

• Allows comparison for equality

 Two main Canonical Forms in common
use:
• Sum of Minterms (SOm)

• Product of Maxterms (POM)

Chapter 2 32

Minterms of n Variables

 Minterms are AND (product) terms that contains ALL
the inputs (each in either true or complemented form)
which is equal to 1 for only one input combination and
equal 0 otherwise

 Given that each binary literal may appear as normal
(e.g., x) or complemented (e.g.,), there are 2n

minterms for n variables.

 Example: Two variables (X and Y) produce 22 = 4
combinations (i.e. 4 minterms):

(both normal, m = 1 only for 11)
(X normal, Y complemented, m = 1 only for 10)
(X complemented, Y normal, m = 1 only for 01)
(both complemented, m = 1 only for 00)

YX
XY

YX
YX

x

Chapter 2 33

Maxterms of n Variables

 Maxterms are OR (sum) terms that contain all the input
variables (each in either true or complemented form) which is
equal to 0 for one input combination and equal 1 otherwise

 Given that each binary variable may appear as normal (e.g., x)
or complemented (e.g., x), there are 2n maxterms for n variables.

 Example: Two literals (X and Y) produce 22 = 4 combinations
(i.e. 4 maxterms):

(both normal, M = 0 only for 00)
(X normal, Y complemented, M = 0 only for 01)
(X complemented, Y normal, M = 0 only for 10)
(both complemented, M = 0 only for 11)

YX+
YX+
YX+
YX+

Chapter 2 34

 Example: minterms and Maxterms for Two Variables

Maxterms and Minterms from the Truth Table

Index xy minterm Maxterm

0 00 x y x + y

1 01 x y x + y

2 10 x y x + y

3 11 x y x + y

m2

AND that gives 1

M2

OR that gives 0
Index represents the
Input combination in decimal

Note: mi is the complement of Mi and
vice versa, e.g. for m2:

x y = x + y (Use Demorgan’s Theorem)

Reason for min and Max names?
See slide 40

A product that gives 1 A sum that gives 0Input Combination

Complement

Chapter 2 35

 Review: DeMorgan's Theorem
and

 Two-literal example:
and

Thus M2 is the complement of m2 and vice-versa.
 Since DeMorgan's Theorem holds for n literals, the

above holds for terms of n literals
 giving:

and
Thus Mi is the complement of mi.

Minterm and Maxterm Relationship

yxy·x += yxyx ⋅=+

yxM2
+= yx·m2

=

i mM = i ii Mm =

Chapter 2 36

Truth Tables for minterms and Maxterms
for two literals x, y

minterms Maxterms

 Verify that mi and Mi are complements of one another
 Observe how to derive the logic function for mi and Mi from its

index i expressed in binary, e.g. m2 = m10 = xy, M2 = M10 = x+y
 Reason for the names min and Max:

• a minterm has a minimum of 1’s in its truth table: Only one 1
while a Maxterm has a maximum of 1’s in its truth table: 2n-1 1’s

Index

0

1

2

3

Chapter 2 37

Standard order of variables

 Minterms and maxterms are designated with a subscript
 The subscript is a decimal number that represents the binary

pattern of input literals in the straight binary (e.g. 8421) code
 The bits in the pattern represent the complemented or normal

state of each literal listed in a standard fixed order (MSB…LSB)

 All input variables will be present in a minterm or maxterm and
will be listed in the same order (usually alphabetically)

 Examples of Standard forms: For 3 variables: a, b, c
• Maxterms: (a + b + c) = M010 = M2, (a + b + c) = M101 = M5

• Minterms: a b c = m110 = m6 , a b c = m001 = m1

Examples of non-standard forms for 3 variables:
• Terms: (a + c), b c, and (a + b) do not contain all literals
• Terms: (b + a + c), a c b, and b c a not in standard order

Standard Order
LSB

Chapter 2 38

Index Example in Three literals: X, Y, and Z

 The standard order is: X, then Y, then Z

 With Index 5 = 101)2

• As a minterm (AND): Complement literals

corresponding to 0 m5 = XYZ

• As a Maxterm (OR): Complement literals

corresponding to 1 M5 = X+Y+Z

• m2 = m010 = ?

• M3 = M011 = ?

• XYZ = m?

• X+Y+Z = M?

Standard Order

XYZ

LSB

Chapter 2 39

Index Examples – Four literals

Index Binary Minterm Maxterm
i Pattern mi Mi

0 0000
1 0001
3 0011
5 0101
7 0111

10 1010
13 1101
15 1111

dcba dcba +++
dcba

dcba +++
dcba dcba +++

dcba +++
dcba dcba +++
dba
dcba dcba +++

?
?

?

?c

Verify using

DeMorgan’s

a b c d

Chapter 2 40

Minterm Function Example: 3 Variables XYZ

 Truth Table for the Function F1 = m1 + m4 + m7

F1 = x y z + x y z + x y z
x y z index m1 + m4 + m7 = F1

0 0 0 0 0 + 0 + 0 = 0

0 0 1 1 1 + 0 + 0 = 1

0 1 0 2 0 + 0 + 0 = 0

0 1 1 3 0 + 0 + 0 = 0

1 0 0 4 0 + 1 + 0 = 1

1 0 1 5 0 + 0 + 0 = 0

1 1 0 6 0 + 0 + 0 = 0

1 1 1 7 0 + 0 + 1 = 1

And the truth table is:

or

or

Function is 1 at each of
its specified minterms

So, given a truth table,
How to determine the
function?
 As the sum of all
minterms for which the
function is 1 !….

