King Fahd University of Petroleum \& Minerals Computer Engineering Dept

EE 200 - Logic Design
Term 151
Dr. Ashraf S. Hasan Mahmoud
Rm 22-420
Ext. 1724
Email: ashraf@kfupm.edu.sa

1.1 Digital Systems

- Analog signals versus discrete signals
- Digitization - analog-to-digital conversion (ADC)
- Sampling along the time access and Quantization along the y-axis $\boldsymbol{\rightarrow}$ Sampling Thereon
- General purpose computer - best example of a digital system
- Why digital is good?
- Programmability - cost reduction
- Advances in integrated circuits technology
- Digital systems can be made to operate with extreme reliability - error correcting codes

1.2 Binary Numbers

- General number in base r is written as:

- Note that All A_{i} (digits) are less than r :
- i.e. Allowed digits are $0,1,2, \ldots, r-1$ ONLY
- a_{n-1} is the MOST SIGNIFACT Digit (MSD) of the number
- a_{-m} is the LEAST SIGNIFICANT Digit (LSD) of the number

$9 / 1 / 2015 \quad$ Dr. Ashraf S. Hasan Mahmoud \quad| a_{n-1} is the MSD of the integer part |
| :--- |
| a_{0} is the LSD of the integer part |
| a_{-1} is the MSD of the fraction part |
| a_{-m} is the LSD of the fraction part |

Number Systems - Base r

- The (base r) number

$a_{n-1} X r^{n-1}+a_{n-2} X r^{n-2}+\ldots a_{2} X r^{2}+a_{1} X r^{1}+a_{0} X r^{0}+a_{-1} X$
$r^{-1}+a_{-2} X r^{-2}+\ldots a_{(m-1)} X r^{-(m-1)}+a_{m} X r^{-m}$ $r^{-1}+a_{-2} X r^{-2}+\ldots a_{-(m-1)} X r^{-(m-1)}+a_{-m} X r^{-m}$

VALUE
OF NUMBER

Example - Decimal or Base 10

- For decimal system (base 10), the number
$(724.5)_{10}$
is equal to

$$
\begin{aligned}
& 7 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0}+5 \times 10^{-1} \\
= & 7 \times 100+2 \times 10+4 \times 1+5 \times 0.1 \\
= & 700+20+4+0.5 \\
= & 724.5
\end{aligned}
$$

Example -Base 5

- Base $5 \rightarrow r=5$
- Allowed digits are: $0,1,2,3$, and 4 ONLY
- The number
$(312.4)_{5}$
is equal to

$$
\begin{aligned}
& 3 \times 5^{2}+1 \times 5^{1}+2 \times 5^{0}+4 \times 5^{-1} \\
= & 3 \times 25+1 \times 5+2 \times 1+4 \times 0.2 \\
= & 75+5+2+0.8 \\
= & (82.8)_{10}
\end{aligned}
$$

Therefore $(312.4)_{5}=(82.8)_{10}$

[^0]
A Third Example -Base 2 (Binary)

- Base $2 \rightarrow r=2$
- This is referred to as the BI NARY SYSTEM
- Allowed digits are: 0 and 1 ONLY
- The number
$\left.\begin{array}{ccccccccc}5 & 4 & 3 & 2 & 1 & 0 & & -1 & -2 \\ 1 & 1 & 0 & 1 & 0 & 1 & . & 1 & 1\end{array}\right)_{2}$

\leftarrow Positions

is equal to

$$
1 X 2^{5}+1 X 2^{4}+0 X 2^{3}+1 X 2^{2}+0 X 2^{1}+1 X 2^{0}
$$

$$
+1 \mathrm{X2}^{-1}+1 \mathrm{X} 2^{-2}
$$

$$
=1 \times 32+1 \times 16+1 \times 4+1 \times 2+1 \times 0.5
$$

+1 X 0.25
$=32+16+4+1+0.5+0.25$
$=(53.75)_{10}$
Therefore $(110101.11)_{2}=(53.75)_{10}$

It is all powers of 2:
\ldots
$2^{4}=16$
$2^{3}=8$,
$2^{2}=4$,
$2^{1}=2$,
$2^{0}=1$
$2^{-1}=0.5$
$2^{-2}=0.25$,
\ldots

Arithmetic Operations in Base r

- Mainly follow the same rules for decimal numbers
- Base $\mathrm{r} \boldsymbol{\rightarrow}$ ONLY the r allowed digits are used
- Example operations for $r=2$ (BINARY)

	$1111 \leftarrow$ carry	
Augend:	101101	Minuend:

Powers Of 2

- Textbook page 21

Table 1.1
Powers of Two

n	2^{n}	n	$2^{\prime \prime}$	n	$2^{\prime \prime}$
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024 (1K)	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096 (4K)	20	1,048,576 (1M)
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

comemontion

- What is $1 G$? How many bytes does 1 GB RAM has?

1.3 Base Number Conversions

- Representations of a number in a different radix are EQUIVALENT if they have the same decimal representation
- E.g. $(0011)_{8}$ is equivalent to $(1001)_{2}$ - both are equal to decimal value 9
- Converting a base r number to decimal is done by expanding the number in a power series and adding all the terms
- Refer to slides 5, 6, and 7.
- How to convert from decimal to base r?

Example 1.1: Decimal to Binary Conversion of Integer Numbers

- Convert 41 to binary.
- To convert a decimal integer to binary \rightarrow decompose into powers of 2
- Example: $(41)_{10}=(?)_{2}$

41 has ONE $32 \rightarrow$ remainder is 9
9 has ZERO $16 \mathrm{~s} \rightarrow$ remainder is 9
9 has ONE $8 \rightarrow$ remainder is 1
1 has ZERO $4 \mathrm{~s} \rightarrow$ remainder is 1
1 has ZERO $2 s \rightarrow$ remainder is 1
1 has ONE $1 \rightarrow$ remainder is 0
Therefore $(41)_{10}=(101001)_{2}$

Example 1.1: Decimal to Binary Conversion of Integer Numbers- cont'd

- Or we can use the following (see table):
- You stop when the division result is ZERO
- Note the order of the resulting digits
- Therefore $(41)_{10}=$ $(101001)_{2}$
- To check:
$\begin{gathered}1 \mathrm{X} 2^{5}+1 \mathrm{X} 2^{3}+1 \\ 41\end{gathered}=32+8+1=$

No	No/2	Remainder
		1
	10	0
		0
		1
		0
	0	1
In general: to convert a decimal integer to its equivalent in base r we use the above procedure but dividing by r		

Example 1.2: Decimal to Octal

Conversion of Integer Numbers- cont'd

- Convert 153 to octal.
- Using the table method of previous example:
- Therefore $(153)_{10}=$ $(231)_{8}$

