King Fahd University of
Petroleum \& Minerals
Computer Engineering Dept
COE 587 - Performance Evaluation And Analysis
Term 152
Dr. Ashraf S. Hasan Mahmoud
Rm 22-420
Ext. 1724
Email: ashraf AT kfupm DOT edu DOT sa

Slides are based on the textbook:
 R. J ain, "Art of Computer Systems Performance Analysis," Wiley, 1991, ISBN:0471503363

Book website:
http://www.cse.wustl.edu/~iain/books/perfbook.htm

Measurement Techniques And Tools - Topics

- What are the different types of workloads?
- Which workloads are commonly used by other analysts?
- How are the appropriate workload types selected?
- How is the measured workload data summarized?
- How is the system performance monitored?
- How can the desired workload be placed on the system in a controlled manner?
- How are the results of the evaluation presented?

Chapter 4: Types of Workloads

- Skipped
- Made specific for CPU/ I nstruction set performance evaluation and benchmarking
- Subsequent chapter (Chapter 5) handles networking related material.

Chapter 5: The Art of Workload Selection

- Workload selection is the MOST crucial step in any performance evaluation project
- Considerations:
- Services exercised
- Level of detail
- Representativeness
- Timeliness
- Minor considerations: Loading level, impact of other components, and repeatability.

Services Exercised

- View the system as a service provider
- System under test (SUT) - complete set of components that are being purchased or designed
- Component under study (CUS) - specific component in the SUT whose alternative are being considered
- Example - SUT = CPU, CUS = ALU
- SUT \rightarrow System; CUS \rightarrow component
- The workloads are primarily specified by the SUT
- The metrics chosen should reflect the performance of services
provided at the system level and not at the component level
- Example: Two CPUs
- use MI PS
- Example: Two timesharing systems use transactions/ sec

The SUT and CUS

Services Exercised - Cont'd

- Summary
- Requests at the service-interface level of the SUT should be used to specify or measure the workload
- Clear distinction between SUT and CUS
- Compare two networks
- ISO/ OSI 7 layers model
- Different workloads for different layers (services)
- Physical - bits transmitted
- Data link - frames
- Network - packets
- Transport - messages
- Application - mail, file transfer, etc.

Mail, file transfer, \downarrow virtual terminal, etc.
Applications
Data Compression, etc
Presentation

Transport

Level of Detail

- List of possible levels of detail:

1. Most frequently used request
2. Frequency of request types
3. Time-stamped sequence of requests (e.g trance)
4. Average resource demand
5. Distribution of resource demands

- The least detailed are (1) - may be as an initial step
- In (4), the request "presents" load to the system e.g a user required an average CPU time of 50 miliseconds.
- Typical for analytical studies
- Sometimes the average demand of a request may not be sufficient - the actual distribution is needed as in (5)

Representativeness

- Test workload should be representative of the real application.
- Match workload (requests) to actual application in terms of
- Arrival rate
- Resource demands
- Resource usage profile

Timeliness

- Workload should follow changes in usage pattern in a timely fashion
- Telephone network (old) - symmetric traffic
- Internet (new) - asymmetric traffic
- Real users behavior is a moving and fuzzy target
- Users tend to focus on services where the system response is optimal
- Interdepedence of system design and workload - specially for systems under design
- A system optimized for one or more workloads can not be guaranteed to operate efficiently in other environments

Chapter 6: Workload Characterization

- Workload component or workload unit \rightarrow user
- Workload parameters (features): measured quantities, service requests, or resource demands that are used to model or characterize the workload
- Example of workload parameters: transactions types, instructions, packet sizes, source/ destinations of a packet, etc.
- Techniques to characterize workloads

1. Averaging
2. Specifying dispersion
3. Single-parameter histograms
4. Multiparameter histograms
5. Principle component analysis
6. Markov models
7. Clustering

Averaging

- Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be n observed values of a workload parameter, the arithmetic mean \bar{x} is given by

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- There are cases where the use of the mean is inappropriate and the median, mode, geometric mean, or harmonic mean should be used - More on this in Chapter 12
- E.g. For categorical parameters, then the most frequent value (the mode) should be used Packet destinations are A, B , and $\mathrm{C} \rightarrow$ average has no meaning, while the mode (most frequently used'address) has real meaning.

