King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 540 - Computer Networks

Term 151

Dr. Ashraf S. Hasan Mahmoud

Rm 22-420

Ext. 1724

Email: ashraf@kfupm.edu.sa

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

1

Lecture Contents

- 1. The channel allocation problem
- 2. Multiple access protocols
- 3. Ethernet
- 4. Wireless LANs
- 5. Broadband Wireless
- 6. Bluetooth, RFID
- 7. Data link layer switching

These slides are based on the Tanenbaum's textbook and original author slide

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Medium Access Control (MAC)

- Data link layer typically divided into
 - · Logical link control (LLC), and
 - Medium access control (MAC)
- MAC determined how to access the medium and transmit the information
 - Point-to-point link MAC is simple
 - Shared media ?
- The central theme of the chapter is how to allocate a single broadcast channel among competing users.

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

.

The Channel Allocation Problem - Static Allocation

- Traffic:
 - Bursty data (variable/random intensity)
 - Non-bursty constant arrival rate (bits, frames, etc.)
- FDM an example of static allocation scheme
 - System bandwidth B Hz is divided equally between N users each user has B/N Hz
 - Excellent for non-bursty traffic but VERY poor for highly bursty traffic.
 - Hard capacity limit if more than N users want to access the channel → blocked
- Same arguments apply for time division multiplexing (TDM) as well

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

The Channel Allocation Problem - Static Allocation (2)

• Assume total capacity = C b/s, frames arrive with λ frames/sec and have average length of $1/\mu$ bits, then the mean time delay T is given by

$$T = \frac{1}{\mu C - \lambda}$$

- The above formula is valid for an M/M/1 queue setting
- Now, divide the total capacity in to N sub-channels (FDM or TDM) and let the frame arrivals per sub-channel to be λ/N. The mean time delay now, T_N, is given by

$$T_{N} = \begin{array}{ccc} & 1 & N \\ \hline T_{N} = & ----- & = ---- & = N T \\ \hline \mu(C/N) - \lambda/N & \mu C - \lambda \end{array}$$

- It is clear than TN is N times the original T This is referred to by the scaling effect for M/M/1 queues; refer to queueing slides.
- Conclusion Static allocation is very bad for bursty traffic
 - No need to reserve the channel for the entire duration of the bursty traffic session

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Background - Probability and Statistics - (1)

- Bernoulli Distribution
 - · Experiment with two outcomes: 0 and 1
 - Prob of success = p → prob of failure = 1-p
- Binomial Distribution
 - If $I \in \{0,1\}$ represents the outcome of a Bernoulli experiment, then $K = I_1 + I_2 + \cdots + I_N$ is the sum of N Bernoulli experiments
 - $K \in \{0, 1, ..., N\}$ is a discrete RV, where the prob mass function is given by

$$Prob[K = k] = {N \choose k} p^k (1-p)^{N-k} \quad k = 0, 1, ..., N$$

- Mean of K is given by E[K] = Np
- Geometric Distribution
 - If $I \in \{0,1\}$ represents the outcome of a Bernoulli experiment, then define K as the number of experiment till a success occurs
 - $K \in \{1,2,\dots,\infty\}$ is a discrete RV, where the prob mass function is given by $\operatorname{Prob}[K=k] = p(1-p)^{k-1} \quad k=1,2,\dots,\infty$
 - Mean of K is given by E[K] = 1/p

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Background - Probability and Statistics - (2)

- Poisson Distribution
 - Limiting case of Binomial distribution where $N \to \infty$ and $p \to 0$ such that $\lambda = Np$ remains constant
 - λ is the average number of events per time unit
 - The number of events K occurring in a time unit is a discreet RV; $K \in \{0, 1, ..., \infty\}$
 - · The prob mass function is given by

$$Prob[K = k] = \frac{\lambda^k}{k!} e^{-\lambda} \quad k = 0, 1, ..., \infty$$

• Note that if we define *K* as the number of events in an interval of length *T*, then *K* has the following prob mass function

$$Prob[K = k] = \frac{(\lambda T)^k}{k!} e^{-\lambda T} \quad k = 0, 1, ..., \infty$$

Note that the mean in this case is $E[K] = \lambda T$

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

.

