King Fahd University of
Petroleum \& Minerals
Computer Engineering Dept

COE 241 - Data and Computer
Communications
Term 152
Dr. Ashraf S. Hasan Mahmoud
Rm 22-420
Ext. 1724
Email: ashraf@kfupm.edu.sa
1/17/2016
Dr. Ashraf S. Hasan Mahmoud

Lecture Contents

1. Fourier Analysis
a. Fourier Series Expansion
b. Fourier Transform
c. Ideal Low/band/high pass filters
2. Introduction to Z-Transform

Signals

- A signal is a function representing information
- Voice signal - microphone output
- Video signal - camera output
- Etc.
- Types of Signals
- Analog - continuous-value continuous-time
- Discrete - discrete-value continuous-time
- Digital - predetermined discrete levels - much easier to reproduce at receiver with no errors
- Binary - only two predetermined levels: e.g. 0 and 1

Example of Continuous-Value Continuous-time signal

- $s_{1}(t)$ and $s_{2}(t)$ are two example of analog signals

Example of Discrete-Value

 Continuous-time signal- $\quad d_{1}(t)$ and $d_{2}(t)$ are two example of discrete signals
- $d_{1}(t)$ - takes more than two levels
- $d_{2}(t)$ - takes only two levels - binary

Applies to BOTH analog and digital signals

Time Domain Representation

- Time domain representation - we plot value (voltage, current, electric field intensity, etc.) versus time
- Can infer rate of change (speed or frequency) information - e.g. $s_{\mathbf{2}}(t)$ seems faster than $s_{1}(t)$
- Using calculus terms: rate of change for $s_{2}(t)>$ rate of change for $\mathrm{s}_{1}(2)$

Frequency - Bandwidth

- $s_{2}(t)$ faster than $s_{1}(t) \rightarrow$
- $s_{2}(t)$ contains higher frequencies than those contained in $s_{1}(t)$
- $s_{1}(t)$ and $s_{2}(t)$ contain more than one frequency
- Minimum frequency $=f_{\text {min }}$
- Maximum frequency $=\mathbf{f}_{\text {max }}$
- Bandwidth = Range of frequencies contained in signal

$$
=f_{\max }-f_{\min }
$$

Applies to BOTH analog and digital signals

Frequency - Bandwidth (2)

- For our example signals, assume:
- S1(t): fmin = $\mathbf{1 0 ~ H z , ~ f m a x ~ = ~} 500 \mathrm{~Hz}$
- S2(t): fmin = $\mathbf{5} \mathbf{~ H z}$, fmax $=1000 \mathbf{~ H z}$
- This means:
- BW for $\mathbf{s}_{\mathbf{1}}(\mathbf{t})=\mathbf{5 0 0} \mathbf{- 1 0} \mathbf{= \mathbf { 4 9 0 } \mathbf { ~ H z }}$
- $B W$ for $s_{2}(t)=1000-5=995 \mathrm{~Hz}$
- Note that: because $s_{2}(t)$ is "faster than" $s_{1}(t)$ it should contain frequencies higher than those in $s_{1}(t)$
- E.g. $s_{2}(t)$ contains frequencies $(500,1000]$ which do not exist in $s_{1}(t)$

Frequency - Bandwidth (3)

- Consider the discrete signals $d_{1}(t)$ and $\mathrm{d}_{2}(\mathrm{t})$
- The function plots have points of infinite slope
- rate of change $=\infty \rightarrow$ frequency $=\infty$
- Therefore for signals that look like $d_{1}(t)$ and $d_{2}(t)$, fmax $=\infty$
- Furthermore, BW $=\infty$
- Example:
- $d_{2}(t)$ contains frequencies from some minimum fmin Hz to fmax $=\infty \mathrm{Hz}$

Example of Signal BW

- Consider the human speech
- Typically fmin $\boldsymbol{\sim} \mathbf{1 0 0 H z}$
- fmax ~ $\mathbf{3 5 0 0} \mathbf{~ H z}$
- \quad BW of the human speech signal $=\mathbf{3 1 0 0} \mathbf{~ H z}$

Bandwidth for Systems

- For a system to respond (amplify, process, Tx, Rx, etc.) for a particular signal with all its details, the system should have an equal or greater bandwidth compared to that of the signal
- Example:
- The system required to process $\mathbf{s}_{2}(\mathbf{t})$ should have a greater bandwidth than the system required to process $s_{1}(t)$

Bandwidth for Systems (2)

- Example 2: consider the human ear system
- Responds to a range of frequencies only
- fmin $=20 \mathrm{~Hz}$ fmax $=20,000 \mathrm{~Hz} \rightarrow B W=19,980 \mathrm{~Hz}$
- It does not respond to sounds with frequencies outside this range
- Example 3: consider the copper wire
- It passes (electric) signals only between a certain fmin and a certain fmax
- The higher the quality of the wire - the wider the BW
- More on Systems BW later!

Frequency Representation

- How to represent signals and indicate their frequency content?
- The X-axis: frequency (in Hertz or Hz)
- What is the \mathbf{Y}-axis then? - the answer will be postponed!

Periodic Signals

- A periodic signal repeats itself every T seconds
- Period $\rightarrow \mathbf{T}$ seconds
- In calculus terms:
- $s(t)$ is periodic if $s(t)=s(t+T)$ for any $-\infty<t<\infty$
- For previous examples: $\mathbf{s}_{\mathbf{1}}(\mathbf{t}), \mathbf{s}_{\mathbf{2}}(\mathbf{t})$, and $d_{1}(t)$ are not periodic - however, $d_{2}(t)$ is periodic

Periodic Signals (2)

- A periodic signal has a FUNDAMENTAL FREQUENCY - f_{0}
- $f_{0}=1 / T-$ where T is the period
- A periodic signal may also has frequencies other than the fundamental frequency f_{0}

Periodic Signals (3)

- Examples of other periodic signals:

Applies to BOTH analog and digital signals

Energy/Power of Signals

- Energy for any signal is defined as

$$
E_{s}=\int|s(t)|^{2} d t
$$

where the integral is carried over ALL range of t

- In other words, Es is the area under the absolute squared of the signal
- The unit of energy is Joules

Energy/Power of Signals (2)

- Note that for periodic signal E_{s} is equal to infinity since it is defined on $(-\infty, \infty)$
- However power is FINITE for these type of signals
- Power is defined as the average of the absolute squared of the signal, i.e.

$$
P_{s}=\frac{1}{T} \int_{0}^{T}|S(t)|^{2} d t
$$

- The unit of power is Joules/sec or Watt

A VERY SPECIAL Analog Signal

- A function of the form

$$
s(t)=A \cos (2 \pi f t+\theta)
$$

Characteristics of COSINE

- Completely specified by:
- Amplitude - A
- Phase- θ
- Frequency - f
- $\mathbf{s}(\mathbf{t}=\mathbf{0})=\mathbf{A} \cos (\theta)$
- Periodic signal - repeats itself every T seconds
- $\quad \mathbf{T}=1 / \mathrm{f}$
- Time to review your trigonometry !!
- E.g. $\sin (x)=\cos (x-\pi / 2)$

Characteristics of COSINE (2)

- Energy for this signal, $\mathrm{E}_{\mathrm{s}}=$ infinity
- Power for this signal, $\mathbf{P}_{\mathrm{g}}=\mathrm{A}^{2} / 2$
- Note $\mathbf{P}_{\mathbf{g}}$ is dependent only on the amplitude \mathbf{A}