Chapter 2 41

Maxterm Function Example

 Example: Implement F1 in maxterms:
F1 = M0 · M2 · M3 · M5 · M6

)zyz)·(xy·(xz)y(xF1 ++++++=
z)yx)·(zyx·(++++

x y z i M0 ⋅ M2 ⋅ M3 ⋅ M5 ⋅ M6 = F1
0 0 0 0 0 1 1 1 = 0
0 0 1 1 1 1 1 1 1 = 1
0 1 0 2 1 0 1 1 1 = 0
0 1 1 3 1 1 0 1 1 = 0
1 0 0 4 1 1 1 1 1 = 1
1 0 1 5 1 1 1 0 1 = 0
1 1 0 6 1 1 1 1 0 = 0
1 1 1 7 1

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅ 1 1 1 1 = 1

1 ⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

and

And the truth table is:

Function is 0 at each of
its specified maxterms

So, given a truth table,
How to determine the
function?
 As the product of all
maxterms for which the
function is 0 !….

Chapter 2 42

Observations from the Truth Tables
 In the function tables:

• Each minterm has one and only one 1 present in the 2n rows
(a minimum of 1s). All other entries are 0

• Each maxterm has one and only one 0 present in the 2n rows
All other entries are 1 (a maximum of 1s)

 We can implement any function by "ORing" the minterms
corresponding to "1" entries in the function table. These are
called the minterms of the function Sum of Minterms (SOM)

 We can implement any function by "ANDing" the maxterms
corresponding to "0" entries in the function table. These are
called the maxterms of the function Product of Maxterms
(POM)

 This gives us two canonical forms for a Boolean function:
• Sum of Minterms (SOM)
• Product of Maxterms (POM)

Chapter 2 43

Minterm Function Example: 5 literals

 F(A, B, C, D, E) = m2 + m9 + m17 + m23

 5 literals, so express each index as 5 bits

 F(A, B, C, D, E) =

m00010 + m01001 + m10001+ m10111

 F(A, B, C, D, E) in the SOM canonical form =

A B C D E + A B C D E + A B C D E + A B C D E

Standard order
of input literals

Sum minterms

 Short-hand Form

Chapter 2 44

Maxterm Function Example: 4 literals

 F(A, B,C,D) = M0011. M1000. M1011. M1110

= (A+B+C+D). (A+B+C+D). (A+B+C+D). (A+B+C+D)

141183 MMMM)D,C,B,A(F ⋅⋅⋅=

Standard order
of input literals

Product Maxterms

 Short-hand Form

Chapter 2 45

Observations on complementing
and form Conversion

)7,5,3,1()z,y,x(F mΣ=

)6,4,2,0()z,y,x(F mΣ=

)6,4,2,0()z,y,x(F MΠ=

Same
Form

Complement
Function

Complement
Indices

Other
Form

Complement
Function

Same
Indices

)7,5,3,1()z,y,x(F mΣ=

Other
Form

Complement
Indices

Same
Function

Start

1. Complementing a function

2. Form Conversion for the same function

Chapter 2 46

 Standard Sum-of-Products (SOP) form: equations are
written as ORing of Products (not minterms)

 Standard Product-of-Sums (POS) form: equations are
written as ANDing of Sums (not maxterms)

 Examples: For 3 variables A,B,C
• SOP:

• POS:

 The following “mixed” forms are neither SOP nor POS
•
•

Standard (as opposed to canonical) Forms

BCBACB ++
C·)CB(A·B)(A +++

C)(AC)B(A ++
B)(ACACBA ++

i.e. these are not in the standard 2-level from

Standard, Still 2-level
Form

Non-Standard, > 2-level
Form

Chapter 2 47

Transforming Standard to Canonical SOm
1. Algebraically

 Any Boolean function can be expressed as a Sum
of Minterms
• From the function’s truth table, the minterms used are

the terms corresponding to the 1's of the function From
expression, expand all terms first to explicitly include all
minterms
 Do this by “ANDing” any term missing variable v with
a term () (=1) (Easier way with K-maps later)

 Example: Express as sum of minterms
First expand terms:
Then distribute terms:
Express as sum of minterms: f = m11 + m10 + m00

= m3 + m2 + m0

yxxf +=
v v +

Note: Complement in

Minterm Var is 0

Chapter 2 48

 Example:

 There are three variables, A, B, and C
which we take to be the standard order

 Construct the truth table for the function

 Minterms are the standard terms where
the function is 1

 For minterms we complement a literal
when it is 0

 F (A,B,C) = m1 + m4 + m5 + m6 + m7

= ABC + ABC + ABC + ABC + ABC

 In the standard short hand form:

CBAF +=
A B C Index F

0 0 0 0 0

0 0 1 1 1

0 1 0 2 0

0 1 1 3 0

1 0 0 4 1

1 0 1 5 1

1 1 0 6 1

1 1 1 7 1

Truth Table for F

Standard order
of input literals Sum minterms

Exercise: Do by including missing

variables as on previous slide

– should get same result

Transforming Standard to Canonical SOm
2. Using the Truth Table

Chapter 2 49

 Example: F has three input variables; A, B and
C any term in F missing one variable, corresponds to four
minterms, and terms that are missing one corresponds to two
minterms! So looking at

Missing two variables; B and C Missing A

Hence F (A,B,C) = m1 + m4 + m5 + m6 + m7 (do not repeat
redundant minterms)

CBAF +=

Standard order
of input literals Sum minterms

Transforming Standard to Canonical SOm
3. Algebraically, again!

