KFUPM - COMPUTER ENGINEERING DEPARTMENT COE-540 - Computer Networks

Student Name:

Student Number:

a) $A=1$ volts, $T=1 \mathrm{msec} \rightarrow \mathrm{fO}=1 / \mathrm{T}=1000 \mathrm{~Hz}$.

From textbook/slides/notes, the coefficients are given by:

$$
\begin{aligned}
a_{n} & =\frac{A}{\pi n}[\cos (\pi n / 4)-\cos (3 \pi n / 4)+\cos (6 \pi n / 4)-\cos (7 \pi n / 4)] \\
b_{n} & =\frac{A}{\pi n}[\sin (3 \pi n / 4)-\sin (\pi n / 4)+\sin (7 \pi n / 4)-\sin (6 \pi n / 4)] \\
c & =3 A / 4
\end{aligned}
$$

Then the output signal is given by

$$
\begin{aligned}
g_{L P F}(t)=c / 2 & +a_{1} \sin \left(\frac{2 \pi \times 1}{T} t\right)+a_{2} \sin \left(\frac{2 \pi \times 2}{T} t\right)+a_{3} \sin \left(\frac{2 \pi \times 3}{T} t\right) \\
& +b_{1} \cos \left(\frac{2 \pi \times 1}{T} t\right)+b_{2} \cos \left(\frac{2 \pi \times 2}{T} t\right)+b_{3} \cos \left(\frac{2 \pi \times 3}{T} t\right)
\end{aligned}
$$

The power for $g_{L P F}(t)$ is simply equal to:

$$
P_{g_{L P F}(t)}=\left(\frac{c}{2}\right)^{2}+\sum_{n=1}^{3} \frac{a_{n}^{2}}{2}+\frac{b_{n}^{2}}{2}
$$

Substituting, power is output signal is
b) The noise power for this system is given by

$$
N=N_{0} \times B=1.0539 \times 10^{-16} \times 3000=3.1617 \times 10^{-13} \text { Watts }
$$

The bandwidth for the system B is equal to $3 \times f_{0}=3000 \mathrm{~Hz}$.
Therefore, SNR is given by

$$
S N R=\frac{\text { avg signal power }}{\text { avg noise power }}=\frac{P_{g_{L P F}(t)}}{N_{0} \times B}=\frac{0.3162 \times 10^{-6}}{3.1617 \times 10^{-13}} \sim 1000 \text { or } 60 \mathrm{~dB}
$$

c) The maximum theoretical capacity is given by Shannon formula:

$$
\begin{aligned}
& C=B \times \log _{2}(1+S N R) \\
& =(3000) \times \log _{2}(1+1000) \\
& \sim 59.8 \mathrm{~kb} / \mathrm{s}
\end{aligned}
$$

d) Ignoring noise, $C=2 B \log 2(M)$ - we can choose M as large as possible $\rightarrow C$ can be as large as possible.
e) To achieve $C=59.8 \mathrm{~kb} / \mathrm{s}$ using a bandwidth of 3000 Hz

$$
C=2 B \log 2(M) \rightarrow M=\operatorname{ceil}\left(2^{\wedge}(C / 2 B)\right)=10001 \text { symbols }
$$

This is typically rounded up to the nearest power of 2 - Ans $=1024$ symbols.