Exercise: Verify the above results using the power formula

- It contains ONLY ONE frequency f - The "purest" form of analog signals
- Frequency representation:

BW for $\mathrm{s}(\mathrm{t})$

Characteristics of COSINE (3)

- Very Useful Properties ($\mathrm{f}=1 / \mathrm{T}$)

$$
\begin{aligned}
& \int_{0}^{T} \cos (2 \pi f t+\theta) d t=0 \quad \frac{1}{T} \int_{0}^{T} \cos ^{2}(2 \pi f t+\theta) d t=1 / 2 \\
& \int_{0}^{T} \cos (2 \pi n f t+\theta) d t=0 \quad \frac{1}{T} \int_{0}^{T} \cos ^{2}(2 \pi n f t+\theta) d t=1 / 2 \\
& \frac{1}{T} \int_{0}^{T} \cos (2 \pi n f t) \cos (2 \pi m f t) d t=\left\{\begin{array}{cc}
0 & n \neq m \\
1 / 2 & n=m
\end{array}\right.
\end{aligned}
$$

Example of Cosine Functions

- $\mathbf{Y}_{1}(\mathbf{t})$ - has
- a frequency \mathbf{f} of $\mathbf{2}$ Hz ($\mathrm{T}=1 / 2 \mathrm{sec}$)
- An amplitude of 3
- $P_{Y_{1}}=3^{2} / 2=4.5$ Watts
- $\quad \mathbf{Y}_{\mathbf{2}}(\mathbf{t})$ - has
- a frequency f of $\mathbf{1}$ $\mathrm{Hz}(\mathrm{T}=1 / 1=1$ $\mathrm{sec})$
- An amplitude of $\mathbf{1}$
- $P_{Y 2}=1^{2} / 2=0.5$

Watts

Fourier Series Expansion

- Can we use the basic cosine functions to represent periodic signals?
- YES - Fourier Series Expansion

factorization

Fourier Series Expansion (2)

- For a periodic signal s(t) can be represented as a sum of sinusoidal signals as in

$$
s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right]
$$

where the coefficients are computed using:

$$
\begin{array}{ll}
A_{0}=\frac{2}{T} \int_{0}^{T} s(t) d t & \begin{array}{l}
f_{0} \text { is the fundamental frequency } \\
\text { of } s(t) \text { and is equal to } 1 / T
\end{array} \\
A_{n}=\frac{2}{T} \int_{0}^{T} s(t) \cos \left(2 \pi n f_{0} t\right) d t & B_{n}=\frac{2}{T} \int_{0}^{T} s(t) \sin \left(2 \pi n f_{0} t\right) d t
\end{array}
$$

Fourier Series Expansion (3)

- Another form for the series:

$$
s(t)=\frac{C_{0}}{2}+\sum_{n=1}^{\infty} C_{n} \cos \left(2 \pi n f_{0} t+\theta_{n}\right)
$$

where the coefficients are computed using:

$$
\begin{gathered}
C_{0}=A_{0} \\
C_{n}=\sqrt{A_{n}^{2}+B_{n}^{2}} \\
\theta_{n}=\tan ^{-1}\left(\frac{-B_{n}}{A_{n}}\right)
\end{gathered}
$$

Notes on Fourier Series Expansion

- The representation (the sum of sinusoids) is completely identical and equivalent to the original specification of $\mathbf{s}(\mathrm{t})$
- It is applies to any periodic signal analog or digital!

Very powerful tool - it reveals all frequencies contained in the original periodic signal $s(t)$

Notes on Fourier Series Expansion

 (2)- In general, $\mathbf{s}(\mathbf{t})$ contains
- DC term - the zero frequency term $=\mathrm{A}_{0} / 2$
- A (possibly infinite) number of harmonics (or sinusoids) at multiples of the fundamental frequency, f_{0}
- The contribution of a harmonic with frequency $\mathbf{n f}_{\mathbf{0}}$ is proportional to $\left|A_{n}{ }^{2}+B_{n}{ }^{2}\right|$ or $C_{n}{ }^{2}$
- E.g. if $\mathrm{C}_{\mathrm{n}}{ }^{2} \sim \mathbf{0}$, then we say the harmonic at nf_{0} (or higher does not contribute significantly towards building $s(t)$ - more on this when we discuss total power!

Notes on Fourier Series Expansion (3)

- A harmonic with frequency equal to $\mathbf{n f}_{\mathbf{0}}$ ($n>0$), has a period of $\mathbf{1 / (n T)}$
- In general the series expansion of $\mathbf{s}(\mathbf{t})$ contains INFINITE number of terms (harmonics)
- However for less than 100\% accurate representation one can ignore higher terms - terms with frequencies greater than certain $\mathbf{n}^{*} \mathbf{f}_{\mathbf{0}}$

Notes on Fourier Series Expansion

 (4)- Lets define the following function:
s_e(n=k)

To be the series expansion of $\boldsymbol{s}(\mathrm{t})$ up to and including the $\mathbf{n}=$ k term
It should be noted that s_e($n=k$) is periodic with period T

- Examples:

$$
\begin{aligned}
s_{-} e(n=0) & =A_{0} / 2 \\
s_{-} e(n=1) & =A_{0} / 2+A_{1} \cos \left(2 \pi f_{0} t\right)+B_{1} \sin \left(2 \pi f_{0} t\right) \\
& =A_{0} / 2+C_{1} \cos \left(2 \pi f_{0} t+\theta_{1}\right)
\end{aligned}
$$

Notes on Fourier Series Expansion

 (5)- Examples - cont'd:

$$
\begin{aligned}
s_{-} e(n=2) & =A_{0} / 2+A_{1} \cos \left(2 \pi f_{0} t\right)+B_{1} \sin \left(2 \pi f_{0} t\right) \\
& +A_{2} \cos \left(2 \pi \times 2 f_{0} t\right)+B_{2} \sin \left(2 \pi \times 2 f_{0} t\right) \\
& =A_{0} / 2+C_{1} \cos \left(2 \pi f_{0} t+\theta_{1}\right)+C_{2} \cos \left(2 \pi \times 2 f_{0} t+\theta_{2}\right) \\
& \bullet \\
s_{-} e(n=\infty) & =\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right] \\
& =A_{0} / 2+\sum_{n=1}^{\infty} C_{n} \cos \left(2 \pi n f_{0} t+\theta_{n}\right)
\end{aligned}
$$

Notes on Fourier Series Expansion (6)

- It is obvious that $s(t)$ is $\mathbf{1 0 0 \%}$ represented by s_e($n=\infty$)
- s_e(n = n* < ∞) produces a less than $\mathbf{1 0 0 \%}$ accurate representation of the original s(t)
- For most practical periodic signals s_e(n=10) provides a more than enough accuracy in representing $s(t)$
- No need for infinite number of terms

Example 1:

- Consider the following s(t)
- Over one period, the signal is defined as
$s(t)=A \quad-T / 4<t<=T / 4$

$$
=0 \quad \mathrm{~T} / 4<\mathrm{t}<=3 \mathrm{~T} / 4
$$

- Finding the Series Expansion:
- The DC term \mathbf{A}_{0}

$$
A_{0}=\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) d t=\frac{2}{T} \times \frac{T}{2} \times A
$$

$$
=A
$$

Example 1: cont'd

- The term $\mathbf{A}_{\mathbf{n}}$:

$$
\begin{aligned}
A_{n} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \cos \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \int_{-T / 4}^{T / 4} \cos \left(2 \pi n f_{0} t\right) d t \\
& =\left.\frac{2 A}{2 \pi n f_{0} T} \sin \left(2 \pi n f_{0} t\right)\right|_{t=-T / 4} ^{t=T / 4}=\frac{A}{\pi n} \times 2 \times \sin \left(\frac{n \pi}{2}\right)
\end{aligned}
$$

$$
=\left\{\begin{array}{cc}
0 & n=2,4,6, \ldots \\
\frac{2 A}{\pi n} & n=1,5,9, \ldots \\
-\frac{2 A}{\pi n} & n=3,7,11, \ldots
\end{array}\right.
$$

Remember	
1.	$f_{0}=1 / T$
2.	$\int \cos (a x) d x=-1 / a \sin (a x)$
3.	$\sin (n \pi)=0$ for integer n
4.	$\sin (n \pi / 2)=1$ for $n=1,5,9, \ldots$
5.	$\sin (n \pi / 2)=-1$ for $n=3,7,11, \ldots$

Example 1: cont'd

- Therefore $\mathbf{A}_{\mathbf{n}}$ is given by:

$$
= \begin{cases}0 & n=2,4,6, \ldots \\ (-1)^{(n-1) / 2} \times \frac{2 A}{\pi n} & n=1,3,5,7, \ldots\end{cases}
$$

Remember

$(-1)^{(\mathrm{n}-1) / 2}=1$ for $\mathrm{n}=1,5,9, \ldots$

$$
=-1 \text { for } n=3,7,11, \ldots
$$

Example 1: cont'd

- The term B_{n} :

$$
\begin{aligned}
B_{n} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \sin \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \int_{-T / 4}^{T / 4} \sin \left(2 \pi n f_{0} t\right) d t \\
& =\left.\frac{-2 A}{2 \pi n f_{0} T} \cos \left(2 \pi n f_{0} t\right)\right|_{t=-T / 4} ^{t=T / 4}=\frac{-2 A}{\pi n} \times\left\{\cos \left(\frac{n \pi}{2}\right)-\cos \left(-\frac{n \pi}{2}\right)\right\} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Remember } \\
& \text { 1. } \int \cos (a x) d x=-1 / a \sin (a x) \\
& \text { 2. } \quad \cos (x)=\cos (-x)
\end{aligned}
$$

Example 1: cont'd

- Therefore, the overall series expansion is given by

$$
\begin{aligned}
s(t)= & \frac{A}{2}+\frac{2 A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1) / 2}}{n} \times \cos \left(2 \pi n f_{0} t\right) \\
s(t)= & \frac{A}{2}+\frac{2 A}{\pi} \times \cos \left(2 \pi f_{0} t\right)-\frac{2 A}{3 \pi} \cos \left(2 \pi \times 3 f_{0} t\right) \\
& +\frac{2 A}{5 \pi} \times \cos \left(2 \pi \times 5 f_{0} t\right)-\frac{2 A}{7 \pi} \cos \left(2 \pi \times 7 f_{0} t\right)+\ldots
\end{aligned}
$$

Example 1: cont'd

- Original $s(t)$ and the series up to and including n $=0$
- i.e. Comparing:
$s(t)$
vs.
s_e(n=0) =A/2

Example 1: cont'd

- Original $s(t)$ and the series up to and including $\mathbf{n}=$ 1
- i.e. Comparing:
$s(t)$
vs.
s_e($n=1$) =
A/2 +
$2 A / \pi \cos \left(2 \pi f_{0} t\right)$

Example 1: cont'd

- Original $s(t)$ and the series up to and including $\mathbf{n}=$ 3
- i.e. Comparing:
$s(t)$
vS.
s_e($n=3$) = A/2 +
2A/ $\pi \cos \left(2 \pi f_{0} t\right)-$ $2 \mathrm{~A} /(3 \pi) \cos \left(2 \pi 3 \mathrm{f}_{0} \mathrm{t}\right)$

Example 1: cont'd

- Original s(t) and the series up to and including $n=$ 11
- i.e. Comparing:
$s(t)$
vs.
s e $(\mathrm{n}=11)=$
$\bar{A} / 2+2 A / \pi \cos \left(2 \pi f_{0} t\right)$
$-2 A /(3 \pi) \cos \left(2 \pi 3 f_{0} t\right)$
$+2 A /(5 \pi) \cos \left(2 \pi 5 f_{0} t\right)$
$-2 A /(7 \pi) \cos \left(2 \pi 7 f_{0} t\right)$
$+2 A /(11 \pi) \cos \left(2 \pi 11 f_{0} t\right)$

Example: cont'd

clear all
$T=1 ;$
$\mathrm{A}=1$;
$\mathrm{t}=-1: 0.01: 1$;
n_max $=11$;
$s=\left(A * \operatorname{square}\left(2 * \mathrm{pi} / \mathrm{T}^{*}(\mathrm{t}+\mathrm{T} / 4)\right)+\mathrm{A}\right) / 2$;
figure (1)
plot(t, s);
grid
axis([0 $11-0.21 .2])$;
-The matlab code for plotting and evaluating the Fourier Series Expansion

- This code builds the series incrementally using the "for" loop
- Make sure you study this code!!
s_e =A/2*ones(size(t));
for $n=1: 2: n _m a x$
s_e $=s _e+(-1)^{\wedge}((n-1) / 2) * 2 * A /(n * p i) * \cos (2 * p i * n / T * t) ;$
end
figure (2)
plot(t, s,'b-', t, s_e,'r--');
axis([0 1 -0.2 1.2]);
legend('original s(t)', 'up to $n=11 ') ;$
grid

Notes Previous Example

- i.e. comparing $s(t)$ with $s _e(n=n *)$, the greater the n^{*} the closer the representation is
- How to measure "closeness"?
- Answer: Let's use power!!

Power Calculation Using Fourier Series Expansion

- Rule: if $\mathbf{s}(\mathbf{t})$ is represented using Fourier Series expansion, then its power can be calculated using:

$$
\begin{aligned}
P_{s}=\frac{1}{T} \int_{0}^{T}|s(t)|^{2} d t & =\frac{A_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty}\left[A_{n}^{2}+B_{n}^{2}\right] \\
& =\frac{A_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty} C_{n}^{2}
\end{aligned}
$$

Power Calculation Using Fourier Series Expansion (2)

- The previous result is based on the following two facts:
- (1) For $f(t)=$ constant
\rightarrow power of $f(t)=$ constant 2

Proof:

$$
\begin{aligned}
\text { power } & =1 / \mathrm{T} \times \int_{0}{ }^{\mathrm{T}} \text { constant }^{2} \mathrm{dt} \\
& =1 / \mathrm{T} \times \text { constant }^{2} \times \mathrm{T} \\
& =\text { constant }^{2} \text { Watts }
\end{aligned}
$$

Power Calculation Using Fourier Series Expansion (3)

- The previous result is based on the following facts (continued):
- (2) For $f(t)=A \cos \left(2 \pi n f_{0} t+\theta\right)$ \rightarrow power of $f(t)=A^{2} / 2$

