King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 587 - Performance Evaluation And Analysis

Term 142

Dr. Ashraf S. Hasan Mahmoud

Rm 22-420

Ext. 1724

Email: ashraf AT kfupm DOT edu DOT sa

1/28/2015 Dr. Ashraf S. Hasan Mahmoud

Slides are based on the textbook:

R. Jain, "Art of Computer Systems Performance Analysis," Wiley, 1991, ISBN:0471503363

Book website:

http://www.cse.wustl.edu/~jain/books/perfbook.htm

1/28/2015 Dr. Ashraf S. Hasan Mahmoud

Measurement Techniques And Tools - Topics

- What are the different types of workloads?
- Which workloads are commonly used by other analysts?
- How are the appropriate workload types selected?
- How is the measured workload data summarized?
- How is the system performance monitored?
- How can the desired workload be placed on the system in a controlled manner?
- How are the results of the evaluation presented?

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

3

Chapter 4: Types of Workloads

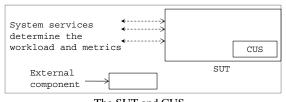
- Skipped
 - Made specific for CPU/Instruction set performance evaluation and benchmarking
 - Subsequent chapter (Chapter 5) handles networking related material.

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Chapter 5: The Art of Workload Selection

- Workload selection is the MOST crucial step in any performance evaluation project
- Considerations:
 - Services exercised
 - Level of detail
 - Representativeness
 - Timeliness
- Minor considerations: Loading level, impact of other components, and repeatability.


1/28/2015

Dr. Ashraf S. Hasan Mahmoud

5

Services Exercised

- View the system as a service provider
- System under test (SUT) complete set of components that are being purchased or designed
- Component under study (CUS) specific component in the SUT whose alternative are being considered
- Example SUT = CPU, CUS = ALU
- SUT → System; CUS → component
- The workloads are primarily specified by the SUT
- The metrics chosen should reflect the performance of services provided at the system level and not at the component level
- Example: Two CPUs – use MIPS
- Example: Two timesharing systems – use transactions/sec

The SUT and CUS

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

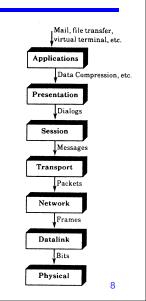
Services Exercised - Cont'd

- Summary
 - Requests at the service-interface level of the SUT should be used to specify or measure the workload
 - Clear distinction between SUT and CUS

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

7


Example 5.1

- Compare two networks
- ISO/OSI 7 layers model
- Different workloads for different layers (services)
 - Physical bits transmitted
 - Data link frames
 - Network packets
 - Transport messages
 - Application mail, file transfer, etc.

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Level of Detail

- List of possible levels of detail:
 - 1. Most frequently used request
 - 2. Frequency of request types
 - 3. Time-stamped sequence of requests (e.g trance)
 - 4. Average resource demand
 - 5. Distribution of resource demands
- The least detailed are (1) may be as an initial step
- In (4), the request "presents" load to the system –
 e.g. a user required an average CPU time of 50
 milliseconds.
 - Typical for analytical studies
- Sometimes the average demand of a request may not be sufficient – the actual distribution is needed as in (5)

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

9

Representativeness

- Test workload should be representative of the real application.
- Match workload (requests) to actual application in terms of
 - Arrival rate
 - Resource demands
 - Resource usage profile

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Timeliness

- Workload should follow changes in usage pattern in a timely fashion
 - Telephone network (old) symmetric traffic
 - Internet (new) asymmetric traffic
- Real users behavior is a moving and fuzzy target
 - Users tend to focus on services where the system response is optimal
- Interdepedence of system design and workload – specially for systems under design
 - A system optimized for one or more workloads can not be guaranteed to operate efficiently in other environments

