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Queuing Model
• Consider the following system:

A(t) N(t) A(t) D(t) D(t)

Queueing System

ith customer
arrives at time Si

ith customer
departs at time Di

A(t) N(t) = A(t) – D(t) D(t)
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Ti = Di – Ai
A(t) – number of arrivals in (0, t]
D(t) – number of departures in (0, t]
N(t) – number of customers in system in (0,t]
Ti – duration of time spent in system for ith customer
Wi – duration of time spent waiting for service for ith customer

Wi = Ti – Si

= Di – Ai – Si
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Example: Queueing System
• ai and li arrival 

and departure 8
A(t) and D(t) for a queueing system

instances
• Ti = li – ai is time 

spent in the 
system

• If A(t) = D(t) 
system is empty 3

4

5

6

7

T3

empty
system
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• The graph is 
shown for FCFS 
service
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Little’s Formula
• Consider the time average of the number 

of customers in the system N(t) during y ( ) g
(0,t],

i.e. average area under the curve for N(t)
<N> is also given by
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<N>t is also given by
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Little’s Formula – cont’d
• The average arrival rate <λ>t is given by

tA )(

• Combining the previous equations we get:

• Let the quantity <T>t be the average time a 
d i h h
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customer spends in the system, then
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Little’s Formula – cont’d
• Combining the last two equations:

TN 

• Which relates the time averages of the 
arrival rate, the number of customers in 
the system and the average time spent in 
the system

ttt
TN 
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the system
• Let t , then one can write:

][][ TENE 
Under what conditions will 
<N>t E[N] for t  ∞?
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Little’s Formula – cont’d
• Little’s formula: 

E[N] = λE[T]E[N] = λE[T]

Holds for many service disciplines and for 
systems with arbitrary number of 
servers. It holds for many interpretations 
of the system as well
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of the system as well

Note:                                           does not 
depend on the service order 
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Intuitiveness of Little’s Formula
• Little’s formula: 

E[N] = λE[T]

Arrival of
customer i

Departure of
customer i

Arrivals during the service
time of customer i

time axis
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Ti = ai – li

time spent in the system 
for customer i

• Formula applies to many interpretations of 
“system”!
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Example 1: 
• Problem: Let Ns(t) be the number of 

customers being served at time t, and let g ,
 denote the service time. If we 
designate the set of servers to be the 
“system” then Little’s formula becomes:

E[Ns] = λE[]
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E[Ns]  λE[]

where E[Ns] is the average number of busy 
servers for a system in the steady state. 

Example 1: cont’d
Note: for a single server Ns(t) can be either 0 or 1  E[Ns] 

represents the portion of time the server is busy. If p0 = 
Prob[Ns(t) = 0], then we have

1 - p0 = E[Ns] = λE[], Or
p0 = 1 - λE[]

The quantity λE[] is defined as the utilization for a single 
server. Usually, it is given the symbol 

 = λE[] 
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 [ ]

For a c-servers system, we define the utilization (the fraction 
of busy servers) to be

 = λE[] / c
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Poisson Process
• Refer to the Summation process example 

in the Random Processes packagep g

• Def: Poisson process to be the point 
process for which the number of events 
(successes), X(t), in a t-second interval is 
given by the Poisson distribution
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given by the Poisson distribution

      
,...1,0
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k
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where λ is the average rate of success per time unit

Poisson Process - Properties
• The random process X(t) is a Markov 

Process. For arbitrary times: y
t1<t2<…<tk<tk+1

Prob[X(tk+1) = xk+1/X(tk)=xk, …, X(t1)=x1]  

= Prob[X(tk+1) = xk+1/X(tk)=xk]
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   Prob[X(tk+1)  xk+1/X(tk) xk]

• Independent increments
• Stationary increments
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Poisson Process – Interarrival Time
• Let T be the random time between two 

consecutive events
Th di t ib ti f ti i i b• The distribution function is given by

FT(t) = P(T ≤ t) 
= P(at least one arrival in t seconds)
= 1 – P(0 arrivals in t seconds)
= 1 – P0(t)
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0