Proof:

$$
\begin{aligned}
P_{f} & =\frac{1}{T} \int_{0}^{T}|f(t)|^{2} d t=\frac{A^{2}}{T} \int_{0}^{T} \cos ^{2}\left(2 \pi n f_{0} t+\theta\right) d t \\
& =\frac{A^{2}}{T} \int_{0}^{T}\left[\frac{1}{2}+\frac{1}{2} \cos \left(4 \pi n f_{0} t+2 \theta\right)\right] d t \\
& =\frac{A^{2}}{T}\left[\frac{T}{2}+0\right]=\frac{A^{2}}{2}
\end{aligned}
$$

Example 2:

- Problem: What is the power of the signal $\mathbf{s}(\mathrm{t})$ used in previous example? And find n* such that the power contained in s_e($n=n^{*}$) is 95\% of that existing in $\mathbf{s}(\mathrm{t})$?
- Solution:

Let the power of $\boldsymbol{s}(\mathbf{t})$ be given by $\mathbf{P}_{\mathbf{s}}$

$$
P_{s}=\frac{1}{T} \int_{0}^{T}|s(t)|^{2} d t=\frac{1}{T} \times A^{2} \times \frac{T}{2}=\frac{A^{2}}{2}=0.5 A^{2}
$$

Example 2: cont'd

- Now it is desired to compute the power using the Fourier Series Expansion
- What is the power in s_e(n=0) = A/2?
- Ans: we apply the power formula:

$$
\begin{aligned}
P_{s_{-} e(n=0)} & =\frac{1}{T} \int_{0}^{T}\left|s_{-} e(n=0)\right|^{2} d t \\
& =\frac{1}{T} \times \frac{A^{2}}{4} \times T=\frac{A^{2}}{4}=0.25 A^{2}
\end{aligned}
$$

Example 2: cont'd

- What is the power in

$$
\text { s_e(n=1) }=A / 2+2 A / \pi \cos \left(2 \pi f_{0} t\right)
$$

- Ans: we can use the result on slide Power Calculation Using Fourier Series

Expansion:

$$
\begin{aligned}
P_{s_{-} e(n=1)} & =\frac{1}{T} \int_{0}^{T}\left|S_{-} e(n=1)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}}\right) A^{2}=0.4526 A^{2}
\end{aligned}
$$

Example 2: cont'd

- What is the power in

$$
\begin{gathered}
s_{-} e(n=3)=A / 2+2 A / \pi \cos \left(2 \pi f_{0} t\right)- \\
2 A /(3 \pi) \cos \left(2 \pi 3 f_{0} t\right)
\end{gathered}
$$

- Ans: we can use the result on slide Power Calculation Using Fourier Series

Expansion:

$$
\begin{aligned}
P_{s_{-}(n=3)} & =\frac{1}{T} \int_{0}^{T}\left|S_{-} e(n=3)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}}+\frac{2 A^{2}}{9 \pi^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}}+\frac{2}{9 \pi^{2}}\right) A^{2}=0.4752 A^{2}
\end{aligned}
$$

Example 2: cont'd

- What is the power in

$$
\begin{gathered}
\text { s_e(n=5) }=A / 2+2 A / \pi \cos \left(2 \pi f_{0} t\right)- \\
2 A /(3 \pi) \cos \left(2 \pi 3 f_{0} t\right)+ \\
2 A /(5 \pi) \cos \left(2 \pi 5 f_{0} t\right)
\end{gathered}
$$

- Ans: we can use the result on slide Power Calculation Using Fourier Series Expansion:

$$
\begin{aligned}
P_{s_{-} e(n=5)} & =\frac{1}{T} \int_{0}^{T}\left|s_{-} e(n=5)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}}+\frac{2 A^{2}}{9 \pi^{2}}+\frac{2 A^{2}}{25 \pi^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}}+\frac{2}{9 \pi^{2}}+\frac{2}{25 \pi^{2}}\right) A^{2}=0.4833 A^{2}
\end{aligned}
$$

Example 2: cont'd

- What is the power in

$$
s_{-} e(n=\infty)=\frac{A}{2}+\frac{2 A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1) / 2}}{n} \times \cos \left(2 \pi n f_{0} t\right)
$$

- Ans: we can use the result on slide Power Calculation Using Fourier Series Expansion:

$$
\begin{aligned}
P_{s_{-}(n=\infty)} & =\frac{1}{T} \int_{0}^{T}\left|s_{-} e(n=\infty)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\right) A^{2}=0.5 A^{2}
\end{aligned}
$$

This the EXACT SAME power contained in $s(t)$ This is expected since $s(t)$ is 100% represented by $s _e(n=\infty)$

Example 2: cont'd

s_e e ($\mathrm{=}=\mathrm{k}$)	Expression	Power	\% Power ${ }^{+}$
$\mathrm{k}=0$	A/2	$0.25 \mathrm{~A}^{2}$	$\begin{gathered} \left(0.255^{2} /\left(0.5 A^{2}\right)\right. \\ =50 \% \end{gathered}$
$\mathrm{k}=1$	$\mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)$	$0.4526 \mathrm{~A}^{2}$	$\begin{aligned} & \left(0.452 A^{2}\right)\left(10.5 a^{2}\right) \\ & =90.5 \% \end{aligned}$
$k=2^{*}$	$\mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)$	$0.4526 \mathrm{~A}^{2}$	90.5\%
$k=3$	$\begin{aligned} & \mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)- \\ & 2 \mathrm{~A} /(3 \pi) \cos \left(2 \pi 3 \mathrm{f}_{0} \mathrm{t}\right) \end{aligned}$	$0.4752 \mathrm{~A}^{2}$	95.0\%
$k=5$	$\begin{aligned} & \hline \mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right) \\ & 2 \mathrm{~A} /(3 \pi) \cos \left(2 \pi 3 \mathrm{f}_{\mathrm{t}} \mathrm{t}\right)+ \\ & 2 \mathrm{~A} /(5 \pi) \cos \left(2 \pi 5 \mathrm{f}_{\mathrm{t}} \mathrm{t}\right) \\ & \hline \end{aligned}$	$0.4833 \mathrm{~A}^{2}$	96.7\%

- Therefore, s_e($n=n^{*}$) such that 95% of power is contained $\rightarrow n *=3$

Power Spectral Density Function

- Fourier Series Expansion:
- Specifies all the basic harmonics contained in the original function $s(t)$
- $C_{n}{ }^{2} / 2=\left(A_{n}{ }^{2}+B_{n}{ }^{2}\right) / 2$ determines the power contribution of the nth harmonic with frequency nf_{0}
- The power Spectral Density function is a function specifying: how much power is contributed by a given frequency

Power Spectral Density Function

 (2)- Typical PSD function for periodic signals:

Periodic $s(t)$

(1) $\begin{aligned} & \text { Fourier Series } \\ & \text { Expansion }\end{aligned}$

Power Spectral Density Function

 (3)- A mathematical expression for PSD(f) can be written as

$$
\operatorname{PSD}(f)=\left\{\begin{array}{cc}
A_{0}{ }^{2} / 4 & f=0 \\
C_{n}{ }^{2} / 2 & f=n \times f_{0} \\
0 & \text { otherwise }
\end{array}\right.
$$