No	No/8	Remainder
153	19	1
19	2	3
2	8	2

- To check:
$2 X 8^{2}+3 \times 8^{1}+1=128+24+1=$ 153

Example 1.3: Decimal to Binary Conversion of Fractions

- Example: $(0.234375)_{10}=(?)_{2}$
- Solution: We use the following procedure
- Note:
- The binary digits are the integer part of the multiplication process
- The process stops when the number is 0
- There are situations where the process DOES NOT end - See next slide
- Therefore $(0.234375)_{10}=$ (0.001111) ${ }_{2}$
- To check: $(0.001111)_{2}=1 \times 2^{-3}$ $+1 \times 2^{-4}+1 \mathrm{X}^{-5}+1 \times 2^{-6}=$ 9/1/2($(0.234375)_{10}$

No	NoX2	Integer Part	
0.234375	0.46875	0	\longleftarrow
0.46875	0.9375	0	
0.9375	1.875	1	
0.875	1.75	1	
0.75	1.5	1	
0.5	1.0	1	\longleftarrow
0			LSD

In general: to convert a decimal fraction to its equivalent in base r we use the above procedure but multiplying by r

Example 1.4: Decimal to Octal Conversion of Fractions

- Convert $(0.513)_{10}$ to $0.513 \times 8=4.104$ to octal. $0.104 \times 8=0.832$
- Using the same $0.832 \mathrm{x} 8=6.656$ procedure of Example 1.3, we get:
$0.248 \mathrm{x} 8=1.984$
$0.984 \times 8=7.872$
- Therefore $(0.513)_{10}=$ (0.406517...) $)_{8}$
- Check the answer?
- Note the fraction representation in Octal may require infinite number of digits - here $1^{\text {st }} 7$ significant digits are used

How to Convert Decimal Numbers with BOTH Integer and Fraction Part to Base r?

- Answer:
- Integer part is converted alone - as in Examples 1.1 and 1.2
- Fraction part is converted alone - as in Examples 1.2 and 1.3
- Combine the two answers
- Example: convert (153.513)10 to Octal

Using results of example 1.2 and 1.3
$(153)_{10}=(231)_{8}$ and $(0.513)_{10}=(0.406517)_{8}$
$\rightarrow(153.513)_{10}=(231.406517)_{8}$

Example: Conversion From Decimal to Octal

- Problem: What is the octal equivalent of $(\mathbf{3 2} .57)_{10}$?
- Solution:
a) We can covert (32.57) ${ }_{10}$ to binary and then to Octal or
b) We can do:
$32_{10} \rightarrow \quad 32 / 8=4$ and remainder is $0 \rightarrow 0$

$$
4 / 8=0 \text { and remainder is } 4 \rightarrow 4
$$

hence, $32_{10}=40_{8}$
$(0.57)_{10} \rightarrow \quad 0.57 \times 8=4.56 \rightarrow 4$
$0.56 \times 8=4.48 \rightarrow 4$
$0.48 \times 8=3.84 \rightarrow 3$
$0.84 \times 8=6.72 \rightarrow 6$
hence, $(0.57)_{10}=(0.4436)_{8}$
What is $(0.4436)_{8}$ rounded for -Two fraction digits? -One fraction digit?
Therefore, $(32.57)_{10}=(40.4436)_{8}$
9/1/2015

1.4 Octal and Hexadecimal Numbers

- The conversion from and to binary, octal, and hexadecimal plays an important role in digital computers
- Binary, octal, and hexadecimal systems are RELATED to one another since $2^{\wedge} 3=8$ and $2 \wedge 4=16$
- \rightarrow Each octal digit corresponds to 3 binary digits, and
- \rightarrow Each hexadecimal digit corresponds to 4 binary digits
- How

A Very Useful Table

- To represent decimal numbers from 0 till 15 (16 numbers) we need FOUR binary digits $B_{3} B_{2} B_{1} B_{0}$
- In general to represent

N numbers, we need
$\left\lceil\log _{2} N\right\rceil$ bits

- Note than:
- B_{0} flipped or COMPLEMENTED at every increment
- B_{1} flipped or COMPLEMENTED every 2 steps
- B_{2} flipped or COMPLEMENTED every 4 steps
- B_{3} flipped or COMPLEMENTED every 8 steps

A Very Useful Table - cont'd

- Note that zeros to the left of the number do not add to its value
- When we need DIGITS beyond 9, we will use the alphabets as shown in Table
- Example: base 16 system has 16 digits; these are: 0 ,

Decimal	Binary	Decimal	Binary
0	0000	8	1000
1	0001	9	1001

, 1, 2, 3, ... 8, 9, A, B, C,
$2 \quad 0010 \quad 10 \rightarrow \mathrm{~A}$

1010
$D, E, F \quad 4 \quad 0100 \quad 12 \rightarrow C \quad 1100$

- This is referred to as $500101 \quad 13 \rightarrow$ D 1101 HEXADECIMAL or HEX $6 \quad 0110 \quad 14 \rightarrow$ E 1110 $\begin{array}{llll}\text { number system } & 7 & 0111 & 15 \rightarrow F \\ 1111\end{array}$

Octal Number System

- Base r=8
- Allowed digits are $=0,1,2, \ldots, 6,7$
- Example: the number $(127.4)_{8}$ has the decimal value $1 \mathrm{X} 8^{2}+2 \mathrm{X} 8^{1}+7 \mathrm{X} 8^{0}+4 \mathrm{X} 8^{-1}$
$=1 \times 64+2 \times 8+7+0.5$
$=(87.5)_{10}$

Conversion between Octal and Binary

- Example: $(127)_{8}=(?)_{2}$
- Solution: we can find the decimal equivalent (see previous slide) and then convert from decimal to binary
$(127)_{8}=(87)_{10} \rightarrow(?)_{2}$
From long division
$(127)_{8}=(87)_{10}=(1010111)_{2}$
To check:
$1 \times 2^{6}+1 \times 2^{4}+1 \times 2^{2}+1 X 2^{1}+1 \times 2^{0}$
$=64+16+4+2+1$
$=87$

Conversion between Octal and Binary-cont'd

- NOTE: $(127)_{8}=(1010111)_{2}$
- Lets group the binary digits in groups of 3 starting from the LSD

- That is the decimal equivalent of the first group $111 \rightarrow 7$ of the second group $010 \rightarrow 2$ of the third group $\quad 001 \rightarrow 1$
- Hence, to convert from Octal to Binary one can perform direct translation of the Octal digits into binary digits: ONE Octal digit $\leftrightarrow \rightarrow$ THREE Binary digits

Conversion between Octal and Binary - cont'd

- To convert from Binary to Octal, Binary digits are grouped into groups of three digits and then translated to Octal digits
- Example: $(1011101.10)_{2}=(?)_{8}$
- Solution:

$$
\begin{aligned}
(1011101.10)_{2} & =\left(\begin{array}{llll}
001 & 011 & 101 & \cdot 100
\end{array}\right)_{2} \\
& =\left(\begin{array}{lll}
1 & 3 & 5
\end{array} \cdot 4\right)_{8} \\
& =\left(\begin{array}{lll}
135.4
\end{array}\right)_{8}
\end{aligned}
$$