Background - Probability and Statistics - (3)

- Exponential Distribution
 - Let τ denote the inter-event time for the Poisson process τ is a continuous RV; $\tau \in (0, \infty)$
 - The prob density function for τ is given by

$$f_{\tau}(t) = \lambda e^{-\lambda t}$$
 $t_{\tau} \lambda > 0$

- The mean for τ is $E[\tau] = 1/\lambda$ time units
- The Poisson distribution and Exponential distribution are two faces for one coin!

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Dynamic Channel Allocation - Assumptions

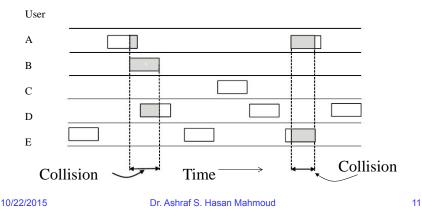
- Independent traffic N independent sources (e.g. computers, telephones, users)
 - Average number of arrivals during Δt is equal to $\lambda \Delta t$.
 - Once a frame is generated, the source is blocked till the frame has been successfully transmitted
 - Poisson model mathematically tractable.
- Single channel only a single channel is available for all communications
- Observable collisions
- Continuous or slotted time
- Carrier sense versus no carrier sense

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

9

Multiple Access Protocols - Pure ALOHA


- Two versions
 - Pure ALOHA
 - Slotted ALOHA
- Pure ALOHA users transmit whenever they have data to be sent
- Assumptions:
 - Group of N terminals send frames to a central computer
 - Correctly received frames are acknowledged on the downlink channel
 - Frames not acknowledged (i.e. were not received or not correctly received) are scheduled for retransmission
 - Two or more frame overlapping in time are said to be collided
- ALOHA is a contention system

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Multiple Access Protocols - Pure ALOHA (2)

- PURE ALOHA = Start of transmission for frames can be at *any* point in time
- Example below 5 terminals transmitting frames whenever the frames are ready to be sent
 - Observe the two collision events

Multiple Access Protocols - Slotted ALOHA (3)

- Slotted ALOHA = Start of transmission for frames can be only at slot border
- Time axis is divided into equal slot periods equal to the frame time
 - Frames arriving in one slot can be transmitted at the beginning of the next slot

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Throughput of Pure/Slotted ALOHA (4)

- Throughput fraction of transmitted frames that are correctly received per frame time.
- Assume new frames generation follow Poisson distribution average of N frames per frame time
 - Note the channel can handle at most 1 frame per frame time
 - For reasonable throughput we expect 0 < N < 1.
- Further assume that old and new frames generated follow Poisson distribution – average of G frames per frame time
 - Clearly G >= N
- Throughput, S, is the fraction of G that do NOT collide

 $\mathsf{S} = \mathsf{G} \ \mathsf{Prob} \ [$ no transmissions from the rest of the population in the vulnerable period]

where G – frames per frame time represent the average load injected into the system

10/22/2015

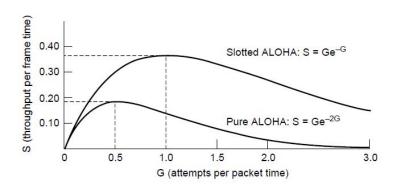
Dr. Ashraf S. Hasan Mahmoud

13

Throughput of Pure/Slotted ALOHA (5)

- Vulnerable period for pure ALOHA is of length equal to TWO frame time
- Vulnerable period for Slotted ALOHA is of length equal to ONE frame time
- Prob of k frames generated during a given frame time in which G frames are expected is given by the Poisson distribution:

Therefore, P0 is equal to


P0 =
$$(2G)^0 e^{-(2G)} / 0! = e^{-2G} \leftarrow Pure ALOHA$$

= $(1G)^0 e^{-(1G)} / 0! = e^{-G} \leftarrow Slotted ALOHA$

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Throughput of Pure/Slotted ALOHA (6)

Throughput versus offered traffic

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

15

Throughput of Pure/Slotted ALOHA (7)

- Throughput peak at G*
 - $G^* = 0.5$ attempt per packet time for pure ALOHA
 - G* = 1.0 attempt per packet time for slotted ALOHA
- For G > G* → collisions increase exponentially → throughput approaches zero
- Proof (Slotted ALOHA case)