CBAF +=

A _ _ put all combinations of B and C
ABC, ABC, ABC, ABC

m4 m5 m6 m7

_BC put all combinations of A
ABC, ABC

m1 m7

Chapter 2 50

 Any Boolean Function can be expressed as a
Product of Maxterms (POM)
• From function table, the maxterms used are the terms corresponding to

the 0's of the function
• From function expression, Expand all terms to explicitly include all

maxterms by: 1. Applying the second distributive law
2. “ORing” terms missing literal v with a term equal to (=0) and
then applying the distributive law again

 Example: Convert to product of maxterms:

Apply the distributive law:

Introduce missing literal z by ORing with z . z :

Express as POM: f = M010 · M011

= M2 . M3

yxx)z,y,x(f +=

yx)y(x1)y)(xx(xyxx +=+⋅=++=+

()zyx)zyx(zzy)(x ++++=⋅++

vv ⋅

Note: Complement in Maxterm
 Var is 1

Variable z is missing in
expression

Not a maxtermAdd a 0 to an OR

Transforming Standard to Canonical POM
1. Algebraically

Chapter 2 51

 Example:

 There are three variables, A, B, and C
which we take to be the standard order

 Construct the truth table for the function

 Maxterms are the standard terms where
the function is 0

 For Maxterms we complement a literal
when it is 1

 F (A,B,C) = M0 . M2 . M3

= (A+B+C) . (A+B+C) . (A+B+C)

 In the standard short hand form:

CBAF +=
A B C Index F

0 0 0 0 0

0 0 1 1 1

0 1 0 2 0

0 1 1 3 0

1 0 0 4 1

1 0 1 5 1

1 1 0 6 1

1 1 1 7 1

Truth Table for F

Standard order
of input literals Product Maxterms

Exercise: Do by including missing

variables as on previous slide

– should get same result

Transforming Standard to Canonical POM
2. Using the Truth Table

Chapter 2 52

Implementing the Complement of a Function

 For a function (F) expressed as a canonical sum of
minterms, the complement of the function (F) can
be constructed as either:
• A sum of the minterms missing in the given sum-of-

minterms canonical form for F

• A Product of the Maxterms having the same indices

 Example: Given)7,5,3,1()z,y,x(F mΣ=
 Then we have: F is 1 for these indices

∴ F is 1 for the remaining indices

∴ F is 0 for the these indices)6,4,2,0()z,y,x(F mΣ=
)7,5,3,1()z,y,x(F MΠ=

Standard order
of input literals

Product Maxterms

Chapter 2 53

Conversion Between the Two Canonical Forms

 To convert between sum-of-minterms and product-of-
maxterms form (or vice-versa) we follow these steps:
• Find the function complement by swapping terms in

the list with terms not in the list
• Change from products to sums, or vice versa

 Example: Given F as:
 F in the same form is:

 F = F in the other form is:
this is the original function
in the other form of

)7,5,3,1()z,y,x(F mΣ=
)6,4,2,0()z,y,x(F mΣ=

)6,4,2,0()z,y,x(F MΠ=

Chapter 2 54

Logic Implementation of SOM form

 A sum of minterms (SOm) expression for a function of n
variables can be written down directly from its truth table
• Implementation of this form is a network of gates in two

levels:
• Level 1 consists of a maximum of (2n – 1) identical

AND gates, each with n-input and
• Level 2 is a single OR gate (with a maximum of 2n – 1

inputs).
 This form can often be simplified to a smaller standard

SOP expression (Fewer and smaller level 1 gates, smaller
level 2 gate smaller circuits)

 Two approaches to do this simplification:
• Manipulations using Boolean Algebra
• Graphical approach using Karnaugh maps (K-maps)

Chapter 2 55

 Obtain sum of minterms from Truth Table:

 Write the minterms as algebraic expressions:
F = A B C + A B C + A B C + ABC + ABC
 Simplifying:

F = A B C + AB + AB

F = A + A B C
F = (A + A) (A + B C) = A + B C

 Simplification reduced circuit cost from (15,6)
to only (3,2)

SOm SOP Simplification Example
1. Using Boolean Algebra manipulations

)7,6,5,4,1(m)C,B,A(F Σ=

S
im

p
lif

ic
at

io
n

15 literals,
6 gates

3 literals,
2 (smaller) gates

S
im

p
lif

ic
at

io
n

Canonical (SOm, POM) forms can be costly to implement. Luckily,
they can be greatly simplified into standard (SOP, POS) forms

Standard or not?

= A

Chapter 2 56

AND/OR Two-level Implementation of SOP Expression

 The two implementations for F are shown
below – it is quite apparent which is simpler!

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C F

B

C

A

Canonical
SOm:
15 Literal
& 6 Gates

Simplified
Standard
SOP:
3 Literals
& 2 (much
simpler)
Gates

Two Logic-Level Implementation of
Standard Forms (SOP & POS)

 SOP AND-OR Implementation

 POS OR-AND Implementation

Chapter 2 58

5. 2-Level Logic Circuit Optimization and K-maps

 Goal: To obtain the simplest implementation for a
given function

 Optimization is a more formal approach to
simplification.

 It is performed using a specific systematic
procedure or algorithm as opposed to the
ad hoc approach of algebraic manipulation

 Optimization requires a distinct cost criterion to
measure the simplicity of a logic circuit

 Two useful cost criteria we will use:
• Literal cost (L)
• Gate input cost: (G)

Chapter 2 59

Boolean Function Optimization

 Minimizing the gate input (or literal) cost of Boolean
equations reduces circuit cost

 We will use the gate input G as the cost criterion

 Boolean Algebra and graphical techniques are tools to
minimize cost criteria values

 Will cover optimum or near-optimum cost functions
for two-level (SOP and POS) circuits

 Will Introduce a graphical optimization technique using
Karnaugh maps (K-maps, for short)

Chapter 2 60

Karnaugh Maps (K-map)

 A K-map is a collection of cells
• Each cell represents a minterm
• The collection of cells is a graphical representation of a

Boolean function
• Adjacent cells differ in the value of one literal only
• Alternative algebraic expressions for the same function

are derived by recognizing patterns of cells

 The K-map can be viewed as
• A reorganized version of the truth table
• A topologically-warped Venn diagram