Hexadecimal Number Systems

- Base r=16
- Allowed digits: $0,1,2, \ldots, 8,9, A, B, C, D, E, F$
- The values for the alphabetic digits are as show in Table
- Example 1:
$(\mathrm{B} 65 \mathrm{~F})_{16}=\mathrm{BX}_{16} 6^{3}+6 \mathrm{X} 16^{2}+5 \mathrm{X} 16^{1}+\mathrm{FX} 16^{0}$

$$
=11 \times 4096+6 \times 256+5 \times 16+15
$$

$$
=(46687)_{10}
$$

Hex	Value
A	10
B	11
C	12
D	13
E	14
F	15

- Example 2:
$(1 \mathrm{~B} .3 \mathrm{C})_{16}=1 \mathrm{X} 16^{1}+\mathrm{BX} 16^{0}+3 \mathrm{X} 16^{-1}+\mathrm{CX} 16^{-2}$

$$
=16+11+3 \times 0.0625+12 \times 0.00390625
$$

$=(27.234375)_{10}$

Conversion Between Hex and Binary

- Example: $(1 \mathrm{~B} .3 \mathrm{C})_{16}=(?)_{2}$
- Solution: we can find the decimal equivalent (see previous slide) and then convert from decimal to binary
$(1 \mathrm{~B})_{16}=(27)_{10} \rightarrow(?)_{2}$
From long division
$(1 B)_{16}=(27)_{10}=(11011)_{2}$
$(0.3 C) 16=(0.234375)_{10}=(0.001111)_{2}$
\rightarrow Therefore $(1 \mathrm{~B} .3 \mathrm{C})_{16}=(11011.001111)_{2}$
Verify This Result

Conversion Between Hex and Binary - cont'd

- Note:

$(1 \mathrm{~B} .3 \mathrm{C})_{16}=(11011.001111)_{2}$ from previous example Lets group the binary bits in groups of 4 starting from the radix point, adding zeros to the left of the number or to the right as needed
$\rightarrow(00011011.00111100)$

- Hence, to convert from Hex to Binary one can perform direct translation of the Hex digits into binary digits: ONE Hex digit \longleftrightarrow FOUR Binary digits

Conversion between Hex and Binary - cont'd

- To convert from Binary to Hex, Binary digits are grouped into groups of four digits and then translated to Hex digits
- Example: $(1011101.10)_{2}=(?)_{16}$
- Solution:

$$
\begin{aligned}
(1011101.10)_{2} & =(01011101 \cdot 1000)_{2} \\
& =(5 \quad D \cdot 8)_{16} \\
& =(5 D .8)_{16}
\end{aligned}
$$

Decimal, Binary, Octal, and Hexadecimal Systems Again:

- Textbook page				
$\mathbf{2 5}$	Table 1.2 Numbers with Different Bases			
	Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
	00	0000	00	0
	01	0001	01	1
	02	0010	02	2
	03	0011	03	3
	04	0100	04	4
	05	0101	05	5
	06	0110	06	6
	07	0111	07	7
	08	1000	10	8
	09	1001	11	9
	10	1010	12	A
	11	1011	13	B
	12	1100	14	C
	13	1101	15	D
	14	1110	16	E
15	1111	17	F	

Sample Problem

- Problem: What is the radix r if

$$
\left((33)_{r}+(24)_{r}\right) \times(10)_{r}=(1120)_{r}
$$

- Solution:
$(33)_{r}=3 r+3$,
$(24)_{r}=2 r+4$,
$(10)_{r}=r$ r,
$(1120)_{r}=r^{3}+r^{2}+2 r$
therefore:

$$
\begin{aligned}
& {[(3 r+3)+(2 r+4)] \times r } \\
= & r^{3}+r^{2}+2 r \rightarrow r^{3}-4 r^{2}-5 r=0, \text { or } \\
\quad & r(r-5)(r+1)=0
\end{aligned}
$$

This means, the radix r is equal to 5

1.5 Complements Of Numbers

- Used in digital computers to simplify the subtraction operation
- Two types of complements:
- Diminished Radix Complement or (r-1)'s complement, and
- Radix Complement or r's complement
- Examples:
- $r=2$ (BINARY) \rightarrow 2's complement and 1's complement
- $r=10$ (DECIMAL) \rightarrow 10's complement and 9's complement

Diminished Radix Complement

- Given: Base r, number of digits n, and number N
- Diminished radix complement is defined as

$$
N^{\prime}=\left(r^{\wedge} n-1\right)-N
$$

- What is the diminished radix complement of N'?

Diminished Radix Complement cont'd

- Example 1: $r=10$ for any N of n decimal digits $\rightarrow N^{\prime}=\left(10^{\wedge} n-1\right)-N$
- $10^{\wedge} \mathrm{n}$ is 1 followed by n zeros $\rightarrow\left(10^{\wedge} \mathrm{n}-1\right)$ is $\mathrm{n} 9^{\prime} \mathrm{s}$!
- Example 2: $\mathrm{r}=10, \mathrm{n}=4 \rightarrow \mathrm{~N}^{\prime}=(9999)_{10}-\mathrm{N}$
- Example 3: $r=10, n=6-$ compute 9's complement of
- $\mathrm{N}=546700 \rightarrow \mathrm{~N}^{\prime}=999999-546700=453299$
- $N=012398 \rightarrow N^{\prime}=999999-012398=987601$

Diminished Radix Complement cont'd

- Example 4: $r=2$, for any N of n binary digits
- $2^{\wedge} n$ is 1 followed by n zeros $\rightarrow\left(2^{\wedge} n-1\right)$ is $n 1^{\prime} s$!
- Example 5: $\mathrm{r}=2, \mathrm{n}=4 \rightarrow \mathrm{~N}^{\prime}=(1111)_{2}-\mathrm{N}$
- Example 3: $\mathrm{r}=2, \mathrm{n}=7$ - compute 1 's complement of
- $\mathrm{N}=1011000 \rightarrow \mathrm{~N}^{\prime}=1111111-1011000=0100111$
- $\mathrm{N}=0101101 \rightarrow \mathrm{~N}^{\prime}=1111111-0101101=1010010$

9's Complement

- For $\mathrm{n}=1$ and 2

$\mathrm{N}_{10}^{\prime}(\mathrm{n}=1)$	N_{10}^{\prime} using+/- in decimal
0	0
1	1
2	2
3	3
4	4
5	-4
6	-3
7	-2
8	-1
9	-0

1's Complement

- For $\mathrm{n}=2$ and 3

$N_{2}^{\prime}(n=2)$	N_{2}^{\prime} using+/- in decimal
00	0
01	1
10	-1
11	-0

$\mathrm{N}_{2}^{\prime}(\mathrm{n}=3)$	N_{2}^{\prime} using+/-in decimal
000	0
001	1
010	2
011	3
100	-3
101	-2
110	-1
111	-0

