King Fahd University of Petroleum \& Minerals Computer Engineering Dept

COE 202 - Fundamentals of Computer Engineering
Term 081
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@kfupm.edu.sa
11/26/2015
Dr. Ashraf S. Hasan Mahmoud

Standard Graphics Symbols

- (a) Latch Symbols

(b) Master-Slave FlipFlops

- (c) Edge-Triggered Flip-Flops

Asynchronous Inputs

- Special inputs for setting or resetting them asynchronously
- Independent of the clock input
- The direct set and direct reset signals are called preset and clear, respectively
- Examining the function table:
- When $S=0, R=1$, the FF is set regardless of the clock and the JK inputs
- When $S=1, R=0$, the $F F$ is reset regardless of the clock and the JK inputs
- For the JK to operate normally, S and R should be 1 and 1 .

Flip-Flop Characteristic Tables

Table 6-7

(a) $/ K$ Flip-Flop				(b) $S R$ Flip-Flop				
J	K	$Q(t+1)$	Operation	S		R	$Q(t+1)$	Operation
0	0	Q(t)	No change	0		0	Q(t)	No change
0	1	0	Reset	0		1	0	Reset
1	0	1	Set	1		0	1	Set
1	1	$\mathrm{Q}^{\prime}(\mathrm{t})$	Complement	1		1	?	Undefined
(c) D Flip-Flop				(d) T Flip-Flop				
D		$Q(t+1)$	Operation		T		$Q(t+1)$	Operation
0		0	Reset		0		Q(t)	No change
1		1	Set		1		$Q^{\prime}(\mathrm{t})$	Complement

JK Flip-Flop Characteristic

 Equation- Using table on previous slide, one can write:

\mathbf{J}	\mathbf{K}	$\mathbf{Q}(\mathbf{t})$	$\mathbf{Q}(\mathbf{t}+1)$
$\mathbf{0}$	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

SR Flip-Flop Characteristic Equation

- Using table on slide 19, one can write:

$R(L)$$S$				
0	0	1	0	0
1	1	1	X	X

$$
Q(t+1)=S+\bar{R} Q(t)
$$

S	R	$Q(t)$	$Q(t+1)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

D Flip-Flop Characteristic Equation

- Using table slide 19 , one can write:

$$
Q(t+1)=D
$$

D	$Q(t)$	$Q(t+1)$
0	0	0
0	1	0
1	0	1
1	1	1

T Flip-Flop Characteristic Equation

- Using table on slide 19 , one can write:

$$
Q(t+1)=T \oplus Q(t)
$$

T	$Q(t)$	$Q(t+1)$
0	0	0
0	1	1
1	0	1
1	1	0

Flip-Flop Excitation Tables
Table 6-7

(a) $/ K$ Flip-Flop				(b) $S R$ Flip-Flop			
Q(t)	$Q(t+1)$	J	K	Q(t)	$Q(t+1)$	S	R
0	0	0	X	0	0	0	X
0	1	1	X	0	1	1	0
1	0	X	1	1	0	0	1
1	1	X	0	1	1	X	0
(c) D Flip-Flop				(d) T Flip-Flop			
Q(t)	Q(t+1)	D		$Q(t)$	$Q(t+1)$		T
0	0	0		0	0		0
0	1	1		0	1		1
1	0	0		1	0		1
1	1	1		1	1		0

Example

- Problem:
a) Write characteristic equations for each type of flipflops, using the information in Table 6-7. A characteristic equation gives the function $Q(t+1)$ in terms of $\mathrm{Q}(\mathrm{t})$ and the input variables to the flip-flop.
b) Use the characteristic equation for the $J K$ flip-flop to find equations $A(t+1)$ and $B(t+1)$ from the flip-flop input equations corresponding to Table shown on next slide.
- Solution:
a) Refer to previous slides for the development of characteristic equations

Example - cont'd

- Solution (cont'd):

b)