Chapter 2 61

Some Uses of K-Maps

For functions with small numbers of literals,
e.g. up to 5 literals:

• Finding optimum or near optimum implementations
 SOP and POS standard forms
 Two-level AND/OR and OR/AND logic circuits

• Visualizing concepts related to manipulating
Boolean expressions
• Demonstrating concepts used by computer-aided
design programs to simplify larger circuits

Chapter 2 62

K-Map for two variables (x,y)

• Minterm m0 and

minterm m1 are “adjacent”

- They differ in the value of the

variable y

• Similarly, minterm m0 and

minterm m2 differ in the x variable

• Also, m1 and m3 differ in the x variable

• Finally, m2 and m3 differ in the variable y

• Are m0 and m3 adjacent?

y = 0 y = 1

x = 0
m

0 = m
1 =

x = 1 m
2 = m

3 =

yx yx

yx yx x

x

yy

Each square represents an input

Combination (index value) which

Can possibly be a minterm for a

function

Chapter 2 63

K-Map and Truth Tables

 The K-Map is just a different form of the truth table.

 Example – Two literal function:

• For a given function F(x,y), output assumes
values a,b,c and d from the set {0,1}

Function Table
K-Map

Input
Values
(x,y)

Function
Value
F(x,y)

0 0 a
0 1 b
1 0 c
1 1 d

y = 0 y = 1
x = 0 a b
x = 1 c d

0 1

2 3

In
pu

t
C

om
bi

na
tio

n,
 M

in
te

rm
s

C
or

re
sp

on
di

ng
F

un
ct

io
n

O
ut

pu
t

Enter function output at the box
for the corresponding minterm

Chapter 2 64

K-Map Function Representation

 Example: F(x,y) = x

 For function F(x,y), the two adjacent cells containing 1’s
can be combined using the Minimization Theorem:

 i.e. algebraic simplification is achieved graphically by
simply combining “adjacent” cells as this allows
omitting literals with different values

F = x y = 0 y = 1

x = 0 0 0

x = 1 1 1

xyxyx)y,x(F =+=

Chapter 2 65

K-Map Function Representation

 Example: G(x,y) = x + y

 For G(x,y), two pairs of adjacent cells containing
1’s can be combined using the Minimization
Theorem:

G = x+y y = 0 y = 1

x = 0 0 1

x = 1 1 1

() () yxyxxyyxyx)y,x(G +=+++=

Duplicate xy

x

y

Chapter 2 66

Three-literal Maps

 A three-literal K-map:

 The distribution of minterms on the K-map satisfies logical
adjacency (note positions of m3 and m7).

 Note that m2 is adjacent to m0 and that m6 is adjacent to m4:
Wrap-around effect

 Each minterm represents
the corresponding
product term:

yz=00 yz=01 yz=11 yz=10

x=0

x=1

zyx zyx zyx zyx

zyx zyx zyx zyx

xyz is the
Standard order
of the literals

yz=00 yz=01 yz=11 yz=10

x=0 m0 m1 m3 m2

x=1 m4 m5 m7 m6

000 001 011 010

100 101 111 110

MSB
MSB

Chapter 2 67

Alternative Map Labeling

 Will use maps for:

• Entering function output values on the map

• Reading off simplified product terms from the map

 Alternative useful map labeling:

y

z

x

10 2

4

3

5 67

x

y

zz

yy z

z

10 2

4

3

5 67

x

0

1

00 01 11 10

x

yz

y

xz

xyz

- Which is the most complex expression? Is it a minterm? How many literals?, cells?

- Which is the simplest expression? How many literals?, cells?

of literals in expression = Total # of variables - log2 (# of cells in rectangle)

log2 (2) + 2 = 3

Chapter 2 68

Representing a Logic Function on the K-map

 By convention, we represent the minterms of F by a "1" in the map and
leave the remaining cells blank

 Example:

 Example:

 Learn the locations of the 8
indices based on the literal
order shown (e.g. x, most significant
and z, least significant) on the
map boundaries

y

x

10 2

4

3

5 67
1

11
1

z

a

b
10 2

4

3

5 67
1 11
1

c

(2,3,4,5) z)y,F(x, mΣ=

(3,4,6,7) c)b,G(a, mΣ=

MSB LSB

Chapter 2 69

Combining cells

 By combining cells, we reduce number of literals in a product
term, reducing the literal cost and the gate input cost

 On a 3-literal K-Map:

• One cell represents a minterm with three literals

• Two “adjacent” cells represent a product term with two
literals

• Four “adjacent” terms represent a product term with one
literal

• Eight “adjacent” terms is the function of all ones (zero
literals – but here output is not a function of the inputs)

of literals in expression = Total # of variables - log2 (# of cells in rectangle)

Chapter 2 70

Example: Simplifying by Combining cells
Graphical Vs Boolean Simplification

 Example: Let

 Applying the Minimization Theorem three
times:

 Thus the four terms that form a 2 × 2 cell
correspond to the term "y".

y=
zyyz +=

zyxzyxzyxzyx)z,y,x(F +++=

x

y
10 2

4

3

5 671 1

11

z

m(2,3,6,7)F Σ=

Chapter 2 71

Rules for combining cells to larger rectangles

Pair-wise adjacency

 Combine only “pair-wise adjacent”
cells

 Combine cells only up to a
rectangle/square with a size that is
a power of 2 cells.
For 3 variables, this means:
• 20 = 1 cell (3 literals)
• 21 = 2 cells (2 literals)
• 22 = 4 cells (1 literal)

 Check: Result of combination
should give only a single product term

 A grouping can include cells that are
not directly adjacent, but are related
together through pair-wise adjacency,
e.g. cells 1 (001) and 4 (100)

Chapter 2 72

Three-literal Maps

 Topological warps of 3-literal
K-maps that show all adjacencies:
Venn Diagram Cylinder 2-D K-Map