= 1 – e-λt

Therefore fT(t) is equal to λe-λt for t ≥ 0
• Poisson Process ≡ interarrival times are 

independent and exponentially distributed

Uniformity Property
• Def – give a number of arrivals in an 

interval, the arrivals are uniformly , y
distributed throughout the interval!

arrivals

11/17/2009 Dr. Ashraf S. Hasan Mahmoud 14

time access
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Uniformity Property – cont’d
• Proof:

Suppose that we are given than one arrival occurs in the interval [0,t], 
Let Y be the arrival time of the single customer  0 < y < t
Let X(y) be the number of events up to time y  X(t) – X(y) is the increment in the (y) p y ( ) (y)

interval (y, t]

P(Y ≤ y) = P(X(y) = 1 / X(t) = 1]

P(X(y) = 1 and X(t) – X(y) = 0]
= -------------------------------------

P(X(t) = 1)

P(X(y) = 1) P(X(t) – X(y) = 0)
= -------------------------------------

P(X(t) = 1)

one arrival only
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( (t) )

λye-λy e-λ(t-y)

= ----------------
λte-λt

= y / t time access0 ty

Kolmogorov Forward Differential 
Equations 
• Consider the incremental time interval δ, 

so small that λδ << 1 for all λ
• Using the Poisson density function and 

knowing that e-λδ ≈ 1- λ +O(δ) – where 
O(δ) are higher order terms of δ (i.e. lim 
O(δ)/ δ = 0 as δ  0)

• One can write:
P (δ) = 1 λ +O(δ)

This means, we choose δ small such 
that the likelihood of more than one 

i l d i δ i l
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P0(δ) = 1 - λ +O(δ) 
P1(δ) = λ +O(δ) 
Pi(δ) = O(δ)   for i ≥ 2

arrival during δ is close to zero

P0(δ)=1-λδ
P1(δ)=λδ

δ δ δ

P0(δ)=1-λδ
P1(δ)=λδ

P0(δ)=1-λδ
P1(δ)=λδ

Sequence of iid Bernoulli experiments
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Kolmogorov Forward Differential 
Equations – cont’d 
• This means, we choose δ small such that 

the likelihood of more than one arrival 
during δ is close to zero

The corresponding state diagram (for the

P0(δ)=1-λδ
P1(δ)=λδ

δ δ δ

P0(δ)=1-λδ
P1(δ)=λδ

P0(δ)=1-λδ
P1(δ)=λδ

Sequence of iid Bernoulli experiments
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• The corresponding state diagram (for the 
discretized-time version) is given by

0 1

λ
λ

2

λ
λ

3

λ
λ

Kolmogorov Forward Differential 
Equations – cont’d
• Let us study the evolution of Pn(t) with 

respect to time, tp ,
• Remember Pn(t) is the probability of n 

arrivals in an interval t

• Consider the change in Pn(t) in the 
incremental interval (t, t+ δ)
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Kolmogorov Forward Differential 
Equations – cont’d
• Case n = 0

P0(t+ δ) = P(no arrivals in (0,t+ δ))
= P(no arrivals in (0,t)) P(no arrivals in (t,t+ δ)) P(no arrivals in (0,t)) P(no arrivals in (t,t+ δ))
= P0(t)(1 - λ δ) 

• Case n > 0
Pn(t+ δ) = P(n arrivals in (0,t+ δ))

= P(n arrivals in (0,t)) P(no arrivals in (t,t+ δ))
+ P(n-1 arrivals in (0,t)) P(1 arrival in (t,t+ δ))

= Pn(t)(1 - λ δ) + Pn-1(t)(λ δ) 

Th b ti b itt
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• The above equations can be written as