Probability of success = $P0 = e^{-G}$

Prob of failure = $1 - P0 = 1 - e^{-G}$

Consider the random variable (RV) k defined as then number of transmission for packet until it is success \rightarrow k is a geometric RV – refer to discrete RVs material

$$P_k = e^{-G} (1 - e^{-G})^{k-1}$$
 for $k = 1, 2, \dots$

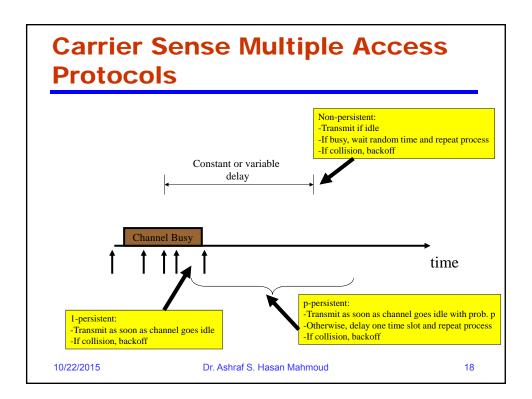
The expected number of transmission can be computed as

$$E = \sum_{k=1}^{\infty} k P_k = \sum_{\substack{c}}^{\infty} k e^{-G} \left(1 - e^{-G}\right)^{k-1} = e^G$$
 Exponential with load with load

10/22/2015

Slotted ALOHA with Finite Number of Terminals

- N terminals each performs a Bernoulli experiment at every slot
 - Transmits with prob p does not transmit with prob 1-p
 - Number of transmission attempts in a slot K → Binomial distribution with average Np
 - The prob mass function is given by


Prob
$$[K = k] = {N \choose k} p^k (1-p)^{N-k} \quad k = 0, 1, ..., N$$

 Prob of successful transmission is the probability of only one terminal transmitting in a time slot

$$P_{\rm S} = Np(1-p)^{N-1}$$

- As with Slotted ALOHA with infinite number of terminal, Ps is the throughput while Np represents the load
- Note that Ps can be maximized if we set p=1/N more on this later!

10/22/2015 Dr. Ashraf S. Hasan Mahmoud

Throughput of CSMA Protocols

Unslotted Nonpersistent CSMA

$$S = \frac{Ge^{-aG}}{G(1+2a) + e^{-aG}}$$

Slotted Nonpersistent **CSMA**

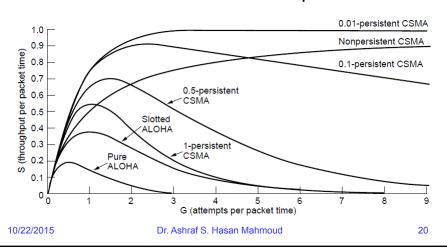
$$S = \frac{aGe^{-aG}}{1 - e^{-aG} + a}$$

Unslotted 1-Persistent CSMA

$$S = \frac{G[1 + G + aG(1 + G + aG/2)]e^{-G(1+2a)}}{G(1+2a) - (1 - e^{-aG}) + (1+aG)e^{-G(1+a)}}$$

Slotted 1-Persistent CSMA

$$a = T_{prop}T_{p}$$


$$T_{prop} = propagation delay$$

$$T_{p} = packet/frame transmission time$$

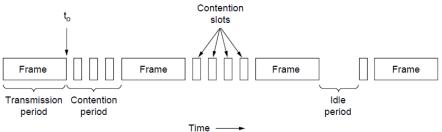
$$S = \frac{G[1 + a - e^{-aG}]e^{-G(1+a)}}{(1+a)(1-e^{-aG}) + ae^{-G(1+a)}}$$

Throughput of CSMA Protocols cont'd

Comparison of the channel utilization versus load for various random access protocols

CSMA with Collision Detection

- Persistent and nonpersistent CSMA protocols are an improvement over ALOHA protocols. Why?
- An added improvement is CSMA with collision detection – CSMA/CD; the basis for the classical Ethernet LAN
- CSMA/CD model:
 - At t0 a station has finished transmission
 - Stations may attempt to transmit during the contention period
 - If collision
 - Abort transmission
 - Wait for a random time
 - Retry


10/22/2015

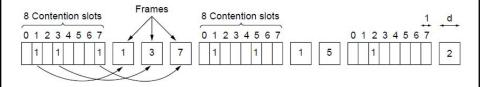
Dr. Ashraf S. Hasan Mahmoud

21

CSMA with Collision Detection (2)

CSMA/CD can be in contention, transmission, or idle state

Tillie


- If two stations begin transmitting at t0 How long does it take them to detect the collision?
- A station cannot be sure that it has seized the channel until it has transmitted for 2π without detecting a collision
 - τ is the signal propagation time for the full cable length

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Collision-Free Protocols - Bit-Map Protocol

- For N stations we have N contention slots
 - There is not real contention here ith slot is dedicated for ith station.
 - If station i has data to send, then it transmits a bit 1 in its contention slot
- When the N contention slots are complete, all stations (assuming all are listening) have a map of traffic to be sent from all stations
- Refer to the figure.