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

11

Chapter 6: Workload Characterization

- Workload component or workload unit → user
- Workload parameters (features): measured quantities, service requests, or resource demands that are used to model or characterize the workload
- Example of workload parameters: transactions types, instructions, packet sizes, source/destinations of a packet, etc.
- Techniques to characterize workloads
 - 1. Averaging
 - 2. Specifying dispersion
 - 3. Single-parameter histograms
 - 4. Multiparameter histograms
 - 5. Principle component analysis
 - 6. Markov models
 - Clustering

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Averaging

• Let $\{x_1, x_2, ..., x_n\}$ be *n* observed values of <u>a</u> workload parameter, the arithmetic mean \bar{x} is given by

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- There are cases where the use of the mean is inappropriate and the median, mode, geometric mean, or harmonic mean should be used – More on this in Chapter 12
- E.g. For categorical parameters, then the most frequent value (the mode) should be used – Packet destinations are A, B, and C → average has no meaning, while the mode (most frequently used address) has real meaning.

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

13

Specifying Dispersion

- The average does not reflect variability in the data
- Variability is specified by the variance, s², which is given by

 $s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$

- The standard deviation, s, is the square root of the variance.
- Coefficient of variation (COV) is the radio of standard deviation to the mean, i.e.

$$C.O.V = s/\overline{x}$$

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Specifying Dispersion - cont'd

- Other alternative for specifying variability (discussed in Chapter 12):
 - Range (min and max)
 - 10- and 90- percentiles,
 - Semi-interquartile, and
 - Mean absolute deviation
- Zero C.O.V. → variance is zero or parameter is constant
- High C.O.V. → high variance, i.e. the mean alone is not sufficient
 - Maybe you should consider classifying the data into different classes (histogram)

1/28/2015 Dr. Ashraf S. Hasan Mahmoud

Study Case 6.1

 Resource demands for various programs on six university sites were measured for 6 months.

Table 6.1 – shows results for all programs (applications) – note the high COV	Data	Average	Coefficient of Variation
tne nigh COV —	CPU time (VAX-11/780)	2.19 seconds	40.23
	Number of direct writes	8.20	53.59
	Direct-write bytes	10.21 kbytes	82.41
Table 6.2 - shows	Number of direct reads	22.64	25.65
results for all editors in	Direct-read bytes	49.70 kbytes	21.01
the same data - note the COV is much lower	BLE 6.2 Characteristics of an A	verage Editing Session	1
the COV is much lower Therefore perhaps is	BLE 6.2 Characteristics of an A	verage Editing Session Average	Coefficient of Variation
the COV is much lower Therefore perhaps is			Coefficient of
the COV is much lower Therefore perhaps is	Data	Average	Coefficient of Variation
the COV is much lower	Data CPU time (VAX-11/780)	Average 2.57 seconds	Coefficient of Variation 3.54 4.33 3.87
the COV is much lower Therefore perhaps is	Data CPU time (VAX-11/780) Number of direct writes	Average 2.57 seconds 19.74	Coefficient of Variation 3.54 4.33 3.87 3.73
the COV is much lower Therefore perhaps is	Data CPU time (VAX-11/780) Number of direct writes Direct-write bytes	Average 2.57 seconds 19.74 13.46 kbytes	Coefficient of Variation 3.54 4.33 3.87

Single-Parameter Histograms

- Histogram shows the relative frequencies of various values of a parameter.
 - Divide the parameter range into subranges (buckets or cells)
 - Count observations that fall within each subrange
- Usage in measurement or simulation to generate test workload
- Usage in analysis to fit a probability distribution and to verify/validate distributions.
- Key shortcoming correlation between parameters is not accounted for.

1/28/2015 Dr. Ashraf S. Hasan Mahmoud

Single-Parameter Histograms – cont'd

- Example short job require less CPU and have typical low I/O activity
- If one designs a workload based on single parameter (CPU) histogram, one produce short jobs with high 1/0 activity, a workload which is not realistic
- Solution: multiparameter histograms

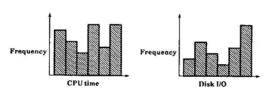


FIGURE 6.1 Single-parameter histograms of CPU time and disk I/O.

