Petrol	ahd University eum & Minerals uter Engineerin	5
EE 200 ·	- Logic Design	
Term 15	51	
Dr. Ashr	af S. Hasan Mahmo	oud
Rm 22-4	20	
Ext. 172	24	
	abraf@kfupm adu a	2
Email: a	shraf@kfupm.edu.sa	a

lext	book page	21			
ble 1 wers o	.1 of Two				
n	2 ⁿ	n	2 ⁿ	n	2 ⁿ
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024 (1K)	18	262,144
2 3	8	11	2,048	19	524,288
4	16	12	4,096 (4K)	20	1,048,576 (1M)
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

Example 1.3: Decimal to Binary Conversion of Fractions • Example: (0.234375)₁₀ = (?)₂ NoX2 No **Integer Part** Solution: We use the 0.46875 0 0.234375 following procedure MSD Note: 0 0.9375 0.46875 • The binary digits are the integer part of the 0.9375 1.875 1 multiplication process 0.875 1.75 1 The process stops when the • number is 0 0.75 1.5 1 There are situations where the process DOES NOT end - See 0.5 1.0 1 next slide LSD 0 Therefore $(0.234375)_{10} =$ $(0.001111)_{2}$ In general: to convert a decimal fraction To check: $(0.001111)_2 = 1X2^{-3}$ to its equivalent in base r we use the $+1X2^{-4}+1X2^{-5}+1X2^{-6}=$ above procedure but multiplying by r Dr. Ashraf S. 17 9/1/20(0.234375)₁₀

How to Convert Decimal Numbers with BOTH Integer and Fraction Part to Base r?

• Answer:

- Integer part is converted alone as in Examples 1.1 and 1.2
- Fraction part is converted alone as in Examples 1.2 and 1.3
- Combine the two answers

• Example: convert (153.513)10 to Octal Using results of example 1.2 and 1.3 $(153)_{10} = (231)_8$ and $(0.513)_{10} = (0.406517)_8$ \rightarrow (153.513)₁₀ = (231.406517)_8

```
9/1/2015
```

Dr. Ashraf S. Hasan Mahmoud

16

 $0.56 \times 8 = 4.48 \rightarrow 4$ $0.48 \times 8 = 3.84 \rightarrow 3$ $0.84 \times 8 = 6.72 \rightarrow 6$

Dr. Ashraf S. Hasan Mahmoud

What is $(0.4436)_8$ rounded for

17

-Two fraction digits? -One fraction digit?

hence, $32_{10} = 40_8$ (0.57)₁₀ \rightarrow 0.52

hence, $(0.57)_{10} = (0.4436)_8$

9/1/2015

Therefore, $(32.57)_{10} = (40.4436)_8$

0.57 X 8 = 4.56 → 4

...

Α	Very	Useful	Table

- To represent decimal numbers from 0 till 15 (16 numbers) we need FOUR binary digits $B_3B_2B_1B_0$

 In general to represent 				
N numbers, we need	Decimal	Binary	Decimal	Binary
$\lceil \log_2 N \rceil$ bits	0	0000	8	1000
• Note than:	1	0001	9	1001
 B₀ flipped or COMPLEMENTED 	2	0010	10	1010
at every increment	3	0011	11	1011
• B ₁ flipped or COMPLEMENTED	4	0100	12	1100
 every 2 steps B₂ flipped or COMPLEMENTED 	5	0101	13	1101
every 4 steps	6	0110	14	1110
• B ₃ flipped or COMPLEMENTED	7	0111	15	1111
9/1/2015 every 8 steps Dr. Ashraf S. Ha	asan Mahmoud	b		19