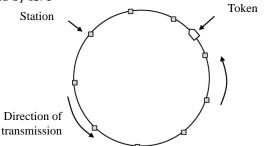
- Example for N = 8; stations 1, 3, and 7 have traffic to send for the first round
- A form of reservation protocol
- Length of contention slot = 1 unit, length of data frame = d units

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

23

Bit-Map Protocol (2)


- Mean access delay low load case:
 - Low numbered stations (such as 0 or 1) N/2 + N
 = 1.5 N
 - High numbered stations (such as N-1 and N) N/2
 - Average = 1.5 N + 0.5 N = N for all terminals
- Mean access delay high load case
 - Queueing time + (N-1)d + N
- Channel efficiency
 - Low load d/(d + N)
 - High load Nd/(Nd + N) = d/(d + 1)

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

- Token = permission to send
- Topology determines the order of transmission/permissions
- Frames transmitted in the direction of the token
- Source of destination of frame must remove frame transmission from ring
- Performance IEEE802.5
- Fiber Distributed Data Interface (FDDI)
- Resilient Packet Ring (RPR) IEEE802.17 ~ 2000's metropolitan area rings used by ISPs

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Binary Count Down

- Basic bit-map and token rings suffer from overhead of 1 bit per station
 - Does not scale well
- Transmit addresses in binary form
- Higher address have higher priority

Channel efficiency d/(d+log2N)

May be as high as 100%

0 1 2 3 0 0 1 0 0 1 0 0

Bit time

1 0 1 0

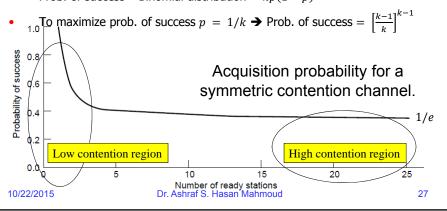
1 0 0 1 1 0 0 -1 0 1 0 1 0 1 0

Result

The binary countdown protocol. A dash indicates silence.

Stations 0010 and 0100 see this 1 and give up

Station 1001 sees this 1 and gives up


25

10/22/2015

Dr. Ashraf S. Hasan

Limited-Contention Protocols

- Combination of contention and collision-free protocols
- Station attempts to acquire channel with prob. p may be different for different terminals
 - Prob. (1-p) to defer transmission
- Prob. of success Binomial distribution = $kp(1-p)^{k-1}$



Adaptive Tree Walk

- Stations are represented by the leaves of the binary tree.
- - Slot 0 (first contention slot following a successful frame transmission) all terminals are permitted to attempt
 - If collision, during slot 1, only stations falling under node 2 are permitted to
 - If one of them acquires the channel, then subsequent slot (slot 2) is reserved for stations under node 3
 - If collision (i.e. 2 or more stations under node 2 want to Tx), only stations under node 4 are allowed to compete for slot 2

- Enhancements when load is heavy no need to dedicate slot 0 for node 1
 - Same can be argued for nodes 2 and 3 since many terminals want to transmit!

Where to start the search? Dr. Ashraf S. Hasan Mahmoud

10/22/2015

Adaptive Tree Walk - cont'd

- Assume q terminals on average want to send distributed uniformly in the tree
- Level i of binary tree has 2^{-i} fraction of terminals \rightarrow number of terminals with traffic under node i is equal to $2^{-i}q$
- For optimality, we should start the search at the level where the expected number of contending stations is equal to $1 \rightarrow i = \log_2(q)$

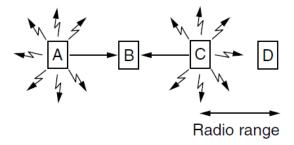
10/22/2015

Dr. Ashraf S. Hasan Mahmoud

29

Wireless LAN Protocols

- IEEE802.11 versus WiFi
- For wireless no collision detection; Limited radio range
- Transmitter has no means of finding out the status at the receiver → Hidden and exposed terminal problems
- Solution Medium Access with Collision Avoidance (MACA) - RTS and CTS
- Collisions are still possible