TABLE 6.3 Tabular Representation of a Single-Parameter Histogram

Dr. Ashraf S. Hasan Mahmoud

	CPU Time (milliseconds)				Number of Disk I/C			
Program	0-5	6–10	11-15	15+	0-20	21-40	41-60	60+
DOVERSEND								
EMACS								
MAIL								
SCRIBE								
PRESSIFY								
DIRECTORY								
TELNET			• • •					

1/28/2015

18

Multiparameter Histograms

- Used when there is (significant) correlation between different workload parameters
- n-dimensional matrix (or histogram) is used to describe the distribution of n workload parameters
- It is difficult to plot joint histograms for more than two parameters.
- Too detailed → Rarely used!!

7500

5000

2500

2500

Two parameter histogram

19

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Principle-Component Analysis (PCA)

- Goal: Use weighted sum of parameters to classify components
- Often a weighted sum such as $y_j = \sum_{j=1}^n w_i x_{ij}$ is used to this purpose

where w_i is the weight for the i^{th} parameter for the i^{th} component

- But how to decide on the weights?
- The PCA procedure finding the weights w's such that y's provides maximum discrimination among the components.

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Principle-Component Analysis (PCA)

- Let the *n* parameters be $\{x_1, x_2, ..., x_n\}$
- The PCA produces a set of FACTORS $\{y_1, y_2, ..., y_n\}$ such that
 - The y's are linear combinations of x's

$$y_i = \sum_{j=1}^n a_{ij} x_j$$

Here a_{ii} is called the **loading** of variable x_i on factor y_i

The y's form an orthogonal set (i.e. inner product is zero)

$$\left\langle y_{i}, y_{j} \right\rangle = \sum_{k} a_{ik} a_{kj} = 0$$

This is equivalent to stating that the ys are uncorrelated

 The ys form an ordered set such that y₁ explain the highest percentage of the variance, y₂ explains a lower percentage of the variance, and so forth.

1/28/2015 Dr. Ashraf S. Hasan Mahmoud

Principle-Component Analysis (PCA)

- How to find the principle factors?
 - Find the parameters correlation matrix, C.
 - Find the eigen values, λ's, of the matrix and sort them in the order of decreasing magnitude.
 - Find corresponding eigen vectors (q's).
 - These give the required loadings (a_{ij}'s)
- For the set of *n* parameters $\{x_1, x_2, ..., x_n\}$, the correlation matrix C is an *n* by *n* matrix whose sr^{th} element is given by $R_{xs,xr}$

$$R_{x_{s},x_{r}} = \frac{\left(1/n\right)\sum_{i=1}^{n}\left(x_{si} - \overline{x}_{s}\right)\left(x_{ri} - \overline{x}_{r}\right)}{S_{x_{s}}S_{x_{r}}}$$

where S_{xs} and S_{xr} are the standard deviations for the parameter x_s and x_n respectively.

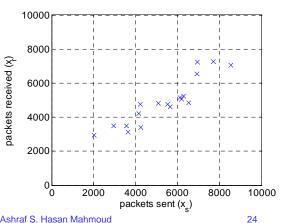
1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Example 6.1: The number of packets sent and received, denoted by xs and xr, respectively, by various stations on a local-area network were measured. The observed numbers are as follows:

	0.000.		o a. o ao . o	
xs = [7718]	6958	8551	6924	6298
6120	6184	6527	5081	4216
5532	5638	4147	3562	2955
4261	3644	2020];		
xr = [7258]	7232	7062	6526	5251
⁻ 5158	5051	4850	4825	4762
4750	4620	4229	3497	3480
3392	3120	2946];		