Y Z

X

1
3
76 5

4

2

0

Standard order: XYZ
MSB

Adjacency needs Common line Boundary,

e.g. (7 and 3,5,6). 3 is not adjacent to 5 or 6

Chapter 2 73

Three-literal Maps

 Example Shapes of valid 2-cell groupings:

 Two Ways to read off the product term for a rectangle shown:
1. Express the joint area on the map (Venn diagram mentality)
2. The product includes each variable that has the same value in all cells
of the rectangle. A variable that is equally divided between 1 and 0 in the
cells of the rectangle is excluded

yz

y
0 1 3 2

5 64 7
x

z

xz

xy
011

111

xyz

000 001

Chapter 2 74

Three-literal Maps: 4-Cell Groupings

 Example Shapes of 4-cell Rectangles:
y

0 1 3 2

5 64 7
x

z

z

zy

x

Chapter 2 75

Function Simplification with a 3-literal Maps

z)y,F(x, =

y

11

x

z

1 1

1

z

z

yx+

yx

 K-Maps can be used as a systematic method to simplify
Boolean functions. Cells are combined to form a set of the
largest possible pair-wise adjacent rectangles/squares that
cover all the “1s” of the function

 Example: Simplify)(1,2,3,5,7z)y,F(x, mΣ=

0 1 3 2

4 5 67

Chapter 2 76

 Use a K-map to find an optimum SOP
equation for ,7)(0,1,2,4,6Z)Y,F(X, mΣ=

z

xy

xy

yxyxz)z,y,x(F ++=

Function Simplification with a 3-literal Maps

Chapter 2 77

Four-literal Maps

 Map and location of minterms:

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W

literal Order

Standard order: WXYZ

MSB

WX

YZ
00 01 11 10

00

01

11

10

Note Cell

Numbering

Chapter 2 78

Four literal Terms

 On four literal maps we can have rectangles
corresponding to:

• A single cell 4 literals, (i.e. Minterm)
• Two cells 3 literals,
• Four cells 2 literals
• Eight cells 1 literal,
• Sixteen cells zero literals (i.e. Constant "1")

of literals in expression = Total # of variables (4) - log2 (# of cells)

Chapter 2 79

Four-literal Maps

 Examples of valid 4-cell groupings:

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W

XZ

WY

ZX

 Rectangle should contain a
power of 2 (< 24) group of
pair-wise adjacent cells : 1, 2,
4, 8

Each rectangle should be
expressible as a
single product term

0101

wxyz

1101

0111

1111

Chapter 2 80

Four-literal Maps

 Example Shapes of Further Rectangles:
Y

Z

X

8 9 1011

12 13 1415

0 1 3 2

5 64 7

W

Chapter 2 81

Simplification with a Four-literal Map : Example 1

)8,10,13,152,3,4,5,6,7,(0,Z)Y,X,F(W, mΣ=

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W

XZ

WY

ZX

1 1

1 1

1 1 1 1

11

WX

Z) = ZX + WY + XZ + WXY,X,F(W,

L = ?
Canonical, SOm

Optimized, SOP

L = ?

1

How effective

Is our simplification?

L (# of literals) cost of

Implementing the

given Logic

expression

Is Reduced

from ? To ?

Chapter 2 82

Simplification with a Four-literal Map : Example 2

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W

WYZ

ZX

1 1 1

1

WXY

Z) = ZX + WYZ + WXY + WXYY,X,F(W,

3,14,15)(3,4,5,7,9,1Z)Y,X,F(W, mΣ=

1

1 WXY1
Best way to
handle this 1?

Chapter 2 83

Systematic Simplification (minimization) of a logic function:
Implicants, Prime Implicants, and Essential Prime Implicants

 An Implicant is any single product term of a function obtained by
combining a number of pair-wise adjacent “1” cells in the map into a
rectangle with the number of cells a power of 2 (a minterm is the
smallest implicant)

 A Prime Implicant (PI) is a single product term obtained by combining
the maximum possible number of pair-wise adjacent cells in the map
into a rectangle with the # of cells a power of 2 (can 1 cell be a PI?)

 A prime implicant is called an Essential Prime Implicant if it is the
only prime implicant that covers (includes) one or more minterms
(cells)

 Prime Implicants and Essential Prime Implicants can be determined
by inspecting the K-Map.

 A set of prime implicants "covers all minterms" if, for each minterm of
the function (i.e. 1 of the function), at least one prime implicant in the
set includes that minterm….i.e. simply if No 1’s are left out!

Chapter 2 84

Examples of the three types of Implicants

Minterm covered by only one prime implicant
So minterm 5 is ………?

1: An implicant
2-4: Prime Implicants
5-6: Essential Prime Implicants

Does 7 represent a single product term?
Is it an implicant? Why?

Note: Any single cell
(minterm) is an implicant

Give a situation that makes
implicant 1 a prime implicant

1 1

1 1

1 1

B

D

A

1 1

1 1

1

C
6

5

3

4

2
1

7 1
3-4
5-6

Chapter 2 85

DB

CB

1 1

1 1

1 1

B

D

A

1 1

1 1

1

Example: Find all Prime Implicants

C

BD

CD

BD

Minterms covered by single prime implicant

DB

1 1

1 1

1 1

B

C

D

A

1 1

1 1

1

AD

BA

Essential PIs

Chapter 2 86

Another Example

 Find all possible prime implicants for:

• Hint: There are seven prime implicants!

15),12,13,14,(0,2,3,4,7D)C,B,G(A, mΣ=

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W

WYZ

1

1

1

1

1

WXZ

1

1

1

1

WX

WYX
XYZ

XYZ

WYZNot only
those
needed to
cover all 1’s

Any
essential
PIs?