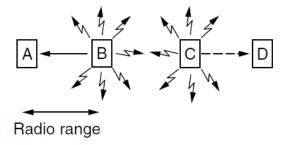

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Wireless LANs (2) – Hidden terminals

<u>Hidden terminals</u> are senders that cannot sense each other but nonetheless collide at intended receiver

- Want to prevent; loss of efficiency
- A and C are hidden terminals when sending to B

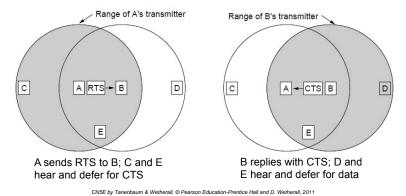


CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 201

Wireless LANs (3) – Exposed terminals

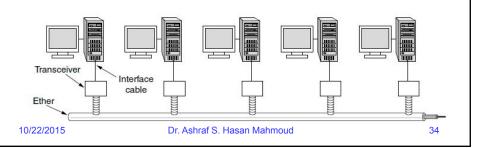
<u>Exposed terminals</u> are senders who can sense each other but still transmit safely (to different receivers)

- Desirably concurrency; improves performance
- B → A and C → D are exposed terminals



CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Wireless LANs (4) - MACA


MACA protocol grants access for A to send to B:

- · A sends RTS to B [left]; B replies with CTS [right]
- A can send with exposed but no hidden terminals

Ethernet

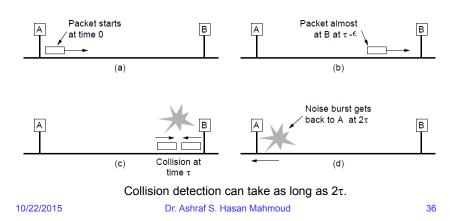
- De facto LAN standard
- Classical versus switched Ethernet
- Relation to IEEE802.3
- Classical Ethernet physical layer
 - 1978 10 Mb/s Ethernet (DIX standard)
 - Coaxial cable (thick versus thin) BNC connectors
 - Repeaters connecting multiple segments max 2.5 km with 4 repeaters at most

Classic Ethernet - MAC Sublayer

- \bullet Preamble 8 bytes; each byte 10101010 with the exception of the last byte in which the last 2 bits are set to 11
 - Last byte is called SOF for IEEE802.3
- Machester encoding 10 MHz
- Type/Length fields
 - Max frame length 1500 bytes of data
 - Min frame length 64 bytes (with padding if needed)
- 32-bit CRC checksum

tes	8	6	6	2	0-1500	0-46	4
a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum
					,,		

Frame formats. (a) Ethernet (DIX). (b) IEEE 802.3.


10/22/2015

Dr. Ashraf S. Hasan Mahmoud

35

Classic Ethernet - MAC Sublayer (2)

- Ethernet slot time = 2xTprop
- Min frame length is longer than the slot time

Classic Ethernet - CSMA/CD with Binary Exponential Backoff

- After the *i*th collision, a random number between 0 and 2ⁱ 1 is chosen where k = min(i, 10)
- Up to 16 consecutive collisions what happens afterwards?
- No ack provided

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

37

Classic Ethernet Performance

- Assumptions
 - Constant and heavy load k stations are always ready to transmit
 - Constant retransmission probability in each slot
- If each station transmits during a contention slot with probability p, then the probability of success is

$$A = kp(1-p)^{k-1}$$

- Remember that A is maximized when p=1/k, with $A \to 1/e$ as $k \to \infty$
- The probability that the contention interval has exactly j slots in it is $A(1-A)^{j-1}$ \rightarrow mean number of slots per contention interval is

$$\sum_{i=1}^{\infty} jA(1-A)^{j-1} = \frac{1}{A}$$

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Classic Ethernet Performance - cont'd

F – frame length

B - link rate

L – cable length

c – signal propagation speed

e – contention slots per frame

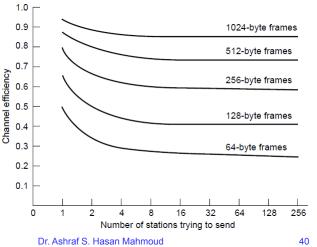
- Then the mean of contention interval, w, is $2\tau/A$
- Let P be mean frame time \rightarrow Efficiency is calculated as