- Generate a scatter plot from the data Comment on the correlation between the two sequences
 Carry on the PCA procedure to produce the principle factors 1)
- 2)
- Plot the new (transformed) data Comment on the correlation between the two new sequences 3)


1/28/2015 Dr. Ashraf S. Hasan Mahmoud

Principle-Component Analysis (PCA) - cont'd

Solution:

1) Scatter plot of original data – as shown in figure

It can be observed that the data is highly correlated. There is almost a linear relationship between Xs and Xr

23

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Solution:

- 2) The following are the steps to carry on the PCA procedure.
- a) Compute the mean and standard deviation for Xs and for Xr

$$\bar{x}_s = \frac{1}{n} \sum_{i=1}^n x_{si} = \frac{96336}{18} = 5352.0$$

$$\bar{x}_r = \frac{1}{n} \sum_{i=1}^n x_{ri} = \frac{88009}{18} = 4889.4$$

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

25

Principle-Component Analysis (PCA) - cont'd

Solution:

$$\begin{split} s_{x_s}^2 &= \frac{1}{n-1} \sum_{i=1}^n (x_{si} - \bar{x}_s)^2 \\ &= \frac{1}{n-1} \left[\left(\sum_{i=1}^n x_{si}^2 \right) - n * \bar{x}_s^2 \right] \\ &= \frac{567119488 - 18 \times 5353^2}{17} = 1741.0^2 \end{split}$$

Similarly for Xr:

$$s_{x_r}^2 = \frac{462661024 - 18 \times 4889.4^2}{17} = 1379.5^2$$

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Solution:

The corresponding standard deviations are

$$s_{x_r} = 1741.0$$
 $s_{x_r} = 1379.5$

b) Normalize the variables Xs and Xr to zero mean unit standard deviation

Define and

$$x'_{s} = \frac{x_{s} - \overline{x}_{s}}{s_{x_{s}}} \qquad x'_{r} = \frac{x_{r} - \overline{x}_{r}}{s_{x_{r}}}$$

Using Matlab Xss can be computed as in (Xs-mean(Xs))/std(Xs)

same for Xrr - refer to source code.

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

27

Principle-Component Analysis (PCA) - cont'd

Solution:

c) Compute the correlation matrix:

Note that
$$R_{x_s,x_r} = 1$$
 and $R_{x_s,x_r} = \frac{(1/n)\sum_{i=1}^n (x_{si} - \overline{x}_s)(x_{ri} - \overline{x}_r)}{S_{x_s}S_{x_r}} = 0.916$

The correlation matrix is given by

$$\mathbf{C} = \left[\begin{array}{cc} 1.000 & 0.916 \\ 0.916 & 1.000 \end{array} \right]$$

Using matlab, one can produce the correlation matrix using the command "C = corrcoef (Xs, Xr)"

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Solution:

d) Compute the eigenvalues of the correlation matrix C by solving the characteristic equation for the matrix C.

$$|\lambda I - C| = \begin{vmatrix} \lambda - 1 & -0.916 \\ -0.916 & \lambda - 1 \end{vmatrix} = 0$$
$$(\lambda - 1)^2 - 0.916^2 = 0$$

This means the eigenvalues are: $\lambda 1 = 1.916$ and $\lambda 2 = 0.084$.

Using Matlab, the characteristic equation for the matrix C can be computed using: "poly(C)" – the returned result is a vector corresponding to the coefficients of the characteristic equation. i.e. [1.0000 - 2.0000 0.1617]

Note that using Matlab one can obtain the eigenvalues directly without explicitly obtaining the characteristic equation. The command "[V, D] = eign(C)" returns a matrix V whose columns are the eigenvectors and a diagonal matrix D with the eigenvalues as the diagonal elements are in an <u>ascending</u> order. Refer to source code.

Finally, it should be observed that since the solution in the textbook obtains the eigenvectors in a descending order, then the matlab code needs to reverse order of the eigenvectors to obtain the same order for the principle factors in the textbook.