Chapter 2 87

K-Maps for five or more Variables

 For five literal problems (32 cells), we use two adjacent K-
maps. It becomes harder to visualize adjacent minterms
for selecting PIs.

X

Y

Z

W

V = 0

X

Z

W

V = 1
Y Adjacent cells.

Only value of V
changes

F (W, X, Y, Z, V)

Chapter 2 88

 Sometimes a function table or map contains entries for
which it is known that:
• The input values for the minterm will never occur, e.g.

with 4-bit (0-9) BCD codes (10-15 input values not used)
• The output value of the function for that minterm will not

be used
 In such cases, the output value of the function need not

be defined as 1 or 0
 Instead, the output value is specified as a “don't care”
 By placing “don't cares” (labeled as an “x” entry) in the

function table or map, the cost of the logic circuit may
be reduced

Don't Cares in K-Maps

Chapter 2 89

 Example: A logic function having the binary codes for
the BCD digits as its inputs. Only the codes for 0
through 9 are used. The six codes, 1010 through 1111
never occur, so the output values for these codes are “x”
to represent “don’t cares”

How can this help us minimize our circuits?

 Each “x” entry may be given either a 0 or 1 value in
resulting solution to an advantage
• For example, an “x” may be taken as “0” in an SOP solution

or as “1” in a POS solution
• An “x” can be taken as 1 to maximize the size of a PI
• A cell with “x” needs not be covered by any prime implicant

Don't Cares in K-Maps

Chapter 2 90

Example: BCD “5 or More” (BCD codes 6,7,8,9)

 The map below gives a function F1(w,x,y,z) which
is defined as "5 or more" over BCD inputs.
With the don't cares used for the 6 non-BCD input
combinations:

F1 (w,x,y,z) = w + x z + x y
 This is much lower in cost than F2 where

the “don't cares” were treated as "0"

z

w

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

1

11

1

X X X

X X

X

0 0 0 0

0
x

y

yxwyxwzxwz) y,x,F2(w, ++=

Function Output:
0 for input= 0 to 4
1 for input = 5 to 9
X (don’t care) for input = 10-15

All X’s = 1

All X’s = 0

Chapter 2 91

Product of Sums Example

 Find the optimum POS solution for F, given:

• Hint: Use and complement it to get the result

 ,13,14,15)(3,9,11,12 D)C,B,F(A, m +Σ= (1,4,6) dΣ
F

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W

XZ1

1 1

1 111

WX

X

X X

0 0

0 0

0 0

F map We still get the SOP, but for F by
Constructing PIs containing its 1s
(these are the 0s of F)

F = XZ + WX

 POS of F is obtained by
Complementing F using DeMorgan’s

F = F = ()

= (XZ) . (WX)
= (X+Z) . (W+X)

Taken 1

Taken 0Taken 0

Don’t care

Chapter 2 92

Algorithm for Systematic Optimization

1. Find all possible prime implicants (PIs)
2. From these PIs, select:
 All essential PIs and mark all 1’s
covered by them
 A minimum cost set of non-essential PIs
that cover all minterms not yet covered by
the essential PIs above
• To obtain a good simplified solution:

(not necessarily optimum), use the
Selection Rule on next slide

Chapter 2 93

Prime Implicant Selection Rule

 Minimize the overlap among prime
implicants as much as possible. In
particular, in the final solution, make sure
that each prime implicant selected includes
at least one minterm not included in any
other prime implicant selected

Note: Good solutions are not necessarily
unique

Chapter 2 94

Example

 Simplify F(A, B, C, D) given on the K-map

1

1

1

1 1

1

1

B

D

A

C

1

1

1

1

1

1 1

1

1

B

D

A

C

1

1

Essential PIs

Minterms covered by essential prime implicants
Notice No overlap amongst additional selected PIs

Selected
additional PIs with
minimum overlap

• Essential PIs

Possible
additional PIs to
cover
all remaining 1’s

Chapter 2 95

Selection Rule Example with Don't Cares

 Simplify F(A, B, C, D) given on the K-map.
Selected
additionals with
minimum overlap

Minterms covered by essential prime implicants

1

1

x

x

x x

x

1

B

D

A

C

1

1 1

1

x

x

x x

x

1

B

D

A

C

1

1

Essential

Possible
additional PIs

This don’t care

Is taken as 0

Chapter 2 96

6. Other Gate Types

 Why?
• Feasibility and cost of implementing the gate circuit

in transistors
• Potential for implementing any Boolean function

using only a single gate type
• Convenient conceptual representation

 Gate classifications
• Primitive gate - a gate that can be described using

a single primitive operation type (AND or OR) plus
optional inversion(s), e.g. NAND

• Complex gate - a gate that requires more than one
primitive operation to describe it, e.g. XOR

Chapter 2 97

Primitive gates

Chapter 2 98

Buffer

 A buffer is a gate with the function F = X:

 In terms of Boolean logic, a buffer is the same as a
direct connection!

 So why use it?

A buffer is an electronic amplifier that can be
used to:

 Improve circuit voltage levels e.g. of a received signal
 Increase current drive capability (i.e. get a larger fan out)
 Introduce desirable circuit delay

X F

Chapter 2 99

NAND Gate [NOT (AND)]

 The basic NAND gate has the following
symbol, illustrated for three inputs:

• AND-Invert (NAND)

 NAND represents AND NOT, i. e., an AND
function followed by an inverter (NOT). The
symbol shown is an AND-Invert. The small
circle (“bubble”) represents the invert function.