[P0(t+ δ) - P0(t)]/ δ = - λ P0(t), and

[Pn(t+ δ) - Pn(t)]/ δ = - λ Pn(t) + λ Pn-1(t),   n> 0

Kolmogorov Forward Differential 
Equations – cont’d
• Take the limit as δ 0, the previous equations 

can be written as:

dP0(t)/dt = - λ P0(t), and

dPn(t)/dt = - λ Pn(t) + λ Pn-1(t),   n> 0

• Verify that Pk(t) given by
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k

is a solution for the Kolmogorov Forward 
differential equations 

   
,...1,0
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t
tP t

k

k
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Kolmogorov Forward Differential 
Equations – cont’d
• Another form for the Kolmogorov D.E. is 

as follows:
 ~

where 

   tP
dt

tPd ~
~



        TtPtPtPtP ....
~

210







00

...000



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






















...00

...00

...00






Λ is the infinitesimal 
generator matrix 

Note sum of columns = zero

Adding Poisson Processes
• Sum of two INDEPENDENT Poisson processes
• Consider an incremental interval δ

• The probability of an arrival from either source is λ1δ
(1- λ2δ)+(1-λ1δ) λ2δ ≈ (λ1+ λ2)δ

• The probability of arrivals from both source is λ1δ λ2δ
= λ1λ2δ2 ≈ 0 

• Therefore, the sum is a Poisson process with 
rate (λ1+ λ2)
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Arrival rate = λ1

Arrival rate = λ2

Arrival rate = λ1+λ2
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Splitting Poisson Processes
• Splitting of a Poisson processes
• Consider an incremental interval δ

• The probability of an arrival to bin 1: λδp
• The probability of an arrival to bin 1: λδ(1-p)
• Since subsequence arrivals to either bins are 

independent and identically distributed 
• Therefore, the arrivals processes to bin 1 

and 2 Poisson with rate pλ and (1-p)λ
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and 2 Poisson with rate pλ and (1-p)λ, 
respectively

λ

pλ
bin 1

(1-p)λ
bin 2

p

1-p

Pure Birth Processes
• Poisson process is a member of a wider 

class of “pure birth processes”p p
• In general the probability of an arrival in 

an interval δ can be function of the 
number in the system, λnδ

• The corresponding state diagram will be
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0 1

λ0
λ0

2

λ1
λ1

3

λ2
λ2
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Pure Birth Processes – cont’d
• In the same manner, you can show that 

the corresponding Kolmogorov D.E are p g g
given by

dP0(t)/dt = - λ0 P0(t), and

dP (t)/dt = λ P (t) + λ P (t) n> 0
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dPn(t)/dt = - λn Pn(t) + λn-1 Pn-1(t),   n> 0

Subject to the condition   1
0




n
n tP

Pure Birth Processes – cont’d
• Putting the Kolmogorov D.E.s in a matrix 

form:  tPd
~

where 

   tP
dt

tPd ~

        TtPtPtPtP ....
~

210







00

...0000




Necessary and sufficient condition 
for stability is ∑1/λn= ∞ 
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
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Λ is the infinitesimal 
generator matrix 

Note sum of columns = zero
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Example: Yule-Furry Process
• For Yule-Furry process, λn = n λ – linear rate 

with system population
Th l ti ti th i b• The evolution equations are then given by

dPn(t)/dt = - nλPn(t) +(n-1)λPn-1(t);  n≥ k

• For the initial condition Pk(0)=1 for some k > 0, 
show that
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is a solution 

    0,1
1

1













 tknee

k

n
tP

knttn
n



Poisson Arrivals See Time Averages 
(PASTA)
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Birth And Death Processes
• The corresponding state diagram is as shown:

λ0
λ0

λ1
λ1+μ1)

λ2
λ2+μ2) λ3+μ3)

• The Kolmogorov D.E are given by

dP0(t)/dt = - λ0 P0(t) + μ1P1(t), and

0 1

λ0

2

λ1

3

λ2

μ1 μ2 μ3
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dP0(t)/dt  λ0 P0(t) + μ1P1(t), and

dPn(t)/dt = - (λn+μ1)Pn(t) + λn-1Pn-1(t) + μn+1Pn+1(t),   n> 0

Subject to the condition   1
0




n
n tP

Birth And Death Processes – cont’d
• Putting the Kolmogorov D.E.s in a matrix 

form:  tPd
~

where 

   tPM
dt

tPd ~

        TtPtPtPtP ....
~

210







0

...0010




+ve solution exists if
0 ≤ λn < μn
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Global Balance Equations
• Steady state solution  dP(t)/dt = 0
• The resulting set of equations:• The resulting set of equations:

λ0 P0 = μ1P1, and

(λn+μn)Pn = λn-1Pn-1 + μn+1Pn+1,   n> 0
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In addition to the normalizing condition 1
0




n
nP

Global Balance Equations – cont’d
• The state transition flow diagram:

0
  n

n-1 n+1

• We can show the solution for the global 
balance equation is given by

0 1

0

 

2 3



3

n n+1

n

n+1n n+2
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and




n

i i

i
n PP

1

1
0 



1

1 1

1
0 1



 










 

n

n

i i

iP



The basis for all queueing 
formula to come!!
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Queueing Models: M/M/1
• Making the substitutions: λn = λ and μn = μ, and 

defining ρ = λ/ μ, one can write

or 

• The mean and variance of number of customers in 
system, E[N] and Var[N] are given by

  ,...2,1,01  nP n
n 

 


z

zP




1

1


][NE ][


NVar
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• The mean delay in the M/M/1 queue can be 
obtained through the application of Little’s 
formula:




1
][NE

 21
][


NVar







1
/][][ NEDE

M/M/1- Delay Distribution
• The probability of n customers as a departing customer departs after 

spending t seconds in system is given by

     exp
customers in system/delay of departing customer

n
t t

P t
 

or     ,...1,0
!0

 
 

ndttd
n

et
P

tn

n



      












0 00 !n

t
n

n

n

n
n dttde

n

t
zzpzP 

        zDdttdezP zt  


 1
0

1 

     
 customers in system/delay of departing customer

!
P n t

n
 
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Note this probability is the same as the probability of n customers in system –

0

   1

1
P z

z







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M/M/1- Delay Distribution
• Also equal to the probability of finding n customers in 

system by an arriving customer (refer to PASTA property)

Since d(t) is the PDF for the total delay time
Therefore, D(s) is given by 

 








s
sD

    1
1

1
D z

z







 

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i.e. the delay for M/M/1 queue is exponentially distributed 
with mean 1/(μ- λ),

      0  tetd t

Queueing Models: M/M/1/L
• Finite Capacity Case: λj = λ for j<L

0 for j≥L0 for j≥L
also                             μj = μ

• The state-transition flow diagram of 
M/M/1/L queue is as shown below
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Queueing Models: M/M/1/L – cont’d
Steady-state pmf is given by

 

• What is P(z) equal to?

 













 

Ln

Ln
P L

n

n

0
1

1
1

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• In particular, the blocking probability, PL, 
is given by the relation above for n = L

Queueing Models: M/M/1/L – cont’d
• In particular, the blocking probability, PL, 

is given by the relation above for n = Lg y

 
11

1





L

L

LP

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10
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10
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M/M/1/L queue
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g
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Example: M/M/1/L – cont’d
• Problem: A voice signal is digitized at a 

rate of 8000 bps. The average length of a p g g
voice message is 3 min. Messages are 
transmitted on a DS-1 line, which has the 
capacity of 1.344 Mbps. While waiting for 
transmission, the messages are stored in a 
buffer which has a capacity of 107 bit. Plot 
h bl ki b bili h i
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the blocking probability versus the voice 
message arrival rate.

Example: M/M/1/L – cont’d
• Solution:
0001 %
0002 % Example 3.7 - voice multiplexing - page 91
0003 clear all
0004 LineWidth = 3;

Note since voice message size is 1440000 bits, then 
buffer size can not be 106 bits as stated in the 
textbook. Here we use buffer size of 107 bits which

b ff d t 6 i0005 

0006 DS1_Capacity     = 1.344e6; % bits/sec

0007 BuffSizeBits     = 1e7; % different than textbook

0008 BPSPerVoiceMsg   = 8000;% bps per voice msg

0009 VoiceMsgDuration = 3*60; % second;

0010 VoiceMsgSizeBits = VoiceMsgDuration * BitsPerVoiceMsg; 

0011 ServiceTime      = VoiceMsgSizeBits / DS1_Capacity;

0012 % # of msgs buffer can fit

0013 BufferSizeMsgs   = floor(BuffSizeBits/VoiceMsgSizeBits);
0014 
0015 Step  = 0.01;
0016 Lamda = [0:Step:(1-Step)/ServiceTime];
0017 Rho   = Lamda * ServiceTime;