- Another way (more compact) of writing PSD(f) is as follows:

$$
\operatorname{PSD}(f)=\frac{A_{0}{ }^{2}}{4} \times \delta(f)+\frac{1}{2} \sum_{n=1}^{\infty} C_{n}{ }^{2} \times \delta\left(f-n f_{0}\right)
$$

where $\boldsymbol{d}(t)$ is defined by

$$
\delta(f)= \begin{cases}1 & f=0 \\ 0 & f \neq 0\end{cases}
$$

Power Spectral Density Function

 (4)- $\quad \delta(f)$ is referred to as the dirac function or unit impulse function

Note on the PSD Function

- PSD function has units of Watts/Hz
- For periodic signals \rightarrow PSD is a discrete function - defined for integer multiples of the fundamental frequency
- Specifies the power contribution of every harmonic component $\mathbf{C}_{\mathbf{n}}{ }^{2} / \mathbf{2} \longleftrightarrow \mathbf{n f}_{\mathbf{0}}$
- The separation between the discrete components is at least f_{0}
- It is exactly f_{0} if all C_{n} 's are not zeros
- E.g. for the previous $s(t)$ example, $\mathrm{C}_{\mathrm{n}}=0$ for even $n \rightarrow$ separation $=\mathbf{2 f}_{\mathbf{0}}$
- To calculate the total power of signal \rightarrow Integrate PSD over all contained frequencies
- For discrete PSD: integration = summation
- Therefore total power of $s(t)$,

$$
P_{s}=\left(A_{n} / 2\right)^{2}+\Sigma C_{n}^{2} / 2 \text { in Watts }
$$

Example 3:

- Find the PSD function of the periodic signal $s(t)$ considered in Example 1.
- From Example 1, $\mathbf{s}(\mathbf{t})$ is given by

$$
s(t)=\frac{A}{2}+\frac{2 A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1) / 2}}{n} \times \cos \left(2 \pi n f_{0} t\right)
$$

- Using Example 2:
- \quad Power at the zero frequency $=(A / 2)^{2}=A^{2} / 4$
- Power at the nth harmonic (n odd) is equal to $\mathbf{2 A} \mathbf{2}^{\mathbf{2}} /(\mathrm{n} \pi)^{\mathbf{2}}$
- Power at the nth harmonic (n even) is zero
- Therefore the PSD function is given by

$$
\operatorname{PSD}(f)=\frac{A^{2}}{4} \times \delta(f)+\frac{2 A^{2}}{\pi^{2}} \sum_{n=1,3,5}^{\infty} \frac{1}{n^{2}} \times \delta\left(f-n f_{0}\right)
$$

Example 3: cont'd

- The PSD is plotted as shown ($\mathrm{A}=1, \mathrm{~T}=1$)

Example 3: cont'd

- Matlab Code to plot PSD
clear all
$T=1 ;$
$\mathrm{A}=1$;
$\mathrm{t}=-1: 0.01: 1$;
n_max $=11$;
Frequency $=$ [0:1:n_max];
PwrSepctrald $=$ zeros (size(Frequency));
\% Record the DC term power at $\mathrm{f}=0$
PwrSepctrald (1) $=(\mathrm{A} / 2)^{2} 2 ;$
\% Record the nth harmonic power at $f=n f 0$
for $n=1: 2: n$ max
PwrSepctrald $(\mathrm{n}+1)=(2 * \mathrm{~A} /(\mathrm{n} * \mathrm{pi}))^{\wedge} 2 / 2$;
end
figure (1)
stem(Frequency, PwrSepctrald,'rx');
title('Power Spectral Density function for $s(t)-A=1, T=1 ')$;
xlabel('frequency - Hz');
grid
1/17/2016

Example 4:

This is a typical exam question

- Problem: Consider the periodic half-wave rectified signal $s(t)$ depicted in figure.
- Write a mathematical expression for $s(t)$
- Calculate the Fourier Series Expansion for $s(t)$
- Calculate the total power for $s(t)$
- Find n^{*} such that s_e(n*) has 95% of the total power
- Determine the PSD function for $s(t)$
- Plot the PSD function for $s(t)$

Example 4: cont'd

- Answer:
(a) To write a mathematical expression for $\mathbf{s}(\mathbf{t})$, remember that the general form of a sinusoidal function is given by

$A \cos (2 \pi \times$ Freq $X t)$, or

$A \cos (2 \pi /$ Period $X t)$
Therefore $s(t)$ is given by

$$
\begin{array}{rlrl}
\mathbf{s}(\mathbf{t}) & =\mathbf{A} \cos (\mathbf{2 \pi / \mathbf { T } \mathbf { t })} & \mathbf{- \mathbf { T } / \mathbf { 4 }}<\mathbf{t} \leq \mathbf{t} / \mathbf{4} \\
& =\mathbf{0} & \mathbf{T} / \mathbf{4}<\mathbf{t} \leq \mathbf{3 T} / \mathbf{4}
\end{array}
$$

Example 4: cont'd

- Answer:
(b) The F.S.E of $\mathbf{s}(\mathbf{t}): \quad s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi m f_{0} t\right)+B_{n} \sin \left(2 \pi m f_{0} t\right)\right]$ The DC term is given by

$$
\begin{aligned}
A_{0} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) d t \\
& =\frac{A}{\pi} \times\left.\sin (2 \pi t / T)\right|_{t=-T / 4} ^{t=T / 4}=\frac{A}{\pi}[\sin (\pi / 2)-\sin (-\pi / 2)] \\
& =\frac{2 A}{\pi}
\end{aligned}
$$

The An term is given by (remember $\mathbf{1 / T}=\mathbf{f}_{\mathbf{0}}$)

$$
\begin{array}{rlrl}
A_{n} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \cos \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \cos \left(2 \pi n f_{0} t\right) d t \\
& =\frac{2 A}{T} \times\left.\left[\frac{\sin \left(2 \pi(n+1) f_{0} t\right)}{4 \pi(n+1) f_{0}}+\frac{\sin \left(2 \pi(n-1) f_{0} t\right)}{4 \pi(n-1) f_{0}}\right]\right|_{t=-T / 4} ^{t=T / 4} \text { For } \mathbf{n} \neq \mathbf{1} \\
& =\frac{A}{\pi} \times\left[\frac{\cos (n \pi / 2)}{(n+1)}+\frac{-\cos (n \pi / 2)}{(n-1)}\right] \quad \text { For } \mathbf{n} \neq \mathbf{1} \\
1 / 17 / 2016 & \text { Dr. Ashraf S. Hasan Mahmoud } & \text { This means: the n=1 should be special! }
\end{array}
$$

Example 4: cont'd

But

$$
\begin{aligned}
\cos (n \pi / 2) & =0 & & n=\text { odd, } n \neq 1 \\
& =(-1)^{(1+n / 2)} & & n=\text { even }
\end{aligned}
$$

Therefore

$$
\begin{aligned}
A_{n} & =\frac{A}{\pi} \times\left[\frac{(-1)^{(1+n / 2)}}{(n+1)}+\frac{(-1)(-1)^{(1+n / 2)}}{(n-1)}\right] \\
& =0
\end{aligned}
$$