A Very Useful Ta	able -	- con	nt′d	
 Note that zeros to the left its value 	of the nu	imber do	o not add t	0
 When we need DIGITS 				
beyond 9, we will use	Decimal	Binary	Decimal	Binary
the alphabets as shown	0	0000	8	1000
in Table	1	0001	9	1001
 Example: base 16 system 	2	0010	10 → A	1010
has 16 digits; these are: 0, , 1, 2, 3,, 8, 9, A, B, C,	3	0011	11 → B	1011
D, E, F	4	0100	12 → C	1100
 This is referred to as 	5	0101	13 → D	1101
HEXADECIMAL or HEX	6	0110	14 → E	1110
number system	7	0111	15 → F	1111
9/1/2015 Dr. Ashraf S. H	asan Mahmou	d		20

Conversion between Octal and Binary

•	Example:	$(127)_8 =$	(?) ₂
---	----------	-------------	------------------

•	Solution: we can find the decimal equivalent (see
	previous slide) and then convert from decimal to
	binary

$(127)_8 = (87)_{10} \rightarrow$	(?) ₂	No	No/2	Remainder
From long division		87	43	1
$(127)_8 = (87)_{10} = ($	(1010111) ₂	43	21	1
To check:		21	10	1
$1X2^{6}+1X2^{4}+1X2$	$^{2}+1X2^{1}+1X2^{0}$	10	5	0
= 64 + 16 + 4 + 2	2 + 1	5	2	1
= 87		2	1	0
		1	0	1
9/1/2015	Dr. Ashraf S. Hasan Mahmoud			22

Hexadecimal Number S	ystems	5
 Base r = 16 Allowed digits: 0, 1, 2,, 8, 9, A, B, C, The values for the alphabetic digits are Table 		
	Hex	Value
• Example 1:	A	10
$(B65F)_{16} = BX16^3 + 6X16^2 + 5X16^1 + FX16^0$	В	11
= 11X4096 + 6X256 + 5X16 + 15	С	12
$= (46687)_{10}$	D	13
• Example 2:	E	14
$(1B.3C)_{16} = 1X16^{1} + BX16^{0} + 3X16^{-1} + CX16^{-2}$	F	15
$= 16+11+3X0.0625+12X0.00390625$ $= (27.234375)_{10}$		
9/1/2015 Dr. Ashraf S. Hasan Mahmoud		25

Conversion Between Hex and Binary

• **Example:** (1B.3C)₁₆ = (?)₂

 $(1B)_{16} = (27)_{10} = (11011)_2$ (0.3C)16 = (0.234375)_{10} = (0.001111)_2

→Therefore (1B.3C)₁₆ = (11011. 001111)₂ <u>Verify This Result</u>

9/1/2015

Dr. Ashraf S. Hasan Mahmoud

26

Conversion between Hex and Binary - cont'd To convert from Binary to Hex, Binary digits are grouped into groups of four digits and then translated to Hex digits Example: $(1011101.10)_2 = (?)_{16}$ Solution: $(1011101.10)_2 = (0101\ 1101\ .\ 1000)_2$ $= (5 D . 8)_{16}$ $= (5D.8)_{16}$ Note: We can add zeros to the left of the number or to the right of the number after the radix point to form the groups 9/1/2015 Dr. Ashraf S. Hasan Mahmoud 28

Decimal, Binary, Octal, and Hexadecimal Systems Again:

25				
25	Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
	00	0000	00	0
	01	0001	01	1
	02	0010	02	2
	03	0011	03	3
	04	0100	04	4
	05	0101	05	5
	06	0110	06	6
	07	0111	07	7
	08	1000	10	8
	09	1001	11	9
	10	1010	12	A
	11	1011	13	В
	12	1100	14	С
	13	1101	15	D
	14	1110	16	E
	15	1111	17	F
			Iducation, publishing as Prentice Hall	

Sample	Problem	
• Problem:	What is the radix r if	
	$((33)_r + (24)_r) \times (10)_r = (1120)_r$	
Solution:		
(33) _r = 3r +	3,	
(24) _r = 2r +	4,	
$(10)_{\rm r} = {\rm r},$		
(1120) _r = r ³	$+ r^{2} + 2r$	
therefore:		
[(3r+	3)+(2r+4)] X r	
= r ³ + r	$r^{2} + 2r \rightarrow r^{3} - 4r^{2} - 5r = 0$, or	
	r(r-5)(r+1) = 0	
This means, th	e radix r is equal to 5	
9/1/2015	Dr. Ashraf S. Hasan Mahmoud	30