7's Complement

- For n = 1 and 2

$\mathrm{N}_{8}^{\prime}(\mathrm{n}=1)$	N_{8}^{\prime} using+/- in decimal
0	0
1	1
2	2
3	3
4	-3
5	-2
6	-1
7	-0

$\mathrm{N}_{8}^{\prime}(\mathrm{n}=2)$	N_{8}^{\prime} using+/- in decimal
00	0
01	1
02	2
\ldots	..
07	7
10	8
11	9
12	10
\ldots	..
36	30
37	31
40	-31
41	-36
\ldots	\ldots
70	$-?$
71	$-?$
\ldots	\ldots
76	-1
77	-0

15's Complement

- For $\mathrm{n}=1$ and 2

$\mathrm{N}_{16}^{\prime}(\mathrm{n}=2)$	N_{16}^{\prime} using+/- in decimal
00	0
01	1
\ldots	\ldots
0 E	14
0 F	15
10	16
11	17
\ldots	\ldots
1 F	31
20	32
21	33
\ldots	\ldots
7 F	126
7 F	127
80	-128
81	-127
\ldots	\ldots
F0	-16
F1	-15
FD	\ldots
FF	-3

Radix Complement

- Given: Base r, number of digits n, and number N
- Radix complement is defined as

$$
N^{\prime}=r^{\wedge} n-N
$$

- What is the radix complement of N^{\prime} ?

Diminished Radix Complement cont'd

- Example 1: $r=10$ for any N of n decimal digits $\rightarrow N^{\prime}=\left(10^{\wedge} n\right)-N$
- $10^{\wedge} \mathrm{n}$ is 1 followed by n zeros
- Example 2: $\mathrm{r}=10, \mathrm{n}=4 \rightarrow \mathrm{~N}^{\prime}=(10000)_{10}-$ N
- Example 3: $\mathrm{r}=10, \mathrm{n}=6$ - compute 10 's complement of
- $N=246700 \rightarrow N^{\prime}=1000000-246700=753300$
- $\mathrm{N}=012398 \rightarrow \mathrm{~N}^{\prime}=1000000-012398=987602$

Diminished Radix Complement cont'd

- Example 4: $r=2$, for any N of n binary digits
- $2^{\wedge} n$ is 1 followed by n zeros
- Example 5: $\mathrm{r}=2, \mathrm{n}=4 \rightarrow \mathrm{~N}^{\prime}=(10000)_{2}-\mathrm{N}$
- Example 3: $\mathrm{r}=2, \mathrm{n}=7$ - compute 2 's complement of
- $\mathrm{N}=1101100 \rightarrow \mathrm{~N}^{\prime}=10000000-1101100=0010100$
- $\mathrm{N}=0110111 \rightarrow \mathrm{~N}^{\prime}=10000000-0110111=1001001$

10's Complement

- For $\mathrm{n}=1$ and 2

$\mathrm{N}_{10}^{\prime}(\mathrm{n}=1)$ N_{10}^{\prime} using+/- in decimal 0 0 1 1 2 2 3 3 4 4 5 -5 6 -4 7 -3 8 -2 9 -1

$\mathrm{X}_{10}^{\prime}(\mathrm{n}=2)$	X_{10}^{\prime} using+/- in decimal
00	0
01	1
02	2
\ldots	..
09	9
10	10
11	11
12	12
\ldots	..
49	49
50	-50
51	-49
52	-48
\ldots	\ldots
98	-2
99	-1

2's Complement

- For $\mathrm{n}=2$ and 3

$N_{2}^{\prime}(n=2)$	N_{2}^{\prime} using+/- in decimal
00	0
01	1
10	-2
11	-1

$\mathrm{N}_{2}^{\prime}(\mathrm{n}=3)$	N_{2}^{\prime} using+/-in decimal
000	0
001	1
010	2
011	3
100	-4
101	-3
110	-2
111	-1

8's Complement

- For $\mathrm{n}=1$ and 2

$\mathrm{N}_{8}^{\prime}(\mathrm{n}=1)$	N_{8}^{\prime} using+/- in decimal
0	0
1	1
2	2
3	3
4	-4
5	-3
6	-2
7	-1

$\mathrm{N}_{8}^{\prime}(\mathrm{n}=2)$	N_{8}^{\prime} using $+/-\mathrm{in}$ decimal
00	0
01	1
02	2
..	..
07	7
10	8
11	9
12	10
\ldots	\ldots
36	30
37	31
40	-32
41	-31
\ldots	\ldots
70	-8
71	-7
\ldots	\ldots
76	-2
77	-1

16's Complement

		$\text { and } 2$	$\mathrm{N}_{16}^{\prime}(\mathrm{n}=2)$	N_{16}^{\prime} using+/- in decimal
	$\mathrm{N}_{16}^{\prime}(\mathrm{n}=1)$		00	0
			01	1
		N_{16} using+/- in decimal
	0	0	OE	14
	0	0	OF	15
	1	1	10	16
	2	2	11	17
	3	3	\ldots	\ldots
	4	4	1F	31
	5	5	20	32
	6	6	21	33
	7	7
			7E	126
	8	-8	7F	127
	9	-7	80	-128
	A	-6	81	-127
	B	-5	\ldots	...
	C	-4	FO	-16
	D	-3	F1	-15
	E	-2	...	\ldots
	F	-1	FD	-3
9/1/2015		Dr. Ashraf S. Has	FE	-2
		FF	-1	

Example: Signed Number Representation - r = 2, n = 4

- Signed-Magnitude and 1 's complement are symmetrical representations with TWO representations for ZERO
- Range from signedmagnitude and 1's complement is from 7 to +7
- 2's complement representation is not symmetrical
- Range for 2's complement is from 8 to +7 - with one representation for ZERO

हкaाmpre. गाyाएeप ivulinve

Representation - r = 2, $\mathrm{n}=4$ Summary

- The following table summarizes the properties and ranges for the studied signed number representations

	Signed- Magnitude	1's Complement	2's					
Complement				$	$	Symmetric	Y	Y
:---:	:---:	:---:						
No of Zeros	2	2						
Largest	$2^{(n-1)-1}$	$2^{(n-1)-1}$						
Smallest	$-\left\{2^{(n-1)}-1\right\}$	$-\left\{2^{(n-1)}-1\right\}$						

Summary - cont'd

- The complement of the complement restores the number to its original value
- Proof:

Given N, then N^{\prime} is $r^{\wedge} n-N$
Then $\left(N^{\prime}\right)^{\prime}$ should be $r^{\wedge} n-\left(N^{\prime}\right)=r^{\wedge} n-\left(r^{\wedge} n\right)+N=N$! Therefore, $\left(\mathrm{N}^{\prime}\right)^{\prime}=\mathrm{N}$.

The above proof is the same for diminished radix complement.