- The columns J_{A}, K_{A} (for flip flop A) and J_{B}, K_{B} (for flip flop B) are obtained with the aid of the excitation table
- To obtain the equations for J_{A}, K_{A}, J_{B}, and K_{B} we do Kmaps in terms of the inputs

Table

Example - cont'd

Solution (cont'd):
b) From the K-maps
$J_{A}=B(t)$,
$K_{A}=B(t) X$,
$K_{A}=B(t) X^{\prime}$, while

$$
J_{\mathrm{B}}=\mathrm{X}^{\prime}
$$

Dr. Ashraf S . H c K -map for K_{B} Id

Example - cont'd

- Solution (cont'd):

b) Finally, Using the characteristic equation for the A / K flipflop:

$$
\begin{aligned}
A(t+1) & =J_{A} A(t)^{\prime}+K_{A}^{\prime} A(t) \rightarrow \\
A(t+1) & =B(t) A(t)^{\prime}+\left(B(t) X^{\prime}\right)^{\prime} A(t) \\
& =B(t) A(t)^{\prime}+B(t)^{\prime} A(t)+X A(t)
\end{aligned}
$$

- Same for the B / K flip-flop:

$$
\begin{aligned}
& B(t+1)=J_{B} B(t)^{\prime}+K_{B}{ }^{\prime} B(t) \rightarrow \\
& B(t+1)=X^{\prime} B(t)^{\prime}+\left(A(t) X^{\prime}+A^{\prime}(t) X\right)^{\prime} B(t) \\
& B(t+1)=X^{\prime} B(t)^{\prime}+A(t) B(t) X+A^{\prime}(t) B(t) X^{\prime}
\end{aligned}
$$

Sequence Recognizer

- Problem: Design a circuit to recognize the occurrence of the bits 1101 (input from left to right) on an input line X by making an output signal Z equal to 1 ; Otherwise Z is equal to 0

- Solution:

Sequential circuit with one input X and one output Z

- Examples of operation:

1. No sequence - Z remains zero
2. sequence occurs $-Z$ is one
3. Two overlapping sequences - Z is one twice!

Sequence Recognizer - State Diagram

- Solution (cont'd):

You always start from an initial state $\boldsymbol{\rightarrow}$ State S_{0}
To remember first ' 1 ' of sequence $\boldsymbol{\rightarrow}$ State S_{1}
To remember two consecutive 1s of sequence \rightarrow State S_{2}
To remember ' 110 ' sequence \rightarrow State S_{3}
Note an arrival of S_{1} while in state S_{3} should make the output $Z=1$, and move to state B "to remember this ' 1 ' which could be the first digit of another 1101 sequence

Arc label: X/Z

Sequence Recognizer - State Table

- Solution (cont'd):

Sequence Recognizer - State Table

(2)

- Solution (cont'd):

Present State	Next State			Output Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$			
	$\mathrm{X}=0$	$\mathrm{X}=1$			
$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$		0	0
$\mathrm{~s}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{2}$		0	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$		0	0
$\mathrm{~S}_{3}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$		0	1

State Code Assignment (Grey Coding):
$\mathrm{S}_{0} \rightarrow 00$
$\mathrm{~S}_{1} \rightarrow 01$
$\mathrm{~S}_{2} \rightarrow 11$
$\mathrm{~S}_{3} \rightarrow 10$

11/26/2015

Present State	Next State			Output Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$		$\mathrm{X}=0$	$\mathrm{X}=1$
00	00	01		0	
01	00	11		0	0
11	10	11		0	0
10	00	01		0	1
Dr. Ashraf S. Hasan Mahmoud			18		

Sequence Recognizer - State Table (3)

- Solution (cont'd):						-Another way of writing the state table - Four states \rightarrow we need two flip-flops A \& B (in general if number of states is n, then we require $\log _{2}$ n flip-flops)				
$\begin{gathered} \text { Present } \\ \text { State } \end{gathered}$	Next State		Output Z							
	$x=0$		$x=0$							
00	00	01	0	0						
01	00	11	0	0						
11	10	11	0	0	Pres	State	Input			Output
10	00	01	0	1	A	B	X	A	B	Z
					0	0	0	0	0	0
					0	0	1	0	1	0
					0	1	0	0	0	0
					0	1	1	1	1	0
					1	0	0	0	0	0
					1	0	1	0	1	1
					1	1	0	1	0	0
					1	1	1	1	1	0
11/26/					shraf S	san M	hmoud			19

