## KFUPM - COMPUTER ENGINEERING DEPARTMENT

## COE-241 - Data and Computer Communication

## Assignment \#2 - Due Tuesday Feb 23 ${ }^{\text {rd }}$ - in class

Student Name:
Student Number:

| Problem \# | Maximum <br> Mark | Mark |
| :--- | :--- | :--- |
| 1 | $10+10$ |  |
| 2 | 30 |  |
| 3 | $20+10$ |  |
|  |  |  |
|  |  |  |
| Total | $60+20$ |  |

## Problem 1 ( 10 points +10 bonus)

Consider the following signal $s(t)=(1+0.1 \cos (5 t)) \cos (100 t)$.
a) (10 points) Decompose $s(t)$ into a linear combination of sinusoidal functions and find the amplitude, frequency, and phase of each component.
b) (bonus 5 points) Find the period (or frequency) of $s(t)$
c) (bonus 5 points) Find the total power for $s(t)$.

Hint: Use the identity $\cos (a) \cos (b)=\frac{1}{2}[\cos (a-b)+\cos (a+b)]$

## Problem 2 ( 30 points):

Consider the two periodic signal $s(t)$ and $g(t)$ shown in Figure. Both signals have amplitude of $A$ volts and period $T$ seconds.

From class notes we know that the Fourier Series Expansion (FSE) for $s(t)$ is given by

$$
s(t)=\frac{A}{\pi}+\frac{A}{2} \cos \left(\frac{2 \pi}{T} t\right)+\frac{2 A}{\pi} \sum_{n=2,4,6}^{\infty} \frac{(-1)^{1+n / 2}}{n^{2}-1} \cos \left(\frac{2 \pi}{T} \times n \times t\right)
$$

a) (5 points) If power for signal $s(t)$ is equal to $\frac{A^{2}}{4}$ (refer to class notes), what would be the power for the signal $g(t)$ ? Why? Use intuition and do not calculate using $P_{g}=\frac{1}{T} \int_{0}^{T}|g(t)|^{2} d t$.
d) (15 points) Derivation for the FSE for signal $g(t)$ WITHOUT using the definition for F.S.E.

Hint: write $g(t)$ as a shifted and/or scaled version of $s(t)$ and substitute in the given FSE for $s(t)$. You may need the trigonometric identity $\cos (a \pm b)=\cos (a) \cos (b) \mp \sin (a) \sin (b)$


Figure: Signals $s(t)$ and $g(t)$ for problem 2.

Problem 3 ( 20 point + 10 bonus) On the subject of Z-transform
a) (5 points) Compute the Z-transform for the sampled signal $x(n)=5 \times 0.8^{n}$ for $n=0,1,2, \ldots$.
b) (5 points) Compute the Z-transform for the sampled signal $x(n)=5 \times 0.8^{n} u(n)$.
c) (5 points) Compute the Z-transform for the sampled signal $x(n)=5 \times 0.8^{n} u(n-3)$.
d) (5 points) Compute the inverse Z-transform for $X(z)=\frac{2 z}{z-0.5}$.
e) (10 points - bonus) Compute the inverse Z-transform for $X(z)=\frac{6}{(z-0.8)(z-0.2)}$.

Student must show their work and required steps.