1.6 Representation of Singed Binary Numbers

- There are two main techniques to represent signed numbers

1. Signed Magnitude Representation
2. Complement Method

- Diminished-Radix complement
- Radix complement

Machine Representation of Numbers

- Computers store numbers in special digital electronic devices called REGISTERS
- REGISTERS consist of a fixed number of storage elements
- Each storage element can store one BIT of data (either 1 or 0)
- A register has a FINITE number of bits
- Register size (n) is the number of bits in this register
- N is typically a power of 2 (e.g. $8,16,32,64$, etc.)
- A register of size n can represent 2^{n} distinct values
- Numbers stored in a register can be either signed or unsigned

N -bit Register

- N -storage elements

- Each storage element capable of holding ONE bit (either 1 or -0
- n-bits can represent 2^{n} distinct values
- For example if unsigned integer numbers are to be represented, we can represent all numbers from 0 to $2^{n}-1$ (recall the number ranges for n -bits)
- If we use it to represent signed numbers, still it can hold 2^{n} different numbers - we will learn about the ranges of these numbers in the coming slides

N-bit Register - cont'd

- Using a 4-bit register, $(13)_{10}$ or $(D)_{H}$ is represented as follows:

1	1	0	1

- Using an 8-bit register, $(13)_{10}$ or $(\mathrm{D})_{H}$ is represented as follows:

0	0	0	0	1	1	0	1

- Note that ZEROS are used to pad the binary representation of 13 in the 8-bit register
- NOTE: we are still using UNSIGNED NUMBERS

Signed Number Representation

- To report a "signed" number, you need to specify its:
- Magnitude (or absolute value), and
- Sign (positive or negative)

Signed Magnitude Representation

- N -bit register

n-1 bits to represent the magnitude:
$\rightarrow 2^{(n-1)}$ different numbers
\rightarrow Starting from $0,1, \ldots$, the maximum no is $=2^{(n-1)}-1$

Signed Magnitude Representation Example 1:

- Show how +6, $-6,+13$, and -13 are represented using a 4-bit register
- Solution: Using a 4-bit register, the leftmost bit is reserved for the sign, which leaves 3 bits only to represent the magnitude
\rightarrow The largest magnitude that can be represented $=2^{(4-1)}-1=7<13$
Hence, the numbers +13 and -13 can NOT be represented using the 4-bit register

Signed Magnitude Representation Example 1: cont'd

- Solution (cont'd):

However both -6 and +6 can be represented as follows:

Signed Magnitude Representation Example 2:

- Show how +6, $-6,+13$, and -13 are represented using an 8 -bit register
- Solution: Using an 8-bit register, the leftmost bit is reserved for the sign, which leaves 7 bits only to represent the magnitude
\rightarrow The largest magnitude that can be represented $=2^{(8-1)}-1=127$
Hence, the numbers can be represented using the 8 -bit register

Signed Magnitude Representation Example 2: cont'd

- Solution (cont'd):

Since 6 and 13 are equal to : 110 and 1101 respectively, the required representations are

Singed-Magnitude representation of +6
Singed-Magnitude representation of -6

Singed-Magnitude representation of +13
 Singed-Magnitude representation of -13

Things We Learned About SignedMagnitude Representation

- For an n-bit register
- Leftmost bit is reserved for the sign (0 for +ve and 1 for -ve)
- Remaining $\mathrm{n}-1$ bits represent the magnitude
- $2^{(n-1)}$ different numbers:
- minimum is zero and maximum is $2^{(n-1)}-1$
- Two representations for zero: +0 and -0
- Range of numbers: from $-\left\{2^{(n-1)}-1\right\}$ to $+\left\{2^{(n-1)-}\right.$
$1\} \rightarrow$ symmetric range

Complement Representation

- +ve numbers (+N) are represented exactly the same way as in signed-magnitude representation
- -ve numbers (-N) are represented by the complement of N or N^{\prime}

How is the complement of N or N^{\prime} defined?
$\mathrm{N}^{\prime}=\mathrm{M}-\mathrm{N} \quad$ where M is some constant

Properties of the Complement Representation

- The complement of the complement of N is equal to N :
Proof: $\left(N^{\prime}\right)^{\prime}=M-(M-N)=-(-N)=N$
Same as with -ve numbers definition!
- The complement method representation of signed numbers simplifies implementation of arithmetic operations like subtraction:
e.g.: A - B can be replaced by $\mathrm{A}+(-\mathrm{B})$ or $\mathrm{A}+\mathrm{B}^{\prime}$ using the complement method
Therefore to perform subtraction using computers we complement and add the subtrahend

Signed Binary Numbers (r = 2, n = 4)

- Given a binary representation of a number, how can you tell whether the number is +ve or -ve?
- Sign extension rule? How would you write the number shown in table using $r=2$ and $\mathrm{n}=8$?
i.e. what is -4 in
2'complement
using $n=8$?

Table 1.3
Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	-	-

-Operations-On Binary Numbers REVIEW

Operation On Binary Numbers

- Assuming we are dealing with n-bit binary numbers
- UNSIGNED, or
- SIGNED (2's complement)
- A subtraction can always be made into an addition operation $A-B=A+(-B)$ or $A+\left(B^{\prime}\right)$
- Compute the 2's complement of the subtrahend and added to the minuend

Operations on Binary Numbers

- The GENERAL OPERATION looks like:

$$
\begin{array}{rlllllllll}
C_{n} & C_{n-1} & C_{n-2} & \ldots & C_{2} & C_{1} & C_{0} & \leftarrow \text { Carry generated } \\
& A_{n-1} & A_{n-2} & \ldots & A_{2} & A_{1} & A_{0} & \Rightarrow \text { Number } A \text { (signed or otherwise) } \\
+ & B_{n-1} & B_{n-2} & \ldots & B_{2} & B_{1} & B_{0} & \Rightarrow \text { Number } B & \text { (signed or otherwise) } \\
\hdashline--1 & - & - & - & - & &
\end{array}
$$

- Note that although we start with n-bit numbers, we can end up with a result consisting of $n+1$ bits
- Remember we are using n-bit registers!!
- What to do with this extra bit (C_{n})?

Addition of Unsigned BINARY Numbers - Review

- For n-bit words, the n-bit UNSI GNED binary numbers range from $\left(0_{n-1} 0_{n-2} \ldots 0_{1} 0_{0}\right)_{2}$ to $\left(1_{n-1} 1_{n-}\right.$ $\left.{ }_{2} \ldots 1_{1} 1_{0}\right)_{2}$
i.e. they range from 0 to $\mathbf{2 n}^{\text {n-1 }}$
- When adding A to B as in:
$C_{n} C_{n-1} C_{n-2} \ldots C_{2} C_{1} C_{0}$ \& Carry generated
$A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{0} \quad \Rightarrow$ Number A (unsigned)
$+B_{n-1} B_{n-2} \ldots B_{2} B_{1} B_{0} \quad \Rightarrow$ Number B (unsigned)

$\mathrm{C}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}-1} \mathrm{~S}_{\mathrm{n}-2} \ldots \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$
- If C_{n} is equal to ZERO, then the result DOES fit into n -bit word ($\mathrm{S}_{\mathrm{n}-1} \mathrm{~S}_{\mathrm{n}-2} \ldots \mathrm{~S}_{\mathbf{2}} \mathrm{S}_{1} \mathrm{~S}_{\mathbf{0}}$)
- If C_{n} is equal to ONE, then the result DOES NOT fit into n -bit word \rightarrow An "OVERFLOW" indicator!