0.16

0.18

0.2

means, buffer can accommodate 6 voice messages 
before it overflows. 
Refer to example 3.7 page 91 in textbook
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;
0018 PB    = (1-Rho).*Rho.^BufferSizeMsgs./(1-Rho.^(BufferSizeMsgs+1));
0019 %
0020 % Plot results
0021 figure(1)
0022 h = plot(Lamda, PB,'-r'); 
0023 set(h, 'LineWidth', LineWidth);
0024 xlabel('voice message arrival rate'); grid
0025 ylabel('overflow probability');
0026 axis([0 1 0 0.2]);
0027 
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Queueing Models: M/M/S –
Multiserver Systems
• Assume S servers system, therefore: 

μj = jμ for j ≤ Sμj = jμ for j ≤ S
Sμ for j > S

and                  λj = λ for all j
• The state-transition flow diagram of 

M/M/S queue is as shown below
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Erlang C model – Blocked calls are QUEUED

Queueing Models: M/M/S –
Multiserver Systems – cont’d
• Solving the balance equations, results in

 P j
0

P0 is calculated as
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• The traffic utilization, ρ = λ/ μ
• Note the condition for solution validity is 
ρ/S < 1

  jj

i.e. in the S-server case, the traffic load ranges 0 to S.
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Queueing Models: M/M/S –
Multiserver Systems – cont’d
• The probability of queueing is equal to the 

probability of finding all S servers busy, therefore,

• The mean number of customers in queue, E[Nq], 
is given by

   







 S

S

S
PPSP

S

Sj
jc !

, 0
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 20
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S
PjPNqEQ

S

j
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Queueing Models: M/M/S –
Multiserver Systems – cont’d
• Therefore, the relation between average number 

of customers in queue and probability of 
queueing is given byqueueing is given by

• Applying Little’s formula to compute the average 
queue delay

 




S

P
Q c
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Exercise: M/M/S/∞
• Show that the waiting time distribution is 

given byg y

  01 )( 


  xe
S

Sp
xF xSc

W



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Example: M/M/S/∞
• Problem: a 160 kb/s line is used for data 

transmission. Two options are provided
) I l t 16 h l TDM h ha) Implement a 16-channel TDM scheme where 

every channel provides 10 kb/s.
b) Use the overall trunk as one fat data 
transmission pipe.
Assume data frames arrive at a Poisson rate λ and 
are exponentially distributed in length with 
average of 2000 bits per frame.
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average of 2000 bits per frame.

Which scheme provides less delay?
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Example: M/M/S/∞ - cont’d
• Solution:

a) S = 16 servers – Model M/M/S
R = 10 kb/s E[τ] = 1/ μ = 2000/10 = 200 msecRc = 10 kb/s  E[τ] = 1/ μ = 2000/10 = 200 msec
ρ = λ/μ = λ E[τ] = 200 λ
E[T] = E[W] + E[τ] = E[Nq]/ λ + E[τ] 

= Pc (1/μ) /(S- ρ) + E[τ] 

b) S = 1 server – Model M/M/1
Rc = 160 kb/s  E[τ] = 1/ μ = 2000/160 = 1.25 msec

λ/ λ E[ ] 1 25 λ
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ρ = λ/μ = λ E[τ] = 1.25 λ
E[T] = E[W] + E[τ] = E[Nq]/ λ + E[τ] 

=  1/ (μ – λ)

Example: M/M/S/∞ - cont’d
• Solution:
For option (a)
- minimum service time is 

l t 200
1.8

2
16 TDM channels
One 160kb/s channel

equal to 200 msec

For option (b) 
- minimum service time is 

equal to 1.25 msec

Option (b) provides better 
(less) system 

0.4

0.6

0.8

1

1.2

1.4

1.6

to
ta

l f
ra

m
e 

tim
e 

(s
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)
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Note: The x-axis in the 
textbook graph is not 
correct (Example 3.8 
page 94). Verify?   