Channel Efficiency =
$$\frac{P}{P + 2\tau/A}$$

Under optimum conditions, efficiency may be written as

Channel Efficiency =
$$\frac{1}{1 + 2BLe/(cF)}$$

10/22/2015

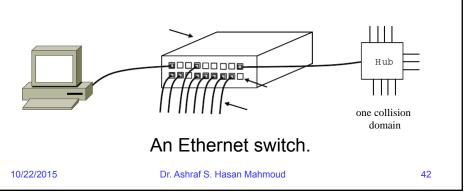

Dr. Ashraf S. Hasan Mahmoud

39

Efficiency of Ethernet at 10 Mb/s with 512-bit time slot

 \rightarrow 2 τ = 51.2 μsec

10/22/2015


Switched Ethernet

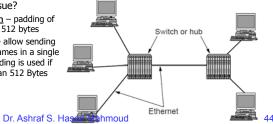
- For fast 100 Mb/s Ethernet
- High-speed backplane that connects all ports
 - Proprietary algorithm

Switched Ethernet (2)

- Collision domain
- Concentration ports
- Promiscuous mode Security benefits

Fast Ethernet

- IEEE802.3u (June 1995) amendment to the existing IEEE802.3
- Identical frame format and procedural rules to 10 Mb/s Ethernet
- 100BaseTX
 - Uses 4B/5B encoding 125 MHz signal to provide 100 Mb/s
 - Full duplex can send 100 Mb/s on one twisted pair and receive at 100 Mb/s on another pair
- 100BaseFX two strands of multimode fiber (one per direction)
- Supports switches and hubs


Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps (Cat 5 UTP)
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

Original fast Ethernet cabling

10/22/2015 Dr. Ashraf S. Hasan Mahmoud

Gigabit Ethernet

- All configurations use point-to-point links only between computers/switches
- Two modes supported Full Duplex (when connecting to a switch) and Half Duplex
- Full duplex mode
 - Lines are buffered
 - No CSMA/CD; max cable length determined by signal strength
 - Auto negotiation
- Half-duplex
 - Connecting to a hub
 - CSMA/CD is used
 - How to deal with the min frame length of 64-Bytes issue?
 - <u>Carrier-extension</u> padding of frame to extend to 512 bytes
 - <u>Frame bursting</u> allow sending to send multiple frames in a single transmission – padding is used if the burst is less than 512 Bytes

43

10/22/2015

Gigabit Ethernet

- 8B/10B 8-bit data encoded as 10-bit code words balanced and have sufficient transitions
- NRZ requires 25% extra bandwidth
- Jumbo frames extends maximum frame length from 1500 Bytes to 9KBytes – proprietary feature

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

Gigabit Ethernet cabling

10/22/2015 Dr. Ashraf S. Hasan Mahmoud 45

10 Gigabit Ethernet

- Full duplex mode only
- CSMA/CD is not part of the design
- Fiber options: 64B/66B code
- 10GBase-CX4: 4 pairs of twinaxial copper wiring each pair 8B/10B coding provides 3.125 Gsymbol/sec
- 10GBase-T: 800 Msymbols/sec (16 different voltage levels) LDPC coding

Name	Cable	Max. segment	Advantages
10GBase-SR	Fiber optics	Up to 300 m	Multimode fiber (0.85μ)
10GBase-LR	Fiber optics	10 km	Single-mode fiber (1.3 μ)
10GBase-ER	Fiber optics	40 km	Single-mode fiber (1.5 μ)
10GBase-CX4	4 Pairs of twinax	15 m	Twinaxial copper
10GBase-T	4 Pairs of UTP	100 m	Category 6a UTP

10 Gigabit Ethernet cabling

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

http://en.wikipedia.org/wiki/100_Gigabit_Ethernet

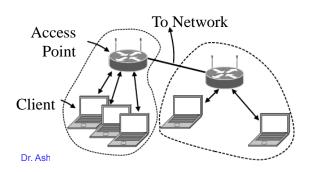
40 GbE and 100 GbE

- IEEE 802.3ba-2010 and IEEE802.3bg 2011
- 40GbE is original designed for server applications
 while 100GbE is meant for Internet backbone

