KFUPM - COMPUTER ENGINEERING DEPARTMENT COE-241 - Data and Computer Communication Quiz 02 Model A

Student Name:

Student Number:

Problem 1 (30 points):

Given the following periodic signal:

$$
s(t)=\frac{A}{2}+\frac{2 A}{\pi} \cos \left(\frac{2 \pi}{T} t\right)-\frac{2 A}{3 \pi} \cos \left(\frac{6 \pi}{T} t\right)
$$

where the amplitude $A=2$ volts, and the parameter $T=0.01$ seconds.
a) (5 points) Specify the period and frequency of $s(t)$.
b) (10 points) Compute the total power for $s(t)$.
c) (5 points) Compute the bandwidth for $s(t)$.
d) (10 points) Sketch the power spectral density function for $s(t)$.

Problem 2 (30 points):

Consider the two periodic signal $s(t)$ and $g(t)$ shown in Figure. Both signals have amplitude of A volts and period T seconds.

From class notes we know that the Fourier Series Expansion (FSE) for $s(t)$ is given by

$$
s(t)=\frac{A}{2}+\frac{2 A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1) / 2}}{n} \cos \left(\frac{2 \pi}{T} \times n \times t\right)
$$

a) (5 points) Does the signal $g(t)$ contain a DC component? Why or why not?
b) (5 points) Do you expect the A_{n} coefficients for FSE of $g(t)$ to be nonzero? Why or why not?
c) (5 points) Do you expect the B_{n} coefficients for FSE of $g(t)$ to be nonzero? Why or why not?
d) (15 points) Sketch/outline a derivation for the FSE for signal $g(t)$ WITHOUT using the FSE definition.

Hint: write $g(t)$ as a shifted and/or scaled version of $s(t)$ and substitute in the given FSE for $s(t)$. You may need the trigonometric identity $\cos (a \pm b)=\cos (a) \cos (b) \mp \sin (a) \sin (b)$

Figure: Signals $s(t)$ and $g(t)$ for problem 2.