0 10 20 30 40 50 60 70 80 90 100
0

0.2

data frame arrival rate (frame/sec)
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Example: M/M/S/∞ - cont’d
0001 %
0002 % Example 3.8 - voice multiplexing - page 94
0003 clear all
0004 LineWidth = 3;
0005 
0006 Line_Capacity    = 160e3; % bits/sec
0007 NoOfChannels = 16; % No of TDM channels

0001 function [P0, PS, Pc]    = Get_M_M_S(S, Rho);
0002 % compute P0, PS, and Pc for an M/M/S queue given S and Rho
0003 P0 = zeros(size(Rho));
0004 PS = zeros(size(Rho));
0005 Pc = zeros(size(Rho));
0006 0007 NoOfChannels      16; % No of TDM channels

0008 RateTDMChannel   = Line_Capacity/NoOfChannels;% bps per channel
0009 AvgFrameSizeBits = 2000; % bits 
0010 %
0011 % option (a) - 16 TDM channels - M/M/S queue
0012 ServiceTime_a = AvgFrameSizeBits / RateTDMChannel;
0013 S             = NoOfChannels;
0014 Step          = 0.05;
0015 Lamda_a       = [Step:Step:S/ServiceTime_a - Step];
0016 
0017 Rho_a         = Lamda_a * ServiceTime_a;
0018 [P0 PS Pc]    = Get_M_M_S(S, Rho_a);
0019 W_a           = Pc.*Rho_a./(S-Rho_a)./Lamda_a;
0020 T_a           = W_a + ServiceTime_a;
0021 %
0022 % option (b) - 1 160 kb/s channel - M/M/1 queue
0023 
0024 ServiceTime_b = AvgFrameSizeBits / Line_Capacity;
0025 Step          = 0.05;
0026 Lamda b = [Step:Step:1/ServiceTime b Step];

0007 temp = zeros(size(Rho));
0008 for i=0:S-1
0009     temp = temp + Rho.^i./factorial(i);
0010 end
0011 temp = temp + S.*Rho.^S./(factorial(S).*(S - Rho));
0012 
0013 P0 = 1./temp;
0014 PS = P0 .* Rho.^S./factorial(S);
0015 Pc = PS .* S./(S - Rho);

Code to generate key probabilities 
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0026 Lamda_b       = [Step:Step:1/ServiceTime_b-Step];
0027 Rho_b         = Lamda_b * ServiceTime_b;
0028 T_b           = 1./(1./ServiceTime_b - Lamda_b);
0029 %
0030 % Plot results
0031 figure(1)
0032 h = plot(Lamda_a, T_a,'-', Lamda_b, T_b,'--r'); 
0033 set(h, 'LineWidth', LineWidth);
0034 xlabel('data frame arrival rate (frame/sec)'); grid
0035 ylabel('total frame time (sec)');
0036 legend('16 TDM channels', 'One 160kb/s channel', 2);
0037 axis([0 100 0 2]);

g y p
(P0, PS, Pc) for M/M/S system

Code to compare between 
options (a) and (b)

Queueing Models: M/M/S/L
• S server model with finite waiting room
• Assuming L ≥ S, we have

μ = jμ for j ≤ Sμj = jμ for j ≤ S
Sμ for j > S

and                  λj = λ for  j < L
0   for  j ≥ L

• The state transition flow diagram M/M/S/L queue
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Queueing Models: M/M/S/S
• Special case of M/M/S/L where L = S;

• The state transition flow diagram 
M/M/S/S queue
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

S 1 S

 
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Erlang B model – Blocked calls are CLEARED

Queueing Models: M/M/S/S – cont’d
• Solving the balance equation yields:
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• When an arrival finds all S servers busy, it is blocked or 
dropped (no waiting room) – Probability of blocking is given 
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where PB(0,ρ) = 1

• Insensitivity Property of Erlang-B formula: Blocking 
probability does NOT DEPEND on the distribution of the 
service time, but rather its mean!!