Subtraction of Unsigned BINARY Numbers

- How to perform A-B (both defined as n-bit unsigned)?
- Procedure:

1. Add the the 2 's complement of B to A; this forms $A+\left(2^{n}\right.$ - B)
2. If $(A>=B)$, the sum produces end carry signal $\left(C_{n}\right)$; discard this carry
3. If $A<B$, the sum does not produce end carry signal (C_{n}); result is equal to $\mathbf{2}^{\mathrm{n}}$ - (B-A), the $\mathbf{2}^{\prime}$'s complement of $B-A$ Perform correction:

- Take 2's complement of sum
- Place - ve sign in front of result
- Final result is - (A-B)

Subtraction of Unsigned BINARY Numbers - NOTES

- Although we are dealing with unsigned numbers, we use the 2 's complement to convert the subtraction into addition
- Since this is for UNSI GEND numbers, we have to use the - ve sign when the result of the operation is negative

Subtraction of Unsigned BINARY Numbers - Example (1)

- Example: $X=1010100$ or (84) ${ }_{10}, Y=1000011$ or (67) $)_{10^{-}}$ Find $X-Y$ and Y - X
$\mathrm{n}=7$
- Solution:
A) $\mathrm{X}-\mathrm{Y}: \quad \mathrm{X}=1010100$

2's complement of $Y=0111101$
Sum = 10010001
Discard C_{n} (last bit) $=0010001$ or (17) $)_{10} \leftarrow X-Y$
B) $\mathbf{Y}-\mathbf{X}: \quad \mathbf{Y}=1000011$

2's complement of $X=0101100$
Sum = 1101111
C_{n} (last bit) is zero \rightarrow need to perform correction
$\mathrm{Y}-\mathrm{X}=-(2$'s complement of 1101111) $=\mathbf{- 0 0 1 0 0 0 1}$

n-bit Unsigned BINARY Number Operations - Summary

2's Complement Review

- For n-bit words, the 2's complement SI GNED binary numbers range from - ($\left.2^{n-1}\right)$ to $+\left(2^{n-1}-1\right)$
e.g. for 4-bit words, range $=-8$ to +7
- Note that MSB is always $\mathbf{1}$ for - ve numbers, and 0 for + ve numbers

Addition/Subtraction of n-bit Signed BINARY Numbers by Example (2)

CoI	nsider 011000		1110000		
+6	000110	-6	111010		
$+13$	001101	+13	001101		
+----19 +19	---------	+7	000111	$\mathrm{C}_{\mathrm{n}}=1 \rightarrow$ discarded	
	001100		1100100		
+6	000110	-6	111010		
13	110011	-13	110011		
-7	111001	-19	101101	$\mathrm{C}_{\mathrm{n}}=1 \rightarrow$ discarded	

- Any carry out of sign bit position is DISCARDED
- -ve results are automatically in 2's complement form (no need for an explicit - ve sign)!

Are there cases when the results do not fit the n-bit register?

Addition/Subtraction of n-bit Signed BINARY Numbers by Example (3)

BINARY Numbers by Example (3) cont'd
 - NOTE:

- The result is invalid (not within range) only if $\mathrm{C}_{\mathrm{n}-1}$ and C_{n} are different! \rightarrow An OVERFLOW has occurred
- The result is valid (within range) if $\mathrm{C}_{\mathrm{n}-1}$ and C_{n} are the same
- If $\mathrm{C}_{\mathrm{n}}=1$; it needs to be discarded
- If result is valid and -ve, it will be in the correct 2's complement form

Addition/Subtraction of n-bit Signed BINARY Numbers - Summary

1.7 Binary Codes

- N-bit code \rightarrow group of n bits \rightarrow can give $2^{\wedge} n$ distinct combinations
- Make every combination represent one element in the set of interest
- Example $-\mathrm{n}=2 \rightarrow 2^{\wedge} \mathrm{n}=4$ distinct combinations: 00, 01, 10, 11
- Example $-\mathrm{n}=3 \rightarrow 2^{\wedge} 3=8$ distinct combinations: 000, 001, 010, 011, 100, 101, 110, 111
- Question: how many distinct combinations we can have from n decimal digits?

1.7 Binary Codes - cont'd

- Question 1: how many distinct combinations we can have from n decimal digits?
- Question 2: If I have m elements and I want to use m distinct codes, what is the minimum number of bits required?
- Ans: we want $2 \wedge n>=m \rightarrow n=\operatorname{ceil}\{\log 2(m)\}$

Decimal Codes

- For us, humans, it is more natural to deal with decimal digits rather than binary digits
- $m=10$ different decimal digits
$\rightarrow \mathrm{n}=$ ceil $(\log 2(\mathrm{~m}))$
$=$ ceil $(\log 2(10))$
$=\operatorname{ceil}(\log 2(3.3219))$

$$
=4
$$

- Hence, we can use 4 bits to represent any digit $\rightarrow B C D$ system
- Question: what is the maximum number of distinct codes given a 4-bit code?

Binary Coded Decimal (BCD)

- Let the decimal digits be coded as show in table

Decimal Digit	Binary Code	Decimal Digit	Binary Code
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

Since $3 \rightarrow 0011,9=1001,6=0110$ mathematical sense; this is JUST a code

BCD Arithmetic

1. BCD Unsigned Addition using 4-bit binary adders

What happens at a decimal digit?
\rightarrow If sum ≤ 1001 : binary and BCD results are identical- No correction needed
\rightarrow If sum > 1001 : (can be between 10 (1010) \& 19 (10011)
should generate a BCD carry
and subtract ${ }^{10}{ }_{d}$ from result

Carry from Addition of 6

(<= 9: No correction needed
in decimal in BCD
Instead of subtracting 10)
, we add its 2 's complement
2's complement of $1010=0110=6)_{d}$
(>9) Correction Needed:
Subtract 10 by adding 6 and send a carry
-Chapter 180

This slide is borrowed from?
 2. BCD Signed Subtraction through 10's Complement (Adding the 10s complement of subtrahend)

Signed BCD Numbers: We use One BCD Digit to represent the sign
Positive sign: 0 (=0000) Negative Sign: $9(=r-1)=1001$
Subtraction is done by addition of the 10 's complement of the subtrahend

4-digit 0395-0230 (using 10's complement in BCD)
Signed-10's comp The 10's complement of 0230 is (9)770.
Subtraction