Specifying Dispersion

- The average does not reflect variability in the data
- Variability is specified by the variance, s^{2}, which is given by

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- The standard deviation, \boldsymbol{s}, is the square root of the variance.
- Coefficient of variation (COV) is the radio of standard deviation to the mean, i.e.
C.O.V $=s / \bar{x}$

Specifying Dispersion - cont'd

- Other alternative for specifying variability (discussed in Chapter 12):
- Range (min and max)
- 10- and 90-percentiles,
- Semi-interquartile, and
- Mean absolute deviation
- Zero C.O.V. \rightarrow variance is zero or parameter is constant
- High C.O.V. \rightarrow high variance, i.e. the mean alone is not sufficient
- Maybe you should consider classifying the data into different classes (histogram)

Study Case 6.1

- Resource demands for various programs on six university sites were measured for 6 months.

Single-Parameter Histograms

- Histogram - shows the relative frequencies of various values of a parameter.
- Divide the parameter range into subranges (buckets or cells)
- Count observations that fall within each subrange
- Usage in measurement or simulation - to generate test workload
- Usage in analysis - to fit a probability distribution and to verify/ validate distributions.
- Key shortcoming - correlation between parameters is not accounted for.

Single-Parameter Histograms cont'd

- Example - short job require less CPU and have typical low I/ 0 activity
- If one designs a workload based on single parameter CPU) histogram, one produce short obs with high / 0 activity, a workload which is not realistic
- Solution:
multiparameter
histograms

Program	CPU Time (milliseconds)				Number of Disk I/O			
	0-5	6-10	11-15	15+	0-20	21-40	41-60	$60+$
DOVERSEND	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots
EMACS	\ldots	\ldots	\ldots	\ldots	\cdots
MAIL	\ldots	\ldots	\ldots	\ldots	..	\ldots	\ldots	\ldots
SCRIBE	...	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots
PRESSIFY	\ldots	\ldots	\ldots	\ldots	...	\cdots	\cdots	\ldots
DIRECTORY	\ldots	\ldots	\ldots	\ldots	\ldots	:..	\ldots	\cdots
TELNET	...	\ldots	\ldots	...	\ldots	...	\ldots	\ldots

FIGURE 6.1 Single-parameter histograms of CPU time and disk I/O.
TABLE 6.3 Tabular Representation of a Single-Parameter Histogram

Multiparameter Histograms

- Used when there is (significant) correlation between different workload parameters
- n-dimensional matrix (or histogram) is used to describe the distribution of n workload parameters
- It is difficult to plot joint histograms for more than two parameters.
- Too detailed \rightarrow Rarely used!!

Principle-Component Analysis (PCA)

- Goal: Use weighted sum of parameters to classify components
- Often a weighted sum such as $y_{j}=\sum_{j=1}^{n} w_{i} x_{i j} \quad$ is used
to this purpose
where w_{i} is the weight for the $t^{\text {th }}$ parameter for the $f^{\text {th }}$ component
- But how to decide on the weights?
- The PCA procedure finding the weights w's such that y_{j}^{\prime} 's provides maximum discrimination among the components.

Principle-Component Analysis (PCA)

- Let the n parameters be $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- The PCA produces a set of FACTORS $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ such that
- The y s are linear combinations of x s

$$
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

Here $a_{i j}$ is called the loading of variable x_{j} on factor y_{i}

- The y 's form an orthogonal set (i.e. inner product is zero)

$$
\left\langle y_{i}, y_{j}\right\rangle=\sum_{k} a_{i k} a_{k j}=0
$$

This is equivalent to stating that the $y s$ are uncorrelated

- The y s form an ordered set such that y_{1} explain the highest percentage of the variance, y_{2} explains a lower percentage of the variance, and so forth.