Physical layer	40 Gigabit Ethernet	100 Gigabit Ethernet	
Backplane	40GBASE-KR4	100GBASE-KP4	
Improved Backplane		100GBASE-KR4	
7 m over <u>twinax</u> copper cable	40GBASE-CR4	100GBASE-CR10	
30 m over "Cat.8" twisted pair	40GBASE-T		
100 m over OM3 MMF	40GBASE-SR4	100GBASE-SR10	
125 m over OM4 MMF[16]	40GDASE-SK4	100GBASE-SK10	
2 km over SMF, serial	40GBASE-FR		
10 km over SMF	40GBASE-LR4	100GBASE-LR4	
40 km over SMF		100GBASE-ER4	

http://en.wikipedia.org/wiki/1000_Gigabit_Ethernet

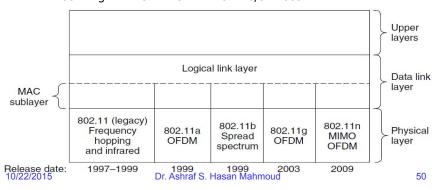
1 TbE


- Terabit Ethernet planning phase; expected by 2015
- 100 Terabit Ethernet expected by 2020
- Work on 400 Gb/s Ethernet started by IEEE802.3 in March 2013 – results to be reported in 2017

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Wireless LANs - Architecture


- Infrastructure mode and Ad-hoc mode
- Distribution system

10/22/2015

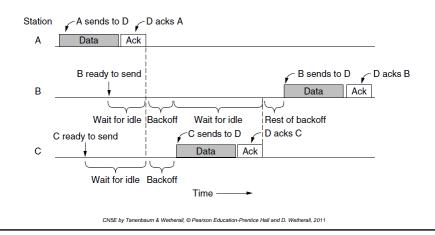
Wireless LANs - Protocol Stack

- IEEE802.11 (legacy) 2.4 GHz FH & Infrared provided 1-2 Mb/s not any more
- IEEE 802.11b 2.4 GHz Spread Spectrum (CCK) up to 11 Mb/s 1999
- IEEE802.11a 5 GHz OFDM 54 Mb/s 1999
- IEEE802.11g 2.4 GHz OFDM 54 Mb/s 2003

Wireless LANs - Protocol Stack

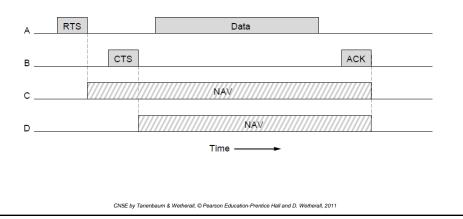
- IEEE802.11n 2.4 & 5 GHz MIMO/OFDM up to 600 Mb/s – 2009
 - Uses 20 and 40 MHz channels
 - Using MIMO (up to 4 by 4) up to 4 spatial streams are supported – 600 Mb/s is achievable if 4 streams are used
 - Modulation and Coding Scheme Index 32 possible indices -Different signal/modulation constellation and coding rates are used – defining on the quality of channel
 - Lowest is BPSK 1 bit per symbol Highest 64 QAM 6 bits per symbol
 - Lowest Rc = 1/2; Highest Rc = 5/6;
 - Can work with previous versions Mixed mode

10/22/2015 Dr. Ashraf S. Hasan Mahmoud 51

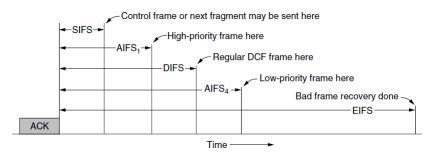

Wireless LANs - Protocol Stack

- IEEE802.11ac 2.4 & 5 GHz MIMO/OFDM up to 6.77 Gb/s – Approved Jan 2014
 - Uses 20, 40, 80, and 160 MHz channels
 - Using MIMO (up to 8 by 8) up to 8 spatial streams are supported – Single stream up to 866.7 Mb/s on a 160 MHz – 6.77 Gb/s is achievable if 8 streams are used
 - Modulation and Coding Scheme Index Lowest is BPSK
 1 bit per symbol Highest 256 QAM 8 bits per symbol
 - Lowest Rc = 1/2; Highest Rc = 5/6;
 - Can work with previous versions Mixed mode