Subtraction	0	395
Is converted	+9	770
To Addition	10	165

In Decimal

Carries 1

0000	0011	1001	0101
+1001	0111	0111	0000
1010	1011	10000	0101

0110	0110	0110			
10000	0001	0110	$	$	$=5$, No correction needed
---:					
0101					

In BCD = 16. Correction needed: Subtract 1010 by adding 0110

Leple anid Cumputsr Denlgn Fundamantals
Pawarpaint Slites

BCD Addition - Example 2

BCD Subtraction - Example 3

- Consider: $\begin{aligned} & 110 \leftarrow \text { Borrow } \\ & 234 \\ &-135 \end{aligned}$		
099		
Subtraction in the Decimal Domain		
9/1/2015	Dr. Ashraf S. Hasan Mahmoud	84

BCD Addition - Summary

- BCD codes: decimal digits are assigned 4 bit codes
- We can perform additions using the BCD digits
- If the result of adding two BCD digits is greater than 9, a correction step is required in order produce the correct BCD digit
- To correct: add 6
- If a carry is produced \rightarrow move it to next BCD digits addition

Other Decimal Codes

- Weighted code Table 1.5 each bit position is Four Different Binary Codes for the Decimal Digits given a weighting factor
- BCD and 2421 codes are examples of weighted codes
- Excess-3 is an unweighted code
- $8,4,-2,-1$ code is an example of assigning both + ve and -ve weights

Decimal Digit	BCD $\mathbf{8 4 2 1}$	$\mathbf{2 4 2 1}$	Excess-3	$\mathbf{8 , \mathbf { 4 } , \mathbf { - 2 , } , \mathbf { 1 }}$
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Grey Code

- Note only one-bit change

Table 1.6
Gray Code between NEIGHBORING code words

- Application: digital communication, representation of analog data by continuous change in angular position, etc.

Alphanumeric Codes

- We have
- 10 decimal digits
- 26×2 (English) letters: capital and small case
- Some special characters \{; , . : + - etc $\}$
- If we assign each character of these a binary code, then computers can exchange alphanumeric information (letters, numbers, etc) by exchanging binary digits
- One binary code is the American Standard Code for Information Interchange (ASCII)

ASCII Character Code

- A 7 -bits code $\rightarrow 128$ distinct codes
- 96 printable characters (26 upper case letter, 26 lower case letters, 10 decimal digits, 34 non-alphanumeric characters)
- 32 non-printable character
- Formatting effectors (CR, BS, ...)
- Info separators (RS, FS, ...)
- Communication control (STX, ETX, ...)
- Computers typically use words sizes that are multiples of 2
- Usually 8 bits are used for the ASCII code with the $8^{\text {th }}$ (left most bit) bit set to zero, OR
- The ASCII code is extended $\boldsymbol{\rightarrow}$ Extended ASCII (platform dependant)
- A good reference about ASCII and Extended ASCII is found at http://www.cplusplus.com/doc/papers/ascii.html

ASCII Character Code

Unicode

- Unicode describes a 16 -bit standard code for representing symbols and ideographs for the world's languages.
First 256 Codes for Unicode ${ }^{\text {a }}$

	Control		ASCII						Control		Latin 1					
	000	001	002	003	004	005	006	007	008	009	00A	00B	00C	00D	00E	00F
0	CTRL	CTRL	Smce:	0	(a)	P	-	P	CTRL	CTRL	;-...?	-	A	D	à	D
1	CTRL	CTRL		1	A	Q	a	q	CTRL	CTRL		\pm	A	N	á	n
2	CTRL	CTRL	"	2	B	R	b	r	CTRL	CTRL	c	2	A	O	â	ò
3	CTRL	CTRL	$\#$	3	C	S	c	s	CTRL	CTRL	\&	3	A	Ó	ã	ó
4	CTRL	CTRL	\$ 1	4	D	T	d	t	CTRL	CTRL	-	.	A	0	à	ô
5	CTRL	CTRL	\%	5	E	U	e	u	CTRL	CTRL	\| \mid	μ	A	\bigcirc	a	õ
6	CTRL	CTRL	\&	6	F	V	f	v	CTRL	CTRL	!	1	Æ	Ö	æ	ō
7	CTRL	CTRL	,	7	G	W	g	w	CTRL	CTRL	§	.	C	\times	c	\div
8	CTRL	CTRL	(8	H	X	h	x	CTRL	CTRL	-	,	E	\emptyset	è	-
9	CTRL	CTRL)	9	I	Y	i	y	CTRL	CTRL	-	i	É	Ù	é	ù
A	CTRL	CTRL	*	-	J	Z	j	z	CTRL	CTRL	a	${ }^{\circ}$	E	Ú	ê	u
B	CTRL	CTRL	+	;	K	I	k	(CTRL	CTRL	*	"	E	U	ë	u
C	CTRL	CTRL	,	$<$	L	1	1	\|	CTRL	CTRL	\checkmark	$\frac{11}{1 / 4}$	İ	U	i	ü
D	CTRL	CTRL	-	$=$	M]	m	\}	CTRL	CTRL	-	$\frac{1}{2} 1^{1 / 2}$	Í	Y	i	y
E	CTRL	CTRL	.	>	N	\wedge	n	\sim	CTRL	CTRL	${ }^{\text {(B) }}$	$33^{3 / 4}$	I	p	i	p
F	CTRL	CTRL	1	?	O	-	\bigcirc	CTRL	CTRL	CTRL	\cdot	¿	I	B	,	y

${ }^{2}$ Unicode, Inc., The Unicode Standard Worldwide Character Encoding, Version 1.0, Volume 1, © 1990,1991 by Unicode. Inc. Reprinted by permission of Addisonublishing Company. Inc.

Error-Detecting Code

- To detect errors in data communication and processing \rightarrow add parity bit
- 7-bit ASCII characters stored in 8-bit BYTES
- Even parity - the parity bit is added such that number of 1 's is EVEN
- Odd parity - the parity bit is added such that number of 1 's is ODD
- Example:

	even parity	odd parity
ASCII $A=1000001$	01000001	11000001
ASCII B $=1010100$	11010100	01010100

- What types of errors can be detected with a single parity bit?
- What fraction of error can be detected with this system? Why?

1.8 Binary Storage And Registers

- Register - group of binary cells
- n -bit register holds n bits - has $2^{\wedge} n$ possible states
- Register transfer - consists of a transfer of binary info from one set of registers to another
- Refer to figure - ASCII characters produced by keyboard moved into processing unit register and copied to the memory register

1.8 Binary Storage And Registers - cont'd

- To process inputs in a digital systems - typically they are held in registers!
- See Figure - Digital logic circuit operates on R1 and R2 to produce R3
- Contents of R3 are transferred to the memory unit
- Where are the contents of R1 and R2 obtained from originally?