Principle-Component Analysis (PCA)

- How to find the principle factors?
- Find the parameters correlation matrix, C.
- Find the eigen values, λ 's, of the matrix and sort them in the order of decreasing magnitude.
- Find corresponding eigen vectors (q 's).
- These give the required loadings ($a_{i j}$'s).
- For the set of n parameters $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the correlation matrix C is an n by n matrix whose $s t^{\text {th }}$ element is given by $R_{x s, x r}$

$$
R_{x_{s}, x_{r}}=\frac{(1 / n) \sum_{i=1}^{n}\left(x_{s i}-\bar{x}_{s}\right)\left(x_{r i}-\bar{x}_{r}\right)}{S_{x_{s}} S_{x_{r}}}
$$

where $S_{x s}$ and $S_{x r}$ are the standard deviations for the parameter x_{s} and x_{n} respectively.

Principle-Component Analysis (PCA) - cont'd

- Example 6.1: The number of packets sent and received, denoted by xs and $x r$, respectively, by various stations on a local-area network were measured. The observed numbers are as follows:
$\mathrm{xs}=\left[\begin{array}{lllll}{[7718} & 6958 & 8551 & 6924 & 6298 \\ 6120 & 6184 & 6527 & 5081 & 4216 \\ 5532 & 5638 & 4147 & 3562 & 2955 \\ 4261 & 3644 & 2020] ; & & \\ \mathrm{xr}=[7258 & 7232 & 7062 & 6526 & 5251 \\ 5158 & 5051 & 4850 & 4825 & 4762 \\ 4750 & 4620 & 4229 & 3497 & 3480 \\ 3392 & 3120 & 2946] ; & & \end{array}\right.$

1) Generate a scatter plot from the data - Comment on the correlation between the two sequences
2) Carry on the PCA procedure to produce the principle factors
3) Plot the new (transformed) data - Comment on the correlation between the two new sequences

Principle-Component Analysis (PCA) - cont’d

Solution:

1) Scatter plot of original data

- as shown in figure

It can be observed that the data is highly correlated. There is almost a linear relationship between Xs and Xr

Principle-Component Analysis (PCA) - cont'd

Solution:

2) The following are the steps to carry on the PCA procedure.
a) Compute the mean and standard deviation for Xs and for Xr

$$
\begin{aligned}
& \bar{x}_{s}=\frac{1}{n} \sum_{i=1}^{n} x_{s i}=\frac{96336}{18}=5352.0 \\
& \bar{x}_{r}=\frac{1}{n} \sum_{i=1}^{n} x_{r i}=\frac{88009}{18}=4889.4
\end{aligned}
$$

Principle-Component Analysis (PCA) - cont'd

Solution:

$$
\begin{aligned}
s_{x_{s}}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{s i}-\bar{x}_{s}\right)^{2} \\
& =\frac{1}{n-1}\left[\left(\sum_{i=1}^{n} x_{s i}^{2}\right)-n * \bar{x}_{s}^{2}\right] \\
& =\frac{567119488-18 \times 5353^{2}}{17}=1741.0^{2}
\end{aligned}
$$

Similarly for Xr:

$$
s_{x_{r}}^{2}=\frac{462661024-18 \times 4889.4^{2}}{17}=1379.5^{2}
$$

Principle-Component Analysis (PCA) - cont'd

Solution:

The corresponding standard deviations are

$$
s_{x_{s}}=1741.0 \quad s_{x_{r}}=1379.5
$$

b) Normalize the variables Xs and Xr to zero mean unit standard deviation
Define and

$$
x_{s}^{\prime}=\frac{x_{s}-\bar{x}_{s}}{s_{x_{s}}} \quad x_{r}^{\prime}=\frac{x_{r}-\bar{x}_{r}}{s_{x_{r}}}
$$

Using Matlab Xss can be computed as in (Xsmean(Xs))/std(Xs)
same for Xrr - refer to source code.

