KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
 COLLEGE OF COMPUTER SCIENCES \& ENGINEERING COMPUTER ENGINEERING DEPARTMENT
 COE 540 - Computer Networks

Problem 1 (10 points):

Refer to discussion in textbook pages 166 and 167.

Problem 2 (20 points):

a) First bit of frame is received by earth station in Riyadh at t0 + tprop where tprop is the propagation time for the signal tprop $=d / c=2 \times 36,000 \times 1000 /\left(3 \times 10^{\wedge} 8\right)=0.24 \mathrm{sec}$
Note the distance is TWICE the satellite distance
b) The last bit departs the transmitter at t0 + tf where $t f$ is the frame transmission time $t f=64 \times 1024 \times 8 / 1 e 6=0.5243$ second
c) The last bit arrives at receiver at time $+0+t f+t p r o p=+0+0.7643$
d) If the frame fails at the rate of $p \rightarrow$ average number of times would be $1 / p=5$ times. Note the number of required transmissions follows a geometric distribution.

Problem 3 (10 points):
Refer to textbook pages 93 and 94.

Problem 4 (10 points):

(a)

Size of frame $=199065600$ bits or 0.0232 Gbytes bit rate $=5971968000$ bits/sec or 0.6952 Gbytes $/ \mathrm{sec}$
(b)

Size of single-layer blue ray disc is 25 Gbytes
Maximum movie length is 35.959 sec or 0.599 min
(c)

Size of 120 min video is 5005.646 Gbytes

1 byte $=8$ bits
1 Kbytes $=1024$
1Mbytes $=1024 \times 1024$ bytes

```
1Gbytes = 1024x1024x1024 bytes
Size of single-layer blue ray disc = 25 Gbytes
```


Problem 5 (10 points):

```
> A = [llllll
>> sum(S.*A)
>> B = [llllll}
>> C=[[1 -1 -1 1}]; ans 
>-A}+\textrm{B}+\textrm{C
ans =
    sum(S.*B)
    ans =
    4\leftarrowB receives its correct +1 bit
S =
    1 
    sum(S.*C)
ans =
4 & C receives its correct +1 bit
```


Problem 6 (5 points):

For a signal at 2.4 GHz , the wavelength is $2.4 \times 10^{\wedge} 9 /\left(3 \times 10^{\wedge} 8\right)=12.5 \mathrm{~cm}$. Therefore, any difference in path length will lead to phase difference at the received signal - if the difference in path length is exactly 12.5 cm or integer multiples of it, the phase difference will be 180 degree. Since typically the difference in path lengths is random, the phase differences are also random.

Problem 7 (5 points):

There are 256 channels in all, minus 6 for POTS and 2 for control, leaving 248 for data. If 3/4 of these are for downstream, that gives 186 channels for downstream. ADSL modulation is at 4000 baud, so with QAM-64 (6 bits/baud) we have 24,000 bps in each of the 186 channels. The total bandwidth is then 4.464 Mbps downstream.