X
Y

Z

ZYX)Z,Y,X(F ⋅⋅=

Chapter 2 100

NAND Gates (continued)

 Applying DeMorgan's Law gives Invert-OR (NAND)

 This NAND symbol is called Invert-OR, since inputs are
inverted and then ORed together

 Note the above symbol is still for a NAND
 So a NAND gate can be represented in two different but

equivalent forms: AND-then-Invert form
 Invert-then-OR form

X
Y

Z
ZYX)Z,Y,X(F ++=

Chapter 2 101

Observations on the NAND Gate:
1. The NAND is not Associative

 NAND usually does not have an operation symbol defined like the “.”
for the AND and the “+” for the OR

 This is because NAND is not associative and we have difficulty
dealing with non-associative arithmetic!:

 i.e. the n-input NAND function can not be derived from a sequence of
2-input NAND operations

 But it can be derived as a sequence 2-input AND operation (which is
associative) followed by a single final inversion

≠

≠

Chapter 2 102

 Universal gate – is a
gate that can be used to
implement any Boolean
function through
implementing the 3
basic logic operations:
(AND, OR, and NOT)
(advantage)

 The NAND gate is a
universal gate as shown
opposite

 The NAND gate is the
natural implementation
for the simplest and
fastest electronic circuits

Observations on the NAND Gate:
2. The NAND is a Universal Gate

or 1

Chapter 2 103

 The basic NOR gate has the following
symbol, illustrated for three inputs:

• OR-Invert (NOR)

 NOR represents OR NOT, i. e., the OR function
followed by a NOT. The symbol shown is an OR-
Invert. The small circle (“bubble”) represents the
invert function.

X
Y

Z

ZYX)Z,Y,X(F ++=

NOR Gate [NOT (OR)]

Chapter 2 104

NOR Gate (continued)

 Applying DeMorgan's Law gives Invert-AND (NOR)

 This NOR symbol is called Invert-AND, since inputs
are inverted and then ANDed together.

 Note the above symbol is still for a NOR

 So a NOR gate can be represented in two different but
equivalent forms: OR-then-Invert & Invert-then-AND

X
Y
Z

ZYX)Z,Y,X(F ⋅⋅=

OR-Invert Invert-AND

Chapter 2 105

Observations on the NOR Gate:
1. The NOR gate is not Associative

 NOR usually does not have an operation symbol defined like the “.”
for the AND and the “+” for the OR

 This is because NOR is not associative and we have difficulty dealing
with non-associative arithmetic!:

 i.e. the n-input NOR function can not be derived from a sequence of
2-input NOR operations

 But it can be derived as a sequence 2-input OR operation (which is
associative) followed by a single final inversion

≠

≠

Chapter 2 106

Observations on the NOR Gate:
2. The NOR is a Universal Gate

 The NOR gate is a
universal gate as
shown opposite

 The NOR gate is
another natural
implementation for
the simplest and
fastest electronic
circuits

or 0

Two-Level Logic Implementation:
Using AND & OR gates

 For SOP forms: AND gates in the first level and a single OR gate
in the second level.

 For POS forms OR gates will be in the first level and a single
AND gate will be in the second level.

Two-Level Logic Implementation:
Using Universal Gates NANDs & NORs

 SOP forms can be implemented using two-logic levels of only
NAND gates , while POS forms can be implemented using two-

logic levels of only NOR gates

F = XZ + Y’Z + X’YZ F = (X+Z) (Y’+Z) (X’+Y+Z)

Other Two-Level Logic Implementation:
AND-NOR

 If we express the function in AND-OR-Invert form, then it can be implemented
directly as AND-NOR (AND gates for product terms and a NOR gate for Oring
them and then inverting)

 To Obtain F in AND-OR-Invert Format: 1st Obtain F’ in SOP by combining
the 1’s of F’ in the K-map then F is simply obtained by complementing the
SOP expression of F’ and we get the AND-OR-INVERT representation of F.

EX: F’= AB+CD+E

F=(AB+CD+E)’

Then the AND-NOR is readily available

(OR-INVERT is simply NOR)

Other Two-Level Logic Implementation:
NAND-AND

 The NAND-AND implementation is very similar to the AND-NOR -- We need
to express the function in AND-OR-Invert form, then expand the complement
one level to get the NAND-AND form directly:

EX: F’= AB+CD+E F=(AB+CD+E)’ = (AB)’ (CD)’ E’

Notice the single literals in F have

inverters instead of NANDs

Other Two-Level Logic Implementation:
NAND-AND

We could also have obtained the NAND-AND implementation from the AND-NOR
through logic transformations: Inserting Bubbles in pairs!

AND-INVERT == NAND ,

INVERT-OR-INVERT = NAND-INVERT=AND

Other Two-Level Logic Implementation:
OR-NAND

 If we express the function in OR-AND-INVERT form, then it can be
implemented directly as OR-NAND (OR gates for SUM terms and a NAND
gate for Anding them and then inverting)

 To Obtain F in OR-AND-Invert Format: 1st Obtain F’ in POS by combining
the 0’s of F’ in the K-map then F is simply obtained by complementing the
POS expression of F’ and we get the OR-AND-INVERT representation of F.

EX: F’ = (A+B) (C+D) E

F = [(A+B) (C+D) E]’

Then the OR-NAND is readily available

(AND-INVERT is simply NAND)

Other Two-Level Logic Implementation:
NOR-OR

 The NOR-OR implementation is very similar to the OR-NAND; we need to
express the function in OR-AND-INVERT form, then expand the complement
one level to get the NOR-OR form directly.

EX: F’ = (A+B) (C+D) E F = [(A+B) (C+D) E]’ = (A+B)’ + (C+D)’ + E’

Notice the single literals in F have

inverters instead of NORs

Other Two-Level Logic Implementation:
NOR-OR

We could also have obtained the NOR-OR implementation from the OR-NAND
through logic transformations: Inserting Bubbles in pairs!