10/22/2015 Dr. Ashraf S. Hasan Mahmoud

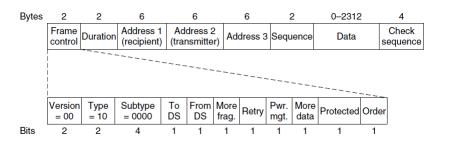

802.11 MAC (1)

- CSMA/CA inserts backoff slots to avoid collisions
- MAC uses ACKs/retransmissions for wireless errors


802.11 MAC (2)

Virtual channel sensing with the NAV and optional RTS/CTS (often not used) avoids hidden terminals

802.11 MAC (3)


- Different backoff slot times add quality of service
 - Short intervals give preferred access, e.g., control, VoIP
- MAC has other mechanisms too, e.g., power save

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 201

802.11 Frames

- Frames vary depending on their type (Frame control)
- Data frames have 3 addresses to pass via APs

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Broadband Wireless

Section not covered this offering

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

57

Bluetooth

Section not covered this offering

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

RFID

Section not covered this offering

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

59

Data Link Switching - The Use of Bridges

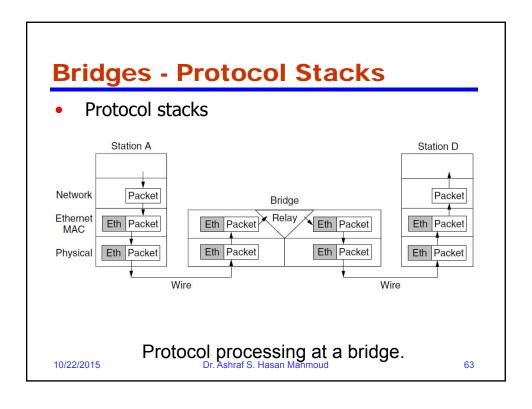
- Interconnect (extend) different LANs within an organization
- Bridges can join two geographically distant LANs
- Bridges can be used to split one large LAN segment into smaller ones
- Bridges should be transparent no hardware or software changes required to the existing LANs
 - Backward learning algorithm
 - Spanning tree algorithm

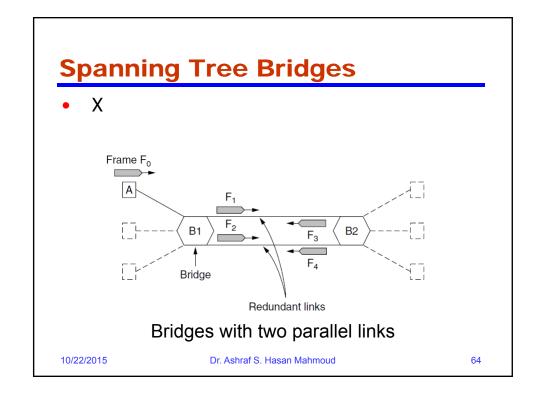
10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Data Link Switching - The Use of Bridges - cont'd

- Ethernet switch if LAN technology is Ethernet
- Bridge is used to connection two multi-drop lines in (a)
- In (b) two bridges B1 and B2 are used to replace two hubs to increase performance – H1 still there
- Link 4-4 may be a long-distance fiber optic link or a short-hual TP
- Bridge operates in promiscuous mode accepts all received frames
 - Bridging function must decide whether to forward the Tx-n to the other LAN or not



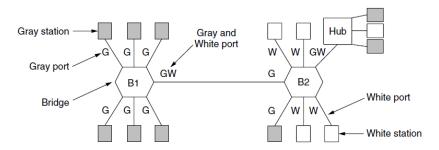

Learning Bridges - Backward Learning

- Initially uses a flooding algorithm to forward all transmission
- As it learns the topology (Hash table building) it will forward a transmission to the concerned LAN segment only
- To handle dynamic topologies hash table time stamps for entries are used
 - Old items are purged
 - Entries are updated
- The routing procedure for the incoming frame depends on the port (the source port) it arrives on and the address to which it is destined
- Cut-through switching forwarding of frame starts before entire frame is received

10/22/2015

Dr. Ashraf S. Hasan Mahmoud

Spanning Tree Bridges - cont'd


X

A spanning tree connecting five bridges. The dotted lines 10/2 are links that are not part of the spanning tree. 65

Virtual LANs

X

Two VLANs, gray and white, on a bridged LAN.

10/22/2015 Dr. Ashraf S. Hasan Mahmoud