Sequence Recognizer - Design Using D Flip-Flops

- Solution (cont'd):

-The characteristic equation for the D flip-flop is $\mathrm{Q}(\mathrm{t}+1)=\mathrm{D}$
\rightarrow The D input is the same as the desired next state

Present State		Input X	Next State		Output Z	D Flip-Flops Input	
A	B		A	B		D_{A}	D_{B}
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	1
0	1	0	0	0	0	0	0
0	1	1	1	1	0	1	1
1	0	0	0	0	0	0	0
1	0	1	0	1	1	0	1
1	1	0	1	0	0	1	0
1	1	1	1	1	0	1	1

Sequence Recognizer - Design Using D Flip-Flops (2)

Sequence Recognizer - Design Using D Flip-Flops (3)

- Solution (cont'd):

$$
\begin{aligned}
& D_{A}=A B+B X \\
& D_{B}=X \\
& Z=A B^{\prime} X
\end{aligned}
$$

Let's Check Our Design - Timing Diagram

Let's Check Our Design - Timing Diagram - cont'd

- Important Notes
- The value of the input prior to the positive edge is the value used to generate the rest of the outputs
- In other words, the input signal is sampled at the positive-edge instant minus epsilon - these samples constitute the input signal X
- Positive-edge triggered FFs respond to the input existing prior to the positive edge of the clock - and their output (state) lasts till the next positive edge at least
- The combination logic (AND gate for this example) for producing Z responds to instantaneously to signals at the input of this combination logic - regardless of the clock signal

Sequence Recognizer - Design Using JK Flip-Flops

		Solu				cont'c				-Use the	exc	cita	ation tab		$\text { the } J K$	K flip	
	$\begin{aligned} & \text { esent } \\ & \hline \text { ent } \\ & \text { tato } \end{aligned}$	Input		Next		Output				-To fill th			entries		ch flip		
A	B	x		A	в	z											
0	0	0		0	0	0											
0	1	0		0	1	0			Input		Next tate		Output		=lip- Input		Fipnput
0	0	1		1	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	A	B	X	A			Z	J_{A}	K_{A}	J_{B}	K_{B}
1	0	1		0	1	1	0	0	0	0	0	0	0	0	X	0	X
1	1	0			0	0	0	0	1	0	1	1	0	0	X	1	X
1	1	1		1	1	0	0	1	0	0	0	0	0	0	X	X	1
		JK Fip-Flop					0	1	1	1	1	1	0	1	X	X	0
	Q(t)	Q(t+1) J	k				1	0	0	0	0	0	0	X	1	0	X
	0	0 0	x				1	0	1	0	1	1	1	X	1	1	X
	1	$\begin{array}{ll}1 & 1 \\ 0 & \\ 0\end{array}$	x 1				1	1	0	1	0	0	0	X	0	X	1
	1	$1 \times$	0				1	1	1	1	1	1	0	X	0	X	0
11/26/2015								Dr. Ashraf S. Hasan Mahmoud									5

Sequence Recognizer - Design Using JK Flip-Flops (2)

Sequence Recognizer - Design Using JK Flip-Flops (3)

Mealy and Moore Type Finite State Machines

- Mealy Machine:
- In a Mealy machine, the outputs are a function of the present state and the value of the inputs as shown in figure.
- The outputs may change asynchronously in response to any change in the inputs.