OR-INVERT == NOR ,

INVERT-AND-INVERT = NOR-INVERT= OR

Other Two-Level Logic Implementation:
Summary

Multi Logic-Implementation using NANDs & NORs

 ANY logic implementation could be converted to NAND-only or
NOR-only implementation using the following transformations:

• AND-Invert ↔ NAND

• Invert-AND ↔ NOR

• OR-Invert ↔ NOR

• Invert-OR ↔ NAND

• Invert-AND-OR ↔ OR-AND-Invert

• Invert-OR-AND ↔ AND-OR-Invert

Multi Logic-Implementation using NANDs & NORs,
Contd.

 So when converting to NANDs:
• Start from inputs, insert bubbles in pairs: at inputs of OR

gates or at outputs of AND gates to convert them to NANDs

 And when converting to NORs:
• Start from inputs, insert bubbles in pairs: at inputs of AND

gates or at outputs of OR gates to convert them to NORs

Chapter 2 118

Complex gates

SOP

POS

Inverted SOP

Inverted POS

XOR

Inverted XOR = XNOR

6. Complex Gates: Exclusive OR/ Exclusive NOR

 The eXclusive OR (XOR) function is an important Boolean
function used extensively in arithmetic & communication
circuits

 XOR is associative and is represented as the XOR operator
(⊕)

 The eXclusive NOR (XNOR) function is the complement of
the XOR function.

 XNOR is not associative
 By our definition, XOR and XNOR gates are complex gates
 The XOR/XNOR functions may be implemented:

• Directly as an electronic circuit (a true gate) or
• Indirectly by interconnecting other gate types (used as a

convenient representation)

Chapter 2 120

Definitions of XOR/XNOR as functions of 2 inputs:
Truth Tables

XOR XNOR

 The XOR function means:
X OR Y, but NOT BOTH

 XNOR is called the equivalence function, operator (≡): Why?
 From the K-maps:

 From eqns above, note that

X Y X⊕Y

0 0 0
0 1 1
1 0 1
1 1 0

X Y

0 0 1
0 1 0
1 0 0
1 1 1

or X≡Y
(X⊕Y)

1 for different
inputs

1 for equal
inputs

0

1

2

3

1

1
1

1

YXYXYX +=⊕ YXYXYX +=⊕ Prove
Algebraically

- Sum

- Parity

7. Exclusive OR/ Exclusive NOR

 Uses for the XOR and XNORs gate include:
• Parity generators/checkers
• Adders /subtractors
• Counters/incrementers/decrementers

 Functions (see previous slide)
• The XOR function is:
• The eXclusive NOR (XNOR) function, otherwise

known as equivalence is:

 Strictly speaking, XOR and XNOR gates are
defined only for two inputs. For more than two
inputs, we use the terminology odd and even
functions (considered later), respectively

YXYXYX +=⊕

YXYXYX +=⊕

XOR Implementations

 The simple SOP implementation uses the following structure:

 A NAND only implementation:

X

Y

X Y

X

Y

X YYXYXYX +=⊕

Invert-then-AND
= OR-Invert

OR

AND

AND

AND

AND

OR

YX

YX
YX

YXXX
YXX

YXX

=
+=

+=
+=

=

0

)(

).(

:AND topofOutput

YX

as above

Chapter 2 123

XOR Identities

; similar to OR

; similar to NAND

; Inputs are always identical

; Inputs are always different

Commutativity:

Associativity: Sequence of 2-input operations: Yes!

But for 3 or more inputs the function is called the odd function
(it is not called XOR)

Derive from the truth table

XOR can be used as Controlled Inverter (1’s Complementer)

XNOR Identities

; similar to NOR

; similar to AND

; Inputs are always identical

; Inputs are always different

Commutativity:

Associativity: Sequence of 2-input operations: No!

For 3 or more inputs the function is called the even function
(it is not called XNOR)

Derive from the truth table

Demonstrate that XNOR is NOT associative

XOR for >2 Variables: The Odd Function
(for even parity generation and checking)

 The XOR function can be extended to 3 or more literals. For more than
2 literals, it is called:
 An odd function, or
 modulo 2 sum

 1s in the K-map correspond to minterms with indices having an odd
number of 1s in binary, hence the name. Use to generate even parity bit
and to check even parity (output = 1 for parity error)

 Implementation: Utilize XOR associatively

= +++⊕⊕ ZYXZYXZYXZYXZYX

The odd function for
3 inputs and 4 inputs

Distance 2

Chapter 2 126

XNOR for >2 Variables: The Even Function
(for odd parity generation and checking)

 The XONR function can be extended to 3 or more literals. For more than
2 literals, it is called:
 An Even function

 1s in the K-map correspond to minterms with indices having an even
number of 1s in binary, hence the name. Use to generate odd parity bit
and to check odd parity (output = 1 for parity error)

 Implementation: Utilize associatively of the XOR
then invert!

The odd function for
3 inputs and 4 inputs

= +++⊕⊕ ZYXZYXZYXZYXZYX

Distance 2

Chapter 2 127

Unit 2: Binary Logic and Gates
Overview

1. Binary logic and gates, Boolean Algebra, Basic identities of Boolean
algebra

2. Boolean functions, Algebraic manipulation, Complement of a function
3. Canonical & Standard forms, Minterms & Maxterms, Sum of products,

Product of Sums. Algebraic simplification of logic functions
4. Physical properties of gates: Fan-in, Fan-out, Propagation Delay, HiZ

(Tristate) outputs
5. Map method of logic circuit optimization:

• Two-, Three-, and Four-literal K-Map
• Optimization procedure: Essential prime implicants, Selected

Additional prime implicants
• Simplification with Don’t care conditions

6. Other Gate Types: Universal gates (NAND and NOR), 2-level Complex
gates (AO, AOI, OA. OAI)

7. Exclusive-OR (XOR) and Equivalence (XNOR) gates, Parity generation and
checking