  ,1 SPS B
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Example: M/M/S/S 
• Problem: constant length frames of 1000 

bit each arrive an a multiplexer which has p
16 output lines, each operating at a 50 
kb/s rate. Suppose that frames arrive at 
an average rate of 1,440,000 frame per 
hour. There is no storage; thus if a frame 
is not served immediately it lost.
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Calculate the blocking probability at the 
multiplexer.

Example: M/M/S/S – cont’d
• Solution: 

frame arrival rate, λ = 1,440,000 frame/hour
= 400 frame/sec

frame service time, 1/ μ = 1000 / 50 kb/s
= 0.02 sec

Traffic intensity, ρ = λ / μ = 8
Number of servers, S = 16  (verify ρ/S < 1)
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Using the iterative formula 
S 1 2 3 4 5 6 7 8

PB(S, ρ) 0.8889 0.7805 0.6755 0.5746 0.4790 0.3898 0.3082 0.2356

S 9 10 11 12 13 14 15 16

PB(S, ρ) 0.1731 0.1217 0.0813 0.0514 0.0307 0.0172 0.0091 0.0045
our 

answer
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M/M/S/S – Infinite Servers Case
• Special case of the M/M/S/S queue
• Let S ∞, i.e. an arriving customer always has a g y

server available
• The probability of system in state zero is given by

• Therefore, the probability of system in state n ≥ 0 
is computed as

 













  e

n
P

n

n 1

0
0 !
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is computed as

Which is the Poisson distribution!!

  e
n

P
n

n !

Finite Source Queueing – Engset 
Distribution
• Assume a finite population of N – each generate a 

message with rate λ (or with probability λδ in the 
interval (t t+δ)) The next message is notinterval (t, t+δ)). The next message is not 
transmitted till the prior one is served. Assume no 
storage case, i.e. if a source generates a message 
when no server is available, the message is lost 
and the source returns to idle state immediately.

• The state transition flow diagram is as shown:
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Finite Source Queueing – Engset 
Distribution – cont’d
• The departure and arrival rates are

  1
n n n S

N S

 
 
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• You can show that the pmf is given by
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• Remember PS is the probability of blocking
0
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

Finite Source Queueing – Engset
Distribution – cont’d (2)
• Consider the case for N ≤ S 

• Derive Pn and P0
Exercise

Derive Pn and P0 
• Is there a blocking probability?

• The textbook provides the final answers –
but you need to show the solutions!!
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y
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More Generalization – Cox Network
• Consider the network of stages shown – Cox 

Network
1i

• Prob of going through exactly i stages:

• Assume q0 = 1, qK = 0, then

q0 = 1 q1 qK-2 qK-1
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μ1

q0

1-q0

μ2

q1

1-q1

μK-1

K 2

1-qK-2

μK

K 1

1-qK-1 1-qK = 1

Characterization of Cox Network –
con’t
• The Laplace transform of the service time 

if i stages are used:g

• The Laplace transform for the service time 
in K-stages network:
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Characterization of Cox Network –
con’t
• M(s) given by

    
K i

k
i

qqsM
1

1


is known as the Coxian distribution

• For many service time distributions, that can 
be represented by a rational function of s, 
they can be put in the form of M(s)

    
  


i k k

k

j
ij s

qqsM
1 10

1




11/17/2009 Dr. Ashraf S. Hasan Mahmoud 61

they can be put in the form of M(s)
• Therefore, the method of stages provides a method 

to solve for generalized service time distribution
• However, solving for the coefficients of µk/(s+µk) 

is not trivial.