Example 4: cont'd

The expression for A_{n} (for even n) can be further simplified to

$$
\begin{aligned}
A_{n} & =\frac{A}{\pi} \times\left[\frac{(-1)^{(1+n / 2)}}{(n+1)}+\frac{(-1)(-1)^{(1+n / 2)}}{(n-1)}\right] \\
& =\frac{A}{\pi} \times\left[\frac{(-1)^{(1+n / 2)}(n-1)+(-1)(-1)^{(1+n / 2)}(n+1)}{(n+1)(n-1)}\right] \\
& =\frac{A}{\pi\left(n^{2}-1\right)} \times\left[(-1)^{(1+n / 2)}(n-1)-(-1)^{(1+n / 2)}(n+1)\right] \\
& =\frac{2 A(-1)^{(1+n / 2)}}{\pi\left(n^{2}-1\right)_{\text {br. Ashraf S. Hasan Mahmoud }} \quad \text { For } \mathbf{n} \text { even }}
\end{aligned}
$$

Example 4: cont'd

An is still not completely specified - we still need to calculate it for $\mathrm{n}=1$; in other words we need to calculate A1:
$A_{n=1}=\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \cos \left(2 \pi \times 1 \times f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \cos \left(2 \pi f_{0} t\right) d t$
Therefore:

$$
\begin{aligned}
A_{1} & =\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos ^{2}\left(2 \pi f_{0} t\right) d t \\
& =\frac{2 A}{T} \times\left[\frac{t}{2}+\left.\frac{1}{4 \times 2 \pi f_{0}} \sin \left(4 \pi f_{0} t\right)\right|_{t=-T / 4} ^{t=T / 4}=\frac{2 A}{T} \times\left[\frac{T}{4}+\frac{\sin (\pi)-\sin (-\pi)}{8 \pi f_{0}}\right]\right. \\
& =\frac{A}{1117 / 2016^{2}} \quad \quad \text { Dr. Ashraf S. Hasan Mahmoud }
\end{aligned}
$$

Example 4: cont'd

This mean A_{n} is equal to the following:
$A_{n}=(2 A / \pi$
$\mathrm{n}=\mathbf{0}$
0
n odd, n $=1$
A/2
$\mathbf{n}=\mathbf{1}$
$2 A(-1)^{(1+n / 2)}$
------------ $\quad n=2,4,6, \ldots$
$\pi\left(n^{2}-1\right)$

The above expression specifies $\mathrm{A}_{\mathbf{n}}$ for ALL POSSIBLE values of $\mathbf{n} \rightarrow$ specification is complete

We still need to compute $B_{\mathbf{n}}$:
$B_{n}=\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \sin \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \sin \left(2 \pi n f_{0} t\right) d t$
$=\frac{2 A}{T} \times\left.\left[\frac{\cos \left(2 \pi(n+1) f_{0} t\right)}{4 \pi(n+1) f_{0}}-\frac{\cos \left(2 \pi(n-1) f_{0} t\right)}{4 \pi(n-1) f_{0}}\right]\right|_{t=-T / 4} ^{t=T / 4}$ For $\mathbf{n} \neq \mathbf{1}$
$=\frac{A}{2 \pi} \times\left[\frac{-\cos (\pi / 2(n+1))+\cos (-\pi / 2(n+1))}{(n+1)}-\frac{\cos (\pi / 2(n-1))-\cos (-\pi / 2(n-1))}{(n-1)}\right]$

Example 4: cont'd

B_{n} is still NOT completely specified - we still need to calculate it for $\mathrm{n}=\mathbf{1}$; in other words we need to calculate B_{1} :
$B_{n=1}=\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \sin \left(2 \pi \times 1 \times f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \sin \left(2 \pi f_{0} t\right) d t$
Therefore:

$$
\begin{aligned}
\begin{aligned}
& B_{1}= \\
& \frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos \left(2 \pi f_{0} t\right) \sin \left(2 \pi f_{0} t\right) d t=\frac{A}{T} \times \int_{-T / 4}^{T / 4} \sin \left(4 \pi f_{0} t\right) d t \\
&=\frac{-A}{4 \pi} \times\left.\cos \left(4 \pi f_{0} t\right)\right|_{t=-T / 4} ^{t=T / 4}=\frac{-A}{4 \pi} \times[\cos (\pi)-\cos (-\pi)] \\
&=0 \quad \rightarrow \text { This means } \mathbf{B}_{\mathbf{n}}=\mathbf{0} \text { for all } \mathbf{n} \\
& 1 / 17 / 2016 \quad \text { Dr. Ashraf S. Hasan Mahmoud }
\end{aligned}
\end{aligned}
$$

Example 4: cont'd

- To summarize:

$$
A_{n}= \begin{cases}2 A / \pi & n=0 \\ 0 & n \text { odd, } n \neq 1 \\ A / 2 & n=1 \\ 2 A(-1)^{(1+n / 2)} & \\ \left.\hdashline----n^{2}-1\right) & n=2,4,6, \ldots\end{cases}
$$

$$
B_{n}=0 \quad \text { for all } n
$$

- Having computed A_{n} and B_{n} we are now in a position to write the Fourier Series Expansion for $\boldsymbol{s}(\mathrm{t})$

Example 4: cont'd

- The Fourier Series Expansion for $s(t)$ is given by

$$
s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right]
$$

$$
=\frac{A}{\pi}+\frac{A}{2} \cos \left(2 \pi f_{0} t\right)+\frac{2 A}{\pi} \sum_{n=2,4,6}^{\infty} \frac{(-1)^{(1+n / 2)}}{n^{2}-1} \cos \left(2 \pi n f_{0} t\right)
$$

The C_{n} terms (there is a typo in the textbook) are as follows:
Dr.

$$
\begin{array}{cc}
\mathrm{C}_{0}=\mathrm{A} / \pi \\
\mathrm{C}_{1}=\mathrm{A} / 2
\end{array} \quad \begin{gathered}
2 \mathrm{~A}(-1)^{(1+\mathrm{n} / 2)} \\
\\
\mathrm{C}_{\mathrm{n}}=-------\mathrm{n}=2,4,6, \ldots \\
\pi\left(\mathrm{n}^{2}-1\right)
\end{gathered}
$$

Example 4: cont'd

Plot for $s(t)$ and the Fourier Series Expansion for $k=0,1,2$, and 4

Note: As k increases s_e(n=k) approaches the original $s(t)$

Example 4: cont'd

- The total power of $s(t)$ is given by:

$$
\begin{aligned}
P_{s} & =\frac{1}{T} \int_{-T / 4}^{3 T / 4}|s(t)|^{2} d t=\frac{A^{2}}{T} \times \int_{-T / 4}^{T / 4} \cos ^{2}(2 \pi t / T) \\
& =\frac{A^{2}}{T} \times\left.\left[\frac{t}{2}+\frac{\sin (4 \pi t / T)}{8 \pi t / T}\right]\right|_{t=-T / 4} ^{t=T / 4} \\
& =\frac{A^{2}}{4}
\end{aligned}
$$