9's Cor	nplem	ent		
• For n =	1 and 2		X′ ₁₀ (n=2)	X' ₁₀ using+/- in decimal
N' ₁₀ (n=1)	N' ₁₀ using+/- in decimal		00 01 02	0 1 2
0	0			
1	1		09	9
2	2		10	10
3	3		<u>11</u> 12	<u>11</u> 12
4	4			
5	-4		49	49
6	-3		50	-49
			51 52	-48 -47
7	-2			
8	-1		98	-1
9	-0		99	-0
9/1/2015	Dr. A	shraf S. Ha	asan Mahmoud	35

FOT TT =	2 and 3	N′ ₂ (n=3)	N' ₂ using+/- in decimal
N'(n-2)	N/	000	0
N' ₂ (n=2)	N'2 using+/- in	001	1
	decimal	010	2
00	0	011	3
	-	100	-3
01	1	101	-2
10	-1	110	-1
11	-0	111	-0

10's Complement					
For $n = 1$ and 2			X' ₁₀ (n=2)	X' ₁₀ using+/- in decimal	
N/ (m 1)	N/ using /		00	0	
N' ₁₀ (n=1)	N' ₁₀ using+/-		01	1	
	in decimal		02	2	
0	0				
1	1		09	9	
	2		10	10	
2			11	11	
3	3		12	12	
4	4				
5	-5		49	49	
			50	-50	
6	-4		51	-49	
7	-3		52	-48	
8	-2			-2	
9	-1		<u>98</u> 99	-2	

	1 and 2		N' ₈ (n=2)	N' ₈ using+/- ir
For $n = 1$ and 2			N ₈ (II=2)	decimal
			00	0
	N/ 1 1		01	1
N′ ₈ (n=1)	N' ₈ using+/-		02	2
	in decimal			
0	0		07	7
1	1		10	8
1	L		11	9
2	2		12	10
3	3			
			36	30
4	-4		37	31
5	-3		<u>40</u> 41	-32
			41	-31
6	-2			
7	-1		70 71	-8

Example: Signed Number Representation – r = 2, n = 4

- Signed-Magnitude and 1's complement are symmetrical representations with TWO representations for ZERO
- Range from signed-• magnitude and 1's complement is from -7 to +7
- 2's complement representation is not symmetrical
- Range for 2's complement is from -8 to +7 – with one representation for ZERO

	Unsigned	Signed- Magnitude	1's Complement	2's Complement
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
1010	10	-2	-5	-6
1011	11	-3	-4	-5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	-0	-1
Dr. Ashra	af S. Hasan I	Mahmoud		46

9/1/2015

	Representation – r = 2, n = 4 - Summary						
	 The following table summarizes the properties and ranges for the studied signed number representations 						
		Signed- Magnitude	1's Complement	2's Complement			
	Symmetric	Y	Y	N			
	No of Zeros	2	2	1	1		
	Largest	2 ⁽ⁿ⁻¹⁾ -1	2 ⁽ⁿ⁻¹⁾ -1	2 ⁽ⁿ⁻¹⁾ -1			
	Smallest	-{2 ⁽ⁿ⁻¹⁾ -1}	-{2 ⁽ⁿ⁻¹⁾ -1}	-2 ⁽ⁿ⁻¹⁾			
9/1/201	5	Dr. Ashraf S. Ha	isan Mahmoud	4	1 47		

