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Measurement Techniques And 
Tools – Topics
• What are the different types of workloads?
• Which workloads are commonly used by 

other analysts?
• How are the appropriate workload types 

selected?
• How is the measured workload data 

summarized?
• How is the system performance monitored?
• How can the desired workload be placed on 

the system in a controlled manner?
• How are the results of the evaluation 

presented?
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Chapter 4: Types of Workloads
• Skipped

• Made specific for CPU/Instruction set 
performance evaluation and benchmarking

• Subsequent chapter (Chapter 5) handles 
networking related material.
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Chapter 5: The Art of Workload 
Selection
• Workload selection is the MOST crucial 

step in any performance evaluation 
project

• Considerations:
• Services exercised 
• Level of detail
• Representativeness
• Timeliness 

• Minor considerations: Loading level, 
impact of other components, and 
repeatability.
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Services Exercised
• View the system as a service provider
• System under test (SUT) – complete set of components that 

are being purchased or designed 
• Component under study (CUS) – specific component in the SUT 

whose alternative are being considered
• Example – SUT = CPU, CUS = ALU
• SUT  System; CUS  component

• The workloads are primarily specified by the SUT
• The metrics chosen should reflect the performance of services 

provided at the system level and not at the component level

CUS

SUTExternal 
component

System services 
determine the 
workload and metrics

The SUT and CUS

• Example: Two CPUs 
– use MIPS

• Example: Two time-
sharing systems –
use 
transactions/sec
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Services Exercised – Cont’d
• Summary

• Requests at the service-interface level of the 
SUT should be used to specify or measure 
the workload

• Clear distinction between SUT and CUS
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Example 5.1
• Compare two networks
• ISO/OSI 7 layers model
• Different workloads for 

different layers (services)
• Physical – bits transmitted
• Data link – frames
• Network – packets
• Transport – messages
• Application – mail, file transfer, 

etc.

++++
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Level of Detail
• List of possible levels of detail:

1. Most frequently used request
2. Frequency of request types
3. Time-stamped sequence of requests (e.g trance)
4. Average resource demand
5. Distribution of resource demands

• The least detailed are (1) – may be as an initial step

• In (4), the request “presents” load to the system –
e.g. a user required an average CPU time of 50 
milliseconds.

• Typical for analytical studies

• Sometimes the average demand of a request may 
not be sufficient – the actual distribution is needed 
as in (5)
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Representativeness
• Test workload should be representative 

of the real application.

• Match workload (requests) to actual 
application in terms of

• Arrival rate
• Resource demands
• Resource usage profile
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Timeliness
• Workload should follow changes in 

usage pattern in a timely fashion
• Telephone network (old) – symmetric traffic 
• Internet (new) – asymmetric traffic

• Real users behavior is a moving and 
fuzzy target

• Users tend to focus on services where the 
system response is optimal

• Interdepedence of system design and 
workload – specially for systems under 
design

• A system optimized for one or more 
workloads can not be guaranteed to operate 
efficiently in other environments
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Chapter 6: Workload 
Characterization
• Workload component or workload unit  user
• Workload parameters (features): measured 

quantities, service requests, or resource 
demands that are used to model or 
characterize the workload

• Example of workload parameters: transactions 
types, instructions, packet sizes, 
source/destinations of a packet, etc.

• Techniques to characterize workloads
1. Averaging
2. Specifying dispersion
3. Single-parameter histograms
4. Multiparameter histograms
5. Principle component analysis
6. Markov models
7. Clustering
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Averaging
• Let {x1, x2, …, xn} be n observed values of a 

workload parameter, the arithmetic mean     is 
given by

• There are cases where the use of the mean is 
inappropriate and the median, mode, 
geometric mean, or harmonic mean should be 
used – More on this in Chapter 12

• E.g. For categorical parameters, then the most 
frequent value (the mode) should be used –
Packet destinations are A, B, and C  average 
has no meaning, while the mode (most 
frequently used address) has real meaning.
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Specifying Dispersion
• The average does not reflect variability in 

the data
• Variability is specified by the variance, s2, 

which is given by 

• The standard deviation, s, is the square root 
of the variance.

• Coefficient of variation (COV) is the radio of 
standard deviation to the mean, i.e. 
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Specifying Dispersion – cont’d
• Other alternative for specifying 

variability (discussed in Chapter 12):
• Range (min and max)
• 10- and 90- percentiles,
• Semi-interquartile, and
• Mean absolute deviation

• Zero C.O.V.  variance is zero or 
parameter is constant

• High C.O.V.  high variance, i.e. the 
mean alone is not sufficient

• Maybe you should consider classifying the 
data into different classes (histogram)
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Study Case 6.1
• Resource demands for various programs on six 

university sites were measured for 6 months. 

• Table 6.1 – shows 
results for all programs 
(applications) – note 
the high COV

• Table 6.2 – shows 
results for all editors in 
the same data - note 
the COV is much lower

• Therefore, perhaps is 
not a good approach to 
lump all applications 
data together!!
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Single-Parameter Histograms
• Histogram – shows the relative frequencies 

of various values of a parameter.
• Divide the parameter range into subranges

(buckets or cells)
• Count observations that fall within each 

subrange
• Usage in measurement or simulation – to 

generate test workload
• Usage in analysis – to fit a probability 

distribution and to verify/validate 
distributions.

• Key shortcoming – correlation between 
parameters is not accounted for.
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Single-Parameter Histograms –
cont’d
• Example – short 

job require less 
CPU and have 
typical low I/O 
activity

• If one designs a 
workload based 
on single 
parameter 
(CPU) 
histogram, one 
produce short 
jobs with high 
I/O activity, a 
workload which 
is not realistic

• Solution: 
multiparameter
histograms
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Multiparameter Histograms
• Used when there is (significant) 

correlation between different workload 
parameters

• n-dimensional matrix (or histogram) is 
used to describe the distribution of n 
workload parameters

• It is difficult to plot joint 
histograms for more than 
two parameters.

• Too detailed  Rarely 
used!!

Two parameter histogram
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Principle-Component Analysis 
(PCA)
• Goal: Use weighted sum of parameters to classify 

components

• Often a weighted sum such as                      is used 
to this purpose

where wi is the weight for the ith parameter for the 
jth component

• But how to decide on the weights?

• The PCA procedure finding the weights wi’s such that 
yj’s provides maximum discrimination among the 
components.
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Principle-Component Analysis 
(PCA)
• Let the n parameters be {x1, x2, …, xn} 
• The PCA produces a set of FACTORS {y1, y2, …, yn} such that 

• The y’s are linear combinations of x’s

Here aij is called the loading of variable xj on factor yi

• The y’s form an orthogonal set (i.e. inner product is zero)

This is equivalent to stating that the y’s are uncorrelated
• The y’s form an ordered set such that y1 explain the highest percentage of the 

variance, y2 explains a lower percentage of the variance, and so forth