Therefore total power of $s(t)=0.25 A^{2}$

Example 4: cont'd

- To find n* such that power of s_e(n=n*) = 95\% of total power:

s_e($\mathrm{n}=\mathrm{k}$)	Expression	Power	\% Power ${ }^{+}$
$\mathrm{k}=0$	A/ π	$0.1013 \mathrm{~A}^{2}$	$\begin{gathered} \left(0.1013 a^{2}\right) /(0.25 \\ \left.A^{2}\right)= \\ 40.5 \% \end{gathered}$
$\mathrm{k}=1$	$\mathrm{A} / \pi+\mathrm{A} / 2 \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)$	$0.2263 \mathrm{~A}^{2}$	$\begin{aligned} & \left(\begin{array}{l} \left(0.2622^{2}\right)\left(0.205^{2}\right)^{2} \\ =90.5 \% \end{array}\right. \end{aligned}$
$\mathrm{k}=2$	$\begin{aligned} & \mathrm{A} / \pi+\mathrm{A} / 2 \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)+ \\ & 2 \mathrm{~A} /(3 \pi) \cos \left(2 \pi 2 \mathrm{f}_{0} \mathrm{t}\right) \\ & \hline \end{aligned}$	$0.2488 \mathrm{~A}^{2}$	$\begin{array}{\|c} \hline\left(0.2488^{2}\right) /\left(0.25^{24}\right) \\ 99.5 \% \end{array}$

Therefore $n^{*}=2 \rightarrow$ power of s_e(n=2) $=0.2488 A^{2}$ which is 99.5% of total power of $s(\dagger)$

Example 4: cont'd

- The PSD function for $s(t)$ is as follows:
- Power for DC term $=(A / \pi)^{2}$
- Power for harmonic at $f=f_{0}:(A / 2)^{\mathbf{2}} / \mathbf{2}=A^{2} / 8$
- Power for harmonic at $\mathrm{f}=\mathrm{nf}_{\mathbf{0}}(\mathrm{n}=\mathbf{2 , 4 , 6}, \ldots)$: $\left[2 A /\left(\pi\left(n^{2}-1\right)\right)\right]^{2} / 2=2 A^{2} /\left(\pi\left(n^{2}-1\right)\right)^{2}$
- Therefore PSD function equals to

$$
\operatorname{PSD}(f)=\left(\frac{A}{\pi}\right)^{2} \delta(f)+\frac{A^{2}}{8} \delta\left(f-f_{0}\right)+\frac{2 A^{2}}{\pi^{2}} \sum_{n=2,4,6}^{\infty} \frac{\delta\left(f-n f_{0}\right)}{\left(n^{2}-1\right)^{2}}
$$

Example 4: cont'd

- Plot of The PSD function for $s(t)$

Fourier Transform

- Fourier Series Expansion analysis is applicable for PERIODIC signals ONLY
- There are important signals that are not periodic such as
- Your voice waveform
- Pulse signal $p(t)$ - used for modulation and transmission
- Examples: $\mathbf{p}_{\mathbf{1}}(\mathbf{t})$ and $\mathbf{p}_{\mathbf{2}}(\mathbf{t})$

Fourier Transform (2)

- How to find the frequency content of such signals?
- Use FOURIER TRANSFORM

$$
\begin{aligned}
& X(f)=\int_{-\infty}^{\infty} x(t) e^{-2 \pi j t} d t \\
& x(t)=\int_{-\infty}^{\infty} X(f) e^{2 \pi j f t} d f
\end{aligned}
$$

Notes on Fourier Transform

- F.T describes a two-way transformation

$$
x(t) \leftrightarrow \rightarrow X(f)
$$

where $x(t)$ is the time representation of the signal, while $X(f)$ is the frequency representation of the signal

- $\quad X(f)$ is defined on a continuous range of frequencies
- All frequencies within the range of $X(f)$ where $X(f)$ is not zero contribute towards building $\mathbf{x}(\mathrm{t})$

Notes on Fourier Transform (2)

- The magnitude of the contribution of a particular frequency f^{*} in $\mathrm{x}(\mathrm{t})$ is proportional to $|X(f *)|^{2}$
- Example: Consider the F.T. pair shown below clearly frequencies belonging to ($-1 / \tau, 1 / \tau$) contribute significantly more compared to frequencies belonging to $(1 / \tau, \infty)$ or $(-\infty,-1 / \tau)$

Properties of Fourier Transform

- If $\mathbf{x}(\mathrm{t})$ is time-limited $\rightarrow \mathbf{X}(\mathbf{f})$ is not frequency-limited
- i.e. the range of $X(f)=(-\infty, \infty)$
- X(f) is complex-valued (has magnitude and phase) in general, i.e. $x(f) \in \mathbb{C}$
- If $\mathbf{x}(\mathrm{t})$ is a real-valued symmetric \rightarrow $\mathbf{X}(\mathbf{f})$ is real-valued, i.e. $\quad X(f) \in \mathbb{R}$

Relation between Fourier Series Expansion and Fourier Transform

- Consider the following two signals:

Relation between Fourier Series Expansion and Fourier Transform (2)

- The separation between spectral lines for a periodic signal is $1 / T$
- As $\mathbf{T} \rightarrow$ infinity and $s(t)$ becomes non periodic \rightarrow the separation between spectral lines \rightarrow zero (i.e. it becomes continuous)

Example 5:

- Problem: Consider the square pulse function shown in figure:
- Write a mathematical expression for $p(t)$
- Find the Fourier transform for $\mathbf{p (t)}$
- Plot P(f)

Example 5: cont'd

- Answer: p(t) can be expressed as

$$
\begin{aligned}
\mathbf{p}(\mathbf{t}) & =\mathbf{A} & & |\mathbf{t}| \leq \tau / 2 \\
& =\mathbf{0} & & \text { otherwise }
\end{aligned}
$$

The F.T. for $p(t), P(f)$ is given by

$$
P(f)=\int_{-\infty}^{\infty} p(t) e^{-2 \pi j t} d t
$$

$P(f)$ is real-valued - for this specific example of $p(t)$; why?

Example 5: cont'd

- Which is equal to

$$
\begin{aligned}
P(f) & =\int_{-\infty}^{\infty} p(t) e^{-2 \pi j f f} d t=\int_{-\tau / 2}^{\tau / 2} A e^{-2 \pi j f t} d t \\
& =\frac{A}{-2 \pi j f} \int_{-\tau / 2}^{\tau / 2} e^{-2 \pi j f t} d t=-\frac{A}{2 \pi j f} \times\left(e^{-\pi j f t}-e^{\pi j \tau}\right)
\end{aligned}
$$

$$
=\frac{A}{\pi f} \times \frac{\left(e^{\pi j f \tau}-e^{-\pi i f \tau}\right)}{2 j}
$$

$$
=A \tau \frac{\sin (\pi f \tau)}{\pi f \tau}
$$

$$
\begin{aligned}
& \text { Remember: Euler identity : } \\
& \mathrm{e}^{\mathrm{j} x}=\cos (x)+\mathrm{j} \sin (x) \text {, OR } \\
& \cos (x)=\left(\mathrm{e}^{\mathrm{e} x}+\mathrm{e}^{-\mathrm{j} x}\right) / 2 \\
& \sin (x)=\left(\mathrm{e}^{\mathrm{j} x}-\mathrm{e}^{-\mathrm{j} x}\right) /(2 \mathrm{j}) \\
& \text { oud }
\end{aligned}
$$

Example 5: cont'd

- $\mathbf{P (f)}$ plot for $\mathbf{A}=1$ and τ = 1
- Note:
- $\mathbf{P}(\mathbf{f})$ is define on $(-\infty, \infty)$
- $P(f)$ is continuous (except at $\mathrm{f}=0 \mathrm{~Hz}$)
- $\mathbf{P}(\mathbf{f})=$ ZERO for $\mathbf{f}=\mathbf{n} / \tau$
- For practical pulses $\mathbf{P (f) ~ a p p r o a c h e s ~ z e r o ~}$ as $\mathrm{f} \rightarrow \pm \boldsymbol{\infty}$
- Most of the energy of $p(t)$ is contained in the period of $(-1 / \tau, 1 / \tau)$

Energy Spectral Density Function (ESDF)

- ESDF is defined as

$$
E S D(f)=\frac{1}{2 \pi} P(f) P^{*}(f)
$$

where $P(f)$ is the F.T. of the pulse $p(t) . P^{*}(f)$ is the complex conjugate of $P(f)$.