Characterization of Cox Network –
con’t

• You can show (refer to textbook) the• You can show (refer to textbook), the 
mean is given by
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Characterization of Cox Network –
con’t
• Note that for qi = 1, and μi = μ for all i, 

then the expression for M(s) reduces top ( )

which the K-stage Erlang-distribution 
previously discussed on slide 56
The expected delay in this case is given by
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• The expected delay in this case is given by

 

K

TE 

Insensitivity Property of Erlang B
• Example 3.10 – Consider a single server 

system with K identical stages. Assume a y g
pure blocking system in which there is no 
queueing. I.e. an arriving message that 
finds the server busy is lost, otherwise it 
enters the first stage. Assume Poisson 
arrivals with rate  message per second.
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Insensitivity Property of Erlang B –
cont’d
Solution:
• The state of the system is the stage where y g

the message is being served
• The state transition flow diagram is as 

shown
• The equilibrium equations are given by 

P0 =PK, 
P1  = P0
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P1   P0
P2  =  P1 …
PK  =  PK-1

• Since Σ Pi = 1 
P0 = 1/[K (/ ) + 1), and  
Pn = (/ )/[K(/ ) + 1], n = 1, 2, …, K

Insensitivity Property of Erlang B –
cont’d
Solution:
• The blocking probability is equal to P1 + P2 + g

… + PK, i.e.

• Note that K/ is the mean service time.
 1 1
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B i
i
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P P
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arrival rate average service time

1 arrival rate average service timeBP
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• Compare this result to the M/M/S/S case 
where S = 1  same form
• Here 1/ is the mean service time

   1 arrival rate average service time 



34

Insensitivity Property of Erlang B –
cont’d
Example 3.11:
• M/E(2)/2/2 – system with two servers, each with two 

identical stagesidentical stages
• No storage place

• The equilibrium equations
• Therefore, the blocking probability, 

PB is given by p11+p02+p20. 
Hence

 
   

2

2

2

1 2 2
BP

 

 

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   1 2 2    

• Here mean service time = 
2/

Example: M/G/N/N
• Consider a queueing system where

• Arrivals are Poisson with rate λArrivals are Poisson with rate λ
• N servers and no waiting room
• Each server is a Coxian server with K stages

• Objective: compute blocking probability? 
And show that it depends only on the 
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p y
mean service rate and the mean arrival 
rate (i.e. no dependence on the probability distribution of 
the service time – the insensitivity property of the Erlang-B 
formula)
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Example: M/G/N/N – cont’d
• System state: K-dimensional vector 

• i.e. state = (k1, k2, …, kK) – where ki; i=1,2,i.e. state  (k1, k2, …, kK) where ki; i 1,2, 
…, K is the number of customers in stage I

• Obviously, sum of kis should be less or equal 
to N. Note it is equal to N if all servers are 
busy – remember too that only one 
customer can be in any server!!
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Example: M/G/N/N – cont’d
• Consider a case where N  = 3 and K = 2.

μ1

q0 = 1

1-q0

μ2

q1

1-q1 1-q2=1

q2=0

μ1

q0 = 1

1 q

μ2

q1

1 q 1 1

q2=0
arrivals departures
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1-q0 1-q1 1-q2=1

μ1

q0 = 1

1-q0

μ2

q1

1-q1 1-q2=1

q2=0
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Example: M/G/N/N – cont’d
• System States: examples

q = 1 q q = 1 q q = 1 qq0 = 1 q1

arrivals departures

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

q = 1 q

arrivals departures

q0 = 1 q1
μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

q = 1 q

arrivals departures

q0 = 1 q1
μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

q = 1 q

State = (0,0) State = (0,1) State = (0,3) –
system full
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arrivals departures

q0 = 1 q1
μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

arrivals departures

q0 = 1 q1
μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

arrivals departures

q0 = 1 q1
μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

μ1

1-q0

μ2

1-q1 1-q2=1

q2=0

State = (2,1) –
system full

State = (1,1) State = (2,1) –
system full

Example: M/G/N/N – cont’d
• Exercise: For the K= 2, N = 3 case 

explained before
• A) draw the state transition diagram
• B) show that the state equilibrium equations 

(3.76 and 3.77) are satisfied
• C) derive the detailed balance equation 3.78

• Deliver a soft copy in power point of the 
detailed solution
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detailed solution
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Example: M/G/N/N – Blocking 
Probability
• Blocking probability is equal to the probability  of 

system being in states where the sum of kis is 
equal to N. i.e.equal to N. i.e.

• The textbook shows that the blocking probability 
is given by
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
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1

1

0
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where P(0) is a constant term found through the 
normalization equation

• Refer for textbook for derivation details.