Mealy and Moore Type Finite State Machines - cont'd

- Moore Machine:
- In a Moore machine the outputs depend only on the present state as shown in figure.
- A combinational logic block maps the inputs and the current state into the necessary flip-flop inputs to store the appropriate next state just like Mealy machine.
- However, the outputs are computed by a combinational logic block whose inputs are only the flip-flops state outputs.
- The outputs change synchronously with the state transition triggered by the active clock edge

Serial Two's Complementer Problem 6-15

- Problem: A serial two's complementer is to be designed. A binary integer of arbitrary length is presented to the serial two's complementer least significant bit first on input X. When a given bit is presented on input X, the corresponding output bit is to appear during the same clock cycle on output Z. To indicate that a sequence is complete and that the circuit is to be initialized to receive another sequence, input Y becomes 1 for one clock cycle. Otherwise, Y is 0
a) Find the state diagram for the serial two's complementer
b) Find the state table for the serial two's complementer
c) Design the circuit using D flip-flops
d) Design the circuit using / K flip-flops

Serial Two's Complementer Problem 6-15

- Solution:

Remember to complement $A_{n} A_{n-1} \ldots A_{1} A_{0}$, we scanned the binary digits from LSB to MSB, skipping all zeros and passing the first 1 bit. All subsequent bits are complemented. The result is the two's complement of $A_{n} A_{n-1} \ldots A_{1} A_{0}$
Example: 2's complement of (10110100) is equal to (01001100)
Example: 2's complement of (0011) is equal to (1101)
Example: 2's complement of (000) is equal to (000)
Example: 2 's complement of (10) is equal to (10)

11/26/2015

Serial Two's Complementer Problem 6-15-State Diagram

- Solution (cont'd):

Two inputs $\quad X$: the binary bits in serial
Y : indicator when number is complete
Scanning the binary number, we switch between two modes:
copying binary digits till first 1 is found
inverting subsequent bits
Hence TWO states are needed - need to remember that we passed the one
Because we have four inputs, each state has FOUR departing arcs

Arc label: XY/Z

Serial Two's Complementer Problem 6-15 - State Diagram (2)

Solution (cont'd):

State S_{0} : initial state (copying X to Z without inverting bits)

1. if zero arrives (input patterns 00 or 01) on X it is copied to Z -
2. if one arrives (input patter 11) on X it is also copied to Z if Y is 1 (i.e last bit of number)
3. if one arrives and it is not last bit (input pattern 10) then it is copies to Z but circuit moves to the other state - to start complementing bits
State S_{1} : (copying X to Z while inverting bits) till $Y=1$
when $Y=1$, another number is about to start - move to initial state S_{0}

10/1

Serial Two's Complementer Problem 6-15 - State Table

- Solution (cont'd):

2 States \rightarrow need one flip-flop
Let $S_{0}=0$, while $S_{1}=1$

Present State	Inputs		Next State	Output
Q (t)	X	Y	Q (t+1)	Z
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	0	1
1	0	0	1	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	0

10/1

Serial Two's Complementer - Problem 615 - Implementation Using D Flip-Flops

Solution (cont'd):

Present State		Inputs		Next State	Output	D-Flip-Flop Input
Q(t)		X	Y	Q(t+1)	Z	Do
0		0	0	0	0	0
0		0	1	0	0	0
0		1	0	1	1	1
0		1	1	0	1	0
1		0	0	1	1	1
1		0	1	0	1	0
1		1	0	1	0	1
1		1	1	0	0	0
(c) D Flip-Flop						
Q(t)	Q(t+1)		D			
0	0		0			
0	1		1			
1	0		0			
$\frac{1}{11 / 26 / 2015}$			1			
					. Ashraf S	Hasan Mah

Serial Two's Complementer - Problem 615 - Implementation Using D Flip-Flops (2)

- Solution (cont'd):

$\mathrm{D}_{\mathrm{Q}}=\mathrm{QY}^{\prime}+\mathrm{XY}$
$\mathrm{Z}=\mathrm{Q}^{\prime} \mathrm{X}+\mathrm{QX}{ }^{\prime}$