- ESDF is a measure of how much energy is contained at a particular frequency f
- Units of ESDF is Joules per Hz
- How would you compare ESDF with PSDF?

Example 5 (For A = 1 Volts and Taw
 = 1 sec) - cont'd

Example 5 (For A = 1 Volts and Taw
 = 1 sec) - Matlab Code

- Code for producing plots on previous slide

```
clear all; LineWidth = 3; FontSize = 14
%Example of rectangular pulse
A = 1; Taw = 1; % parameters for the rectangle pulse
t_step = 0.01; f_step = 0.01; Nmax = 4;
t = -Taw:t_step:Taw; % define the time axis
f = -Nmax/Taw:f_step:Nmax/Taw; % define the frequency axis
p_t = A*rectpuls(t/Taw); % The rectangle pulse of height A and width Taw
P_f = A*Taw*sin(pi*Taw*f)./(pi*Taw*f); % The corresponding F.T P(f)
ESTDF_f = P_f.*Conj(P_f)/(2*pi); % The ESDF
figure(1); clf; set(gca, 'FontSize', FontSize);
h = plot(t, p_t, '-r', 'LineWidth', LineWidth);
xlabel('time - (sec)'); ylabel('amplide (volts)'); grid on;
figure(2); clf; set(gca, 'FontSize', FontSize);
h = plot(f, abs(P_f), '-r', 'LineWidth', LineWidth);
xlabel('frequency - (Hz)'); ylabel('abs(P(f))'); grid on;
figure(3); clf; set(gca, 'FontSize', FontSize);
h = plot(f, ESDF f, '-r', 'LineWidth', LineWidth);
xlabel('frequency - (Hz)'); ylabel('ESDP (Joules/Hz)'); grid on;
```


Example 6:

- Repeat example 5 for triangular pulse shown in textbook Figure A. 2 page 839. Let be equal to 2 seconds and be equal to $\mathbf{3}$ volts.

Example 7:

- Problem: If the FSE expansion for the function $g(t)$ is as given below. Compute the FSE for the function $\mathbf{s}(\mathbf{t})$ without computing the FSE coefficients for $s(t)$.

Z-Transform

- Digital signals
- Discrete-time signals - sampled continues-time signals
- E.g. I/O signal used by micro-controllers
- Systems described by difference equations
- E.g. CD player contains digital signal processing system (digital filter) to manipulate the digital audio signal
- For such systems input and output are related by difference equations and the Ztransform is used to solve these systems

Z-Transform - Introduction

- For Modern systems

processing - filtering noise, equalizing music, adding effects to audio/video, etc.

Z-Transform - Definition

- Let $\mathbf{y}(\mathrm{t})$ be a continuous-time signal (function)
- Define \mathbf{T} - sampling period
- Then $-\nu(k)=y_{k}=\gamma(k T)$ for $k=0,1,2,3, \ldots$ defines uniformly spaced samples of the original signal $\boldsymbol{\gamma}(\boldsymbol{t})$
- The Z-Transform for $\mathbf{y k}$ is defined as

$$
Z\left[y_{k}\right]=Y(z)=\sum_{k=-\infty}^{\infty} y_{k} z^{-k}
$$

if the summation converges

Z-Transform - Example 1

- Compute the Z-transform for the sequence

$$
y(k)=y_{0} a^{k}
$$

for $k=0,1,2, \ldots$ and $0<a<1$

- Compute the Z-transform for the sequence
- A plot for $\mathbf{y}(\mathrm{k})$ is shown for $0<a<$ 1
- Note the $\mathbf{y}(\mathbf{k})$ is defined only on specific indices (time samples)

- Applying the definition
$Y(z)=\sum_{k=-\infty}^{\infty} y_{k} z^{-k}=\sum_{k=0}^{\infty} y_{0} a^{k} z^{-k}=y_{0} \sum_{k=0}^{\infty}(a / z)^{k}=\frac{y_{0}}{1-a / z}=\frac{y_{0} z}{z-a}$ for $|a / z|<1$.

Z-Transform - Example 2

- Compute the Z-transform for the sequence

$$
y(k)=2(0.9)^{k}
$$

for $k=0,1,2, \ldots$ and $0<a<1$

- Compute the Z-transform for the sequence
- A plot for $\mathbf{y}(\mathrm{k})$ is shown for $0<a<$ 1

- Using the previous result

$$
Y(z)=\frac{2}{1-0.9 / z}=\frac{2 z}{z-0.9}
$$

for $|0.9 / z|<1$.

Z-Transform - Example 3

- Compute the Z-transform for the sequence

$$
\delta(k)= \begin{cases}1 & k=0 \\ 0 & k \neq 0\end{cases}
$$

- Compute the Z-transform for the sequence

- Using the definition

$$
\Delta(z)=\sum_{k=-\infty}^{\infty} \delta(k) z^{-k}=\delta(0) z^{0}=1
$$

for all \mathbf{z}.

Z-Transform - Example 3

- Compute the Z-transform for

 the sequence$$
u(k)= \begin{cases}1 & k=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

- Compute the Z-transform for the sequence

- Using the definition
$U(z)=\sum_{k=-\infty}^{\infty} u(k) z^{-k}=\sum_{k=0}^{\infty} z^{-k}=z^{0}+z^{-1}+z^{-2}+\ldots=\frac{1}{1-1 / z}=\frac{z}{z-1}$
for $|1 / z|<1$.

$$
y_{0} u(k) \leftrightarrow \frac{y_{0} z}{z-1} \text { pair (3) }
$$

Z-Transform - Example 4

- Compute the Z-transform for the sequence
$y(k)=[2,4,6,4,2,0]$
for $k=0,1,2,3,4$, and 5 , respectively
- Compute the Z-transform for the sequence

- Using the definition

$$
Y(z)=\sum_{k=-\infty}^{\infty} y(k) z^{-k}=2 z^{0}+4 z^{-1}+6 z^{-2}+4 z^{-3}+2 z^{-4}+0 z^{-5}
$$

for $|1 / z|<1$.

Inverse Z-Transform - Example 5

- Compute the Inverse Z-Transform for

$$
Y(z)=\frac{2 z}{z-0.3}
$$

- We use pair (1) $\rightarrow \mathrm{y} 0=2$ and $\mathrm{a}=3$

Or $y(k)$ is given by

$$
y_{k}=2(0.3)^{k}
$$

for $\mathbf{k}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots$
$\mathbf{y}(\mathrm{k})$ may be rewritten as

$$
y_{k}=2(0.3)^{k} u(k)
$$

Inverse Z-Transform - Example 6

- Compute the Inverse Z-Transform for

$$
Y(z)=\frac{10}{(z-0.3)(z-0.9)}
$$

- Solution?