Given a binary representation of a	Table 1.3 Signed Binary Numbers				
number, how can you tell whether	Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude	
the number is +ve	+7	0111	0111	0111	
	+6	0110	0110	0110	
or –ve?	+5	0101	0101	0101	
o	+4	0100	0100	0100	
	+3	0011	0011	0011	
	+2	0010	0010	0010	
<u>Sign extension</u>	+1	0001	0001	0001	
rule? How would	+0	0000	0000	0000	
you write the	-0	—	1111	1000	
,	-1	1111	1110	1001	
number shown in	-2	1110	1101	1010	
table using r = 2	-3	1101	1100	1011	
and $n = 8?$	-4	1100	1011	1100	
	-5	1011	1010	1101	
 i.e. what is -4 in 	-6	1010	1001	1110	
2'complement	-7	1001	1000	1111	
using $n = 8$?	-8	1000			

BINARY Numbers by Example (3) – cont'd

- <u>NOTE:</u>
- The result is invalid (not within range) only if C_{n-1} and C_n are different! \rightarrow An OVERFLOW has occurred
- The result is valid (within range) if $C_{n\mbox{-}1}$ and C_n are the same
 - If $C_n = 1$; it needs to be discarded
- If result is valid and –ve, it will be in the correct 2's complement form

Dr. Ashraf S. Hasan Mahmoud

74

Weighted code – each bit position is	Table 1.5 Four Different Binary Codes for the Decimal Digits								
given a weighting	Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1				
	0	0000	0000	0011	0000				
BCD and 2421	1	0001	0001	0100	0111				
codes are	2	0010	0010	0101	0110				
	3	0011	0011	0110	0101				
examples of	4	0100	0100	0111	0100				
weighted codes	5	0101	1011	1000	1011				
5	6	0110	1100	1001	1010				
Excess-3 is an	7	0111	1101	1010	1001				
unweighted code	8	1000	1110	1011	1000				
•	9	1001	1111	1100	1111				
8,4,-2,-1 code is		1010	0101	0000	0001				
an example of	Unused	1011	0110	0001	0010				
	bit	1100	0111	0010	0011				
assigning both	combi-	1101	1000	1101	1100				
+ve and –ve	nations	1110	1001	1110	1101				
weights		1111	1010	1111	1110				

Note only one-bit change	Table 1.6 Gray Code	
between NEIGHBORING code words	Gray Code	Decimal Equivalent
	0000	0
	0001	1
Application: digital	0011	2
	0010	3
communication, representation	0110	4
· •	0111 0101	5
of analog data by continuous	0101	7
change in angular position, etc.	1100	8
5 5 1 ,	1100	0
	1111	10
	1110	11
	1010	12
	1011	13
	1001	14
	1000	15

 7-bits code → 128 distinct 	Table 1.7 American Sta	undard Co	ode for In	formatio	n Interch	ange (AS	CII)		
combinations!					b ₇ b	6b5			
 Capital and 	b4b3b2b1	000	001	010	011	100	101	110	111
small	0000	NUL	DLE	SP	0	@	Р	*	р
alphabetical	0001	SOH	DC1	1	1	A	Q	а	q
characters	0010	STX	DC2	**	2	В	R	b	r
	0011	ETX	DC3	#	3	С	S	с	s
differ by ONE	0100	EOT	DC4	\$	4	D	Т	d	t
bit (b6)	0101	ENQ	NAK	%	5	E	U	e	u
Non printable	0110	ACK	SYN	&	6 7	F	V W	f	v
	0111 1000	BEL BS	ETB	2	8	н	x	g h	w
characters	1000	HT	EM	S	9	I I	Ŷ	n ;	x
• One character	1010	LF	SUB	*		I	Z	-	y z
is typically	1010	VT	ESC	+		K	ĩ	k	1
stored in ONE	1100	FF	FS	2	<	L	1	1	- h
	1101	CR	GS	_	-	M	i	m	- i
bytes – what	1110	SO	RS		>	N	^	n	~
is the use of	1111	SI	US	1	2	0	-	0	DEI