Principle-Component Analysis (PCA) - cont'd

Solution:

c) Compute the correlation matrix:

Note that $R_{x_{x}, x_{s}}=1$ and $\quad \begin{aligned} & R_{x_{s}, x_{r}}=\frac{(1 / n) \sum_{i=1}^{n}\left(x_{s i}-\bar{x}_{s}\right)\left(x_{r i}-\bar{x}_{r}\right)}{R_{x_{x, x_{i}}}=1}=0.916\end{aligned}$
The correlation matrix is given by

$$
\mathbf{C}=\left[\begin{array}{ll}
1.000 & 0.916 \\
0.916 & 1.000
\end{array}\right]
$$

Using matlab, one can produce the correlation matrix using the command " $\mathrm{C}=\operatorname{corrcoef(Xs,~Xr)"~}$

Principle-Component Analysis (PCA) - cont'd

Solution:

d) Compute the eiqenvalues of the correlation matrix C by solving the characteristic equation for the matrix C .

$$
\begin{gathered}
|\lambda I-C|=\left|\begin{array}{rr}
\lambda-1 & -0.916 \\
-0.916 & \lambda-1
\end{array}\right|=0 \\
(\lambda-1)^{2}-0.916^{2}=0
\end{gathered}
$$

This means the eigenvalues are: $\lambda 1=1.916$ and $\lambda 2=0.084$.
Using Matlab, the characteristic equation for the matrix C can be computed using: "poly (C)" - the returned result is a vector corresponding to the coefficients of the characteristic equation. i.e. [1.0000 $2.0000 \quad 0.1617]$
Note that using Matlab one can obtain the eigenvalues directly without explicitly obtaining the characteristic equation. The command "[V, D] = eign(C)" returns a matrix V whose columns are the eigenvectors and a diagonal matrix D with the eigenvalues as the diagonal elements are in an ascending order. Refer to source code.
H Finally, it should be observed that since the solution in the textbook obtains the eigenvectors in a descending order, then the matlab code needs to reverse order of the eigenvectors to obtain the same order for the principle factors in the textbook.

Principle-Component Analysis (PCA) - cont'd

Solution:

d) Compute the eigenvectors of the matrix $\mathrm{C}: \mathrm{q} 1$ and q 2 .

Let $q 1$ correspond to $\lambda 1$, then $\mathrm{Cq1}=\lambda 1 \mathrm{q1}$,

$$
\left[\begin{array}{ll}
1.000 & 0.916 \\
0.916 & 1.000
\end{array}\right] \times\left[\begin{array}{l}
q_{11} \\
q_{21}
\end{array}\right]=1.916\left[\begin{array}{l}
q_{11} \\
q_{21}
\end{array}\right]
$$

Or q11 = q21
Now if the vector $q 1$ has length equal to 1 , then $\mathbf{q}_{1}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$
Similarly, the vector $\mathbf{q} 2$ is given by $\quad \mathbf{q}_{2}=\left[\begin{array}{r}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}}\end{array}\right]$

Principle-Component Analysis (PCA) - cont'd

Solution:

e) The principle factors are obtained as follows:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
\frac{x_{s}-5352}{1741} \\
\frac{x_{r}-4889}{1380}
\end{array}\right]
$$

f) Compute the values by substituting the in the formula above. The values are as shown in the table.

Principle-Component Analysis (PCA) - cont'd

Solution:
g) Compute the sum and sum of squares of the principle factors.