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

29

Principle-Component Analysis (PCA) - cont'd

Solution:

d) Compute the eigenvectors of the matrix C: q1 and q2. Let q1 correspond to $\lambda 1$, then C q1 = $\lambda 1$ q1,

$$\begin{bmatrix} 1.000 & 0.916 \\ 0.916 & 1.000 \end{bmatrix} \times \begin{bmatrix} q_{11} \\ q_{21} \end{bmatrix} = 1.916 \begin{bmatrix} q_{11} \\ q_{21} \end{bmatrix}$$

Or
$$q11 = q21$$

Now if the vector q1 has length equal to 1, then $\mathbf{q}_1 = \left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array}\right]$

Similarly, the vector q2 is given by $\mathbf{q}_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$

1/28/2015

Dr. Ashraf S. Hasan Mahmoud

Solution:

e) The principle factors are obtained as follows:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{x_s - 5352}{1741} \\ \frac{x_r - 4889}{1380} \end{bmatrix}$$

f) Compute the values by substituting the in the formula above. The values are as shown in the table.

1/28/2015 Dr. Ashraf S. Hasan Mahmoud

31

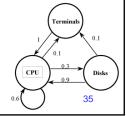
Principle-Component Analysis (PCA) - cont'd

Solution:

- g) Compute the sum and sum of squares of the principle factors.
- The sum of squares give the percentage of variation explained.
- Therefore, y1 explains 32.565/(32.565+1.4 35) = 95.7% of the variation, while y1 explains only 4.3% of the variation.

i	x_s	x_r	x_s'	x_r'	y_1	y_2
1	7718	7258	+1.359	+1.717	+2.175	+0.253
2	6958	7232	+0.922	+1.698	+1.853	+0.549
3	8551	7062	+1.837	+1.575	+2.413	-0.186
4	6924	6526	+0.903	+1.186	+1.477	+0.200
5	6298	5251	+0.543	+0.262	+0.570	-0.199
6	6120	5158	+0.441	+0.195	+0.450	-0.174
7	6184	5051	+0.478	+0.117	+0.421	-0.255
8	6527	4850	+0.675	-0.029	+0.457	-0.497
9	5081	4825	-0.156	-0.047	-0.143	+0.077
10	4216	4762	-0.652	-0.092	-0.527	+0.396
11	5532	4750	+0.103	-0.101	+0.002	-0.145
12	5638	4620	+0.164	-0.195	-0.022	-0.254
13	4147	4229	-0.692	-0.479	-0.828	+0.151
14	3562	3497	-1.028	-1.009	-1.441	+0.013
15	2955	3480	-1.377	-1.022	-1.696	+0.251
16	4261	3392	-0.627	-1.085	-1.211	-0.324
17	3644	3120	-0.981	-1.283	-1.601	-0.213
18	2020	2946	-1.914	-1.409	-2.349	+0.357
Sum x	96336	88009	+0.0	+0.000	+0.000	+0.000
Sum x2	567119474	462660973	+17.0	+17.000	+32.565	+1.435
mean	+5352.0	+4889.4	+0.000	+0.000	+0.000	+0.000
std	+1741.0	+1379.5	+1.000	+1.000	+1.384	+0.290

1/28/2015


Dr. Ashraf S. Hasan Mahmoud

Markov Models

- If the next system state depends only on the current state → Markov model
 - i.e. order of requests is as important as their intensity
- Typically used in queueing analysis
- Characterized by a probability transition matrix
- **Example:** The table below shows the transition probability matrix for a job moving between the CPU, the disk and the terminal.
 - After each visit to the CPU, the job moves to the disk with probability 0.3 or to the terminal with probability equal to 0.1.

From/To	CPU	Disk	Terminal		
CPU	0.6	0.3	0.1		
Disk	0.9	0	0.1		
Terminal	1	0	0		
Dr. Ashraf S. Hasan Mahmoud					

1/28/2015