King Fahd University of Petroleum & Minerals Computer Engineering Dept

EE 202 – Digital Logic Circuit Design Term 151 Dr. Ashraf S. Hasan Mahmoud Rm 22-420 Ext. 1724 Email: ashraf@kfupm.edu.sa

Mealy and Moore Type Finite State Machines

- Mealy Machine:
 - In a Mealy machine, the outputs are a function of the present state and the value of the inputs as shown in figure.
 - The outputs may change asynchronously in response to any change in the inputs.

Mealy and Moore Type Finite State Machines – cont'd

- Moore Machine:
 - In a Moore machine the outputs depend only on the present state as shown in figure.
 - A combinational logic block maps the inputs and the current state into the necessary flip-flop inputs to store the appropriate next state just like Mealy machine.
 - However, the outputs are computed by a combinational logic block whose inputs are only the flip-flops state outputs.
 - The outputs change synchronously with the state transition triggered by the active clock edge

Sequence Recognizer Machine Example – MOORE This is the same problem solved in class notes (slide 48 of Unit_4 package)

- Problem: Design a sequence recognizer (state machine) that outputs '1' if the input is '1' for three consecutive clocks – Use MOORE DESIGN – using D flip-flops
- Let input be X; Output be Y
- Solution: State diagram is as shown
 State table is as shown

State assignment (AB):
S0 = 00
S1 = 01
S2 = 10
S3 = 11

Arc label: X State label: AB/Y

Sequence Recognizer – MOORE Machine Example – cont'd

Sequence Recognizer – MEALY Machine Example

- Problem: Design a sequence recognizer (state machine) that outputs '1' if the input is '1' for three consecutive clocks – Use MEALY DESIGN – using D flip-flops
- Let input be X; Output be Y

Arc label: X/Y

Solution: State diagram is as shown
 State table is as shown

State label: AB D Flip-Flops Input **Present State** Next State Output Input 0/0 1/0В Х В Υ D_A А Α D_B SO **S**1 0/01/00/00/0**S**3 S2 1/1State diagram to 1/1state table 11/25/2015 Dr. Ashraf S. Hasan Mahmoud

Sequence Recognizer – MEALY Machine Example – cont'd

Present State		Input	Nex	t State	Output	D Flip-Flops Input		Note DA and DB are same as before	\backslash				
А	В	Х	A	В	Y	D _A	D _B	– Y variable is different	BX	00	01	11	10
0	0	0	0	0	0	0	0						
0	0	1	0	1	0	0	1		o Ì	0	0	1	0
0	1	0	0	0	0	0	0	`		0		-	0
0	1	1	1	0	0	1	0		1	0	1	1	0
1	0	0	0	0	0	0	0	State table to		D.	= AX	$+ B\lambda$	Ţ.
1	0	1	1	1	1	1	1	Equations for F/F inputs	\mathbf{X}	$\boldsymbol{\nu}_{\mathrm{A}}$			
1	1	0	0	0	0	0	0	and output	AX	00	01	11	10
1	1	1	1	1	1	1	1		A	\	01		10
									0		1		
									0	0			0
									1	0	1	1	0
									$D_B = AX + B'X$				
Notice we chose to use D F/F that respond on –ve clock edge				. 7	• ,								
				You draw the circuit $-$ same as							01	11	10
				providus circuit but with $\mathbf{V} = \mathbf{A}\mathbf{Y}$						\searrow			
			ł		ious			$\mathbf{I} \mathbf{I} \mathbf{V} \mathbf{I} \mathbf{I} \mathbf{I} - \mathbf{A} \mathbf{A}$	0	0	0	0	0
									1	0	1	1	0
											Y	= AX	
									Equatio	ns to			
	11/25	5/2015				Hasan Mahmoud	actual circuit 7						

Sequence Recognizer – MEALY Versus MOORE

- DA and DB are the same for the two designs since we used the same states and same state assignment scheme (codes)
- The output variable Y is a function of A and X for the Mealy machine while it is a function of A and B for the Moore machine
- We want to see the timing diagram for both circuit and observe the Y signal

Sequence Recognizer - MEALY Design – Timing Diagram

Sequence Recognizer - MOORE Design – Timing Diagram