										e for r	epres	ent	ing	syr	nbo	ls
ć	and I	deogra	aphs f	or	the	WC	orld	's lang	juage	s.						
_	First 25	6 Codes fo	r Unicode	a												
	Co	ntrol			AS	CII			Co	ntrol			Latir	n 1		
	000	001	002	003	004	005	006	007	008	009	00A	00B	00C	00D	00E	00
0	CTRL	CTRL	SPACE	0	Ø	Р		р	CTRL	CTRL	NB SP	0	À	Đ	à	D
1	CTRL	CTRL		1	A	Q	а	P Q	CTRL	CTRL		±	Á	Ñ	á	ñ
2	CTRL	CTRL		2	В	R	ь	r	CTRL	CTRL	é	2	Â	ò	â	ò
3	CTRL	CTRL	#	3	С	S	с	s	CTRL	CTRL	£	3	Ã	Ó	ã	ó
4	CTRL	CTRL	SS	4	D	Т	d	t	CTRL	CTRL	ш	,	Ä	Ô	ä	ô
5	CTRL	CTRL	%	5	Е	U	е	u	CTRL	CTRL	¥¥	μ	Å	Ő	å	õ
6	CTRL	CTRL	&	6	F	V	f	v	CTRL	CTRL	1 I	1	Æ	Ö	æ	ö
7	CTRL	CTRL	'	7	G	W	g	W	CTRL	CTRL	§		Ç	\times	ç	÷
8	CTRL	CTRL	(8	Н	Х	h	х	CTRL	CTRL	-		È	Ø	è	ø
9	CTRL	CTRL)	9	Ι	Υ	i	у	CTRL	CTRL	C	i	É	Ù	é	ù
А	CTRL	CTRL	*	:	J	Z	j	Z	CTRL	CTRL	а	0	Ê	Ú	ê	ú
-	CTRL	CTRL	+	;	К	[k	{	CTRL	CTRL	~	>>	Ë	Û	ë	û
	CTRL	CTRL	,	<	L	/	1		CTRL	CTRL	~	1/4 4	Ì	Ü	ì	ü
D	CTRL	CTRL	-	=	М]	m	}	CTRL	CTRL	-	$\frac{1}{2} \frac{1}{2}$	Í	Υ	í	ý
Е	CTRL	CTRL		>	Ν	^	n	~	CTRL	CTRL	®	3 3/4	Î	þ	î	þ
F	CTRL	CTRL	/	?	0	_	0	CTRL	CTRL	CTRL	-	ź.	Ĭ	ß	ï	ÿ

Error-Dete	cting Co	ode					
 To detect errors in data parity bit 7-bit ASCII characters 		n and processing $ ightarrow$ add	đ				
 Even parity – the parity bit is added such that number of 1's is EVEN 							
Odd parity – the pari	ty bit is added su	ch that number of 1's is	ODD				
• Example:							
	even parity	odd parity					
ASCII A = 100 0001	0100 0001	1100 0001					
ASCII B = 101 0100	1 101 0100	0 101 0100					
		with a single parity bit? I with this system? Why	?				
9/1/2015	Dr. Ashraf S. Hasan M	lahmoud	92				

Example 1.7: Using Binary Numbers - cont′d Using the two binary numbers X = 1010100 and Y = 1000011, perform (a) X - Y and (b) Y - X using 2's complement Solution: (a) Y – X: Y = 0111101← (10000000 -2's complement of X = 01011001010100) sum = 1101111There is no end carry \rightarrow ANSWER is Y - X = - (2's complement of 1101111) = - 00100019/1/2015 Dr. Ashraf S. Hasan Mahmoud 106

Example 1.8: Using Binary Numbers –cont/d

 Using the two binary numbers X = 1010100 and Y = 1000011, perform (a) X – Y and (b) Y – X using 1's complement Solution: (b) Y – X: Y = 1000011 1's complement of X = 0101011 \leftarrow (1111111 - 1000011)sum = 1101110There is no end carry \rightarrow ANSWER is Y - X = - (1's complement of 1101110) = - 00100019/1/2015 Dr. Ashraf S. Hasan Mahmoud 108