- The sum of squares give the percentage of variation explained.
- Therefore, y1 explains 32.565/(32.565+1.4 $35)=95.7 \%$ of the variation, while y2 explains only 4.3% of the variation.

i	x_s	x_r	x_s'	x_r'	Y_1	Y_2
1	7718	7258	+1.359	+1.717	+2.175	+0.253
2	6958	7232	+0.922	+1.698	+1.853	+0.549
3	8551	7062	+1.837	+1.575	+2.413	-0.186
4	6924	6526	+0.903	+1.186	+1.477	+0.200
5	6298	5251	+0.543	+0.262	+0.570	-0.199
6	6120	5158	+0.441	+0.195	+0.450	-0.174
7	6184	5051	+0.478	+0.117	+0.421	-0.255
8	6527	4850	+0.675	-0.029	+0.457	-0.497
9	5081	4825	-0.156	-0.047	-0.143	+0.077
10	4216	4762	-0.652	-0.092	-0.527	+0.396
11	5532	4750	+0.103	-0.101	+0.002	-0.145
12	5638	4620	+0.164	-0.195	-0.022	-0.254
13	4147	4229	-0.692	-0.479	-0.828	+0.151
14	3562	3497	-1.028	-1.009	-1.441	+0.013
15	2955	3480	-1.377	-1.022	-1.696	+0.251
16	4261	3392	-0.627	-1.085	-1.211	-0.324
17	3644	3120	-0.981	-1.283	-1.601	-0.213
18	2020	2946	-1.914	-1.409	-2.349	+0.357
Sum x	96336	88009	+0.0	+0.000	+0.000	$+0.000$
Sum x 2	567119474	462660973	+17.0	+17.000	+32.565	+1.435
mean	+5352.0	+4889.4	+0.000	+0.000	+0.000	+0.000
std	+1741.0	+1379.5	+1.000	+1.000	+1.384	+0.290

Principle-Component Analysis (PCA) - cont'd

Solution:

Principle-Component Analysis (PCA) - cont'd

$\sum_{0}^{0040: 8} 0041$. Produce

Foar al
Fontsize $=14 ;$ MarkerSize $=9 ;$ Linewidth $=2 ;$
$\mathrm{X}=177186958855169246298612061846527508142165532563841473562$
 33923120 29461

$5 \mathrm{Xss}=(\mathrm{Xs}-\mathrm{Xsbar}) / \mathrm{Xesta}$,
$7 \mathrm{Xrr}=(\mathrm{Xr}-\mathrm{Xrbar}) / \mathrm{xrsta}$;


```
xrrbar = mean(Xrr); Xrrsta = std(Xrr)
```

4. form the correlation matrix and get the eignvalue
$\mathrm{P}=$ poly (C); ${ }^{8}$ get the coefficients for the characteristic equation
$\mathrm{L}=$ foots $(\mathrm{P}) ;$ this qeof the
${ }^{5} \mathrm{~L}=$ roots (P) ; ${ }^{\text {\& this }}$ gets the roots for the characteristic equation
$[V, L]=$ eig (C);
8 compute the principle factors - To get the same vectors y_{1} and y^{2} as in

$\mathrm{Y}_{1}=\mathrm{Y}(:, 2) ; \mathrm{Y}_{2}=\mathrm{Y}(:, 1) \quad \mathrm{Y} 1$ now corresponds to the larged eign alue

reversing the order
of the principle factors

Markov Models

- If the next system state depends only on the current state $\boldsymbol{\rightarrow}$

Markov model

- i.e. order of requests is as important as their intensity
- Typically used in queueing analysis
- Characterized by a probability transition matrix
- Example: The table below shows the transition probability matrix for a job moving between the CPU, the disk and the terminal.
- After each visit to the CPU, the job moves to the disk with probability 0.3 or to the terminal with probability equal to 0.1 .

From/To	CPU	Disk	Terminal
CPU	0.6	0.3	0.1
Disk	0.9	0	0.1
Terminal	1	0	0
Dr. Ashrat S. Hasan Mahmoud			