Serial Two's Complementer - Problem 6-15

- Implementation Using JK Flip-Flops

- Solution (cont'd):								000	01	11	10			
Present State	Inputs		Next State	Output	JK-Flip-Flop Input									
Q(t)	X	Y	Q(t+1)	Z	Jo	K_{0}		x	x	x	x			
0	0	0	0	0	0	X	$\begin{aligned} & X y \\ & Q(t) \end{aligned}$	$\mathrm{J}_{\mathrm{Q}}=\mathrm{XY}^{\prime}$						
0	0	1	0	0	0	X		00	01	11	10			
0	1	0	1	1	1	X								
0	1	1	0	1	0	X								
1	0	0	1	1	X	0	0	x	x	x	x			
1	0	1	0	1	X	1	1	0	1	1	0			
1	1	0	1	0	X	0								
1	1	1	0	0	X	1			01	11	10			
(a) JK Flip-Flop														
Q(t)	Q(t+1)	1					0	0	0	1	1			
0	0	0						1	1	0	0			
0	1	1						$\mathrm{Z}=\mathrm{Q}^{\prime} \mathrm{X}+\mathrm{QX}$ '						
1	0	x												

Serial Two's Complementer - Problem 6-15 - Implementation Using JK Flip-Flops (2)

- Solution (cont'd):

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{Q}}=\mathrm{XY} \mathrm{Y}^{\prime} \\
& \mathrm{K}_{\mathrm{Q}}=\mathrm{Y} \\
& \mathrm{Z}=\mathrm{Q}^{\prime} \mathrm{X}+\mathrm{QX}
\end{aligned}
$$

More Examples: Problem 6-14

- Problem: Design a sequential circuit with two D flipflops A and B and one input X. When $X=0$, the state of the circuit remains the same. When $X=1$, the circuit goes through the state transitions 00 to 10 to 11 to 01, and back to 00, and then repeats.

Problem 6-14 - Circuit Implementation

- Solution:

$D_{A}=A X^{\prime}+B^{\prime} X$
$D_{B}=A X+B X$

Another Example: Problem 6-5

- Problem: A sequential circuit with two D flip-flops A and B, two inputs X and Y, and one output Z is specified by the following input equations:

$$
D_{A}=X^{\prime} Y+X A ; D_{B}=X^{\prime} B+X A ; Z=X B
$$

a) Draw the logic diagram of the circuit
b) Derive the state table
c) Derive the state diagram

This is NOT a design problem - should be much easier than the ones presented earlier!

Problem 6-5:

Yet Another Example: Up/Down Counter with Enable

- Problem: Design a sequential circuit with two $/ K$ flipflops A and B and two inputs X and E. If $E=0$, the circuit remains in the same state, regardless of the input X. When $E=1$ and $X=1$, the circuit goes through the state transitions from 00 to 01 to 10 to 11 , back to 00, and then repeats. When $\mathrm{E}=1$ and $\mathrm{X}=0$, the circuit goes through the state transitions from 00 to 11 to 10 to 01 , back to 00 and then repeats.

Example: State Diagram/Table

$\underline{\text { Solution: }}$		${ }^{\text {Inputs }}$	Next State		FF Inpus
	${ }^{\text {a }}$	EX	$\frac{\text { A B }}{}$		$\mathrm{K}_{8} \mathrm{~J}_{8} \mathrm{~K}_{8}$
		${ }^{0} 0$	00		
		${ }_{0} 1$			$\begin{array}{llll}x & 0 & x \\ x & 1 & x \\ & \\ & & \end{array}$
		$\begin{array}{ll}1 \\ 1 & 1 \\ 1\end{array}$	$\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}$		$\begin{array}{llll}x & 1 & x \\ x & 1 & x \\ x & & x\end{array}$
	0	00	01	0	$\begin{array}{llll}\times & \times & 0 \\ \times & \times & \\ 0\end{array}$
	${ }_{0} 1$	10	00		1
		11	10		+11
		0			0 0 0 0
Arc Label: EX					
		11	1		
					O
	$1{ }_{1}^{1}$	11		+	1 1
11/26/2015					

Example - Logic Circuit