1.9 Binary Logic

- Deals with binary variables that take one of two discrete values
- Values of variables are called by a variety of very different names
- high or low based on voltage representations in electronic circuits
- true or false based on their usage to represent logic states
- one (1) or zero (0) based on their values in Boolean algebra
- open or closed based on its operation in gate logic
- on or off based on its operation in switching logic
- asserted or de-asserted based on its effect in digital systems

Basic Operations - AND

- Another Symbol is ".", e.g.

$$
\begin{aligned}
& Z=X \text { AND } Y \text { or } \\
& Z=X . Y \text { or even } \\
& Z=X Y
\end{aligned}
$$

- X and Y are inputs, Z is an output
- Z is equal to 1 if and only if $X=1$ and $Y=1 ; Z=0$ otherwise (similar to the multiplication operation)
- Truth Table:
- Graphical symbol:

X	Y	$\mathrm{Z}=\mathrm{XY}$
0	0	0
0	1	0
1	0	0
1	1	1

Basic Operations - OR

- Another Symbol is "+", e.g.

$$
\begin{aligned}
& Z=X \text { OR } Y \text { or } \\
& Z=X+Y
\end{aligned}
$$

- X and Y are inputs, Z is an output
- Z is equal to 0 if and only if $X=0$ and $Y=0 ; Z$
$=1$ otherwise (similar to the addition operation)
- Truth Table:
- Graphical symbol:

X	Y	$\mathrm{Z}=\mathrm{X}+\mathrm{Y}$
0	0	0
0	1	1
1	0	1
1	1	1

Basic Operations - NOT

- Another Symbol is "-", e.g.

$$
\mathrm{Z}=\bar{X} \text { or } \quad \mathrm{Z}=\mathrm{X}^{\prime}
$$

- X is the input, Z is an output
- Z is equal to 0 if $X=1 ; Z=1$ otherwise
- Sometimes referred to as the complement or invert operation
- Truth Table:

X	$Z=X^{\prime}$
0	1
1	0

- Graphical symbol:

Time Diagrams

Multiple Input Gates

(a) Three-input AND gate

Textbook Examples: Pages 28 to 30
 **Addition/Subtraction of UNSIGNED numbers using the COMPLEMENT system

Subtracting with Complements

- We want to perform: M - N
- M and N are UNSIGNED NUMBERS
- We WANT TO USE THE COMPLEMENT system to perform the subtraction
- We can write: $\mathrm{M}-\mathrm{N}=\mathrm{M}+(-\mathrm{N})=\mathrm{M}+\mathrm{N}^{\prime}$
- Change the subtraction to addition!
- Steps:
- Add M to the r's complement of N (i.e. N^{\prime})
- If $M>=N$, the sum WILL produce a carry - ignore it.
- If $M<N$, the sum does not produce a carry - the sum is the -ve of $N-M$ (i.e. $r^{\wedge} n-(N-M)$)

Example 1.5: Case for $\mathrm{M}>=\mathrm{N}$

- Using 10's complement subtract 72532-3250
- Solution: Note that $\mathrm{r}=10, \mathrm{n}=5, \mathrm{M}=72532, \mathrm{~N}=$ 03250

$$
\mathrm{M}=72532
$$

10's complement of $N=96750 \leftarrow(100000-72532)$

$$
\text { sum = } 169282
$$

discard the end carry $10^{5}=-100000$
ANSWER = 69282

Example 1.6: Case for $\mathrm{M}<\mathrm{N}$

- Using 10's complement subtract 3250-72532
- Solution: Note that $\mathrm{r}=10, \mathrm{n}=5, \mathrm{M}=03250, \mathrm{~N}=$ 72532

$$
M=03259
$$

10's complement of $N=27468 \leftarrow(100000-72532)$

$$
\text { sum }=30718
$$

There is NO end carry
\rightarrow ANSWER $=30718$

$$
\begin{aligned}
& =-(10 ' s \text { complement of } 30718) \\
& =-69282
\end{aligned}
$$

Example 1.7: Using Binary Numbers

- Using the two binary numbers $X=1010100$ and $Y=$ 1000011, perform (a) $X-Y$ and (b) $Y-X$ using 2's complement
- Solution: (a) $X-Y$:

X	$=1010100$
2^{\prime} s complement of Y	$=0111101$
$(10000000-1000011)$	
sum	$=10010001$
discard end carry 2^{7}	$=-10000000$
ANSWER	$=0010001$

Example 1.7: Using Binary Numbers - cont'd

- Using the two binary numbers $X=1010100$ and $Y=$ 1000011, perform (a) $X-Y$ and (b) $Y-X$ using 2's complement
- Solution: (a) Y - X:

$$
\mathrm{Y}=0111101
$$

2's complement of $\mathrm{X}=0101100 \leqslant(10000000-$ 1010100)
sum = 1101111
There is no end carry \rightarrow
ANSWER is Y - $\mathrm{X}=-(2$'s complement of 1101111)
= - 0010001

Example 1.8: Using Binary Numbers

- Using the two binary numbers $X=1010100$ and $Y=$ 1000011, perform (a) $X-Y$ and (b) $Y-X$ using 1's complement
- Solution: (a) $X-Y$:

X	$=1010100$
1's complement of $\mathrm{Y}=0111100$	
$(1111111-1000011)$	
sum	$=10010000$
End-around carry	$=+r 1$
ANSWER	$=0010001$

Example 1.8: Using Binary Numbers -cont'd

- Using the two binary numbers $X=1010100$ and $Y=$ 1000011, perform (a) $X-Y$ and (b) $Y-X$ using 1's complement
- Solution: (b) Y - X:

```
        Y = 1000011
    1's complement of X = 0101011 \leftarrow
(1111111 - 1000011)
    sum = 1101110
There is no end carry }
ANSWER is Y - X = - (1's complement of
1101110)
    = - 0010001
```


More Examples

Subtraction of Unsigned Numbers Example - Base 10

- Example: $\mathbf{X}=(\mathbf{7 2 5 3 2})_{10}, Y=(3250)_{10}$ - Find $X-Y$ and $Y-X$
- Solution:
A) X - $\mathrm{Y}: \quad \mathrm{X}=\mathbf{7 2 5 3 2}$

10's complement of $Y=96750$

$$
\text { Sum = } 169282
$$

Discard C_{n} (last bit) $=(69282)_{10} \leftarrow X-Y$
B) \mathbf{Y} - X: $\quad \mathbf{Y}=\mathbf{3 2 5 0}$

10's complement of $X=27468$
Sum = 30718
C_{n} (last bit) is zero \rightarrow need to perform correction
$Y-X=-(10 \prime s$ complement of 30718) $=\mathbf{- 6 9 2 8 2}$

The same procedure can be used for any base R system.

Example: Textbook page 37

- Example: Perform $+375+(-240)-$ take $r=10, n=4$

Note end carry is discarded.

[^0]: It is all powers of 5:
 $5^{3}=125$,
 $5^{2}=25$,
 $5^{1}=5$,
 $5^{0}=1$
 $5^{-1}=0.2$
 $5^{-2}=0.04$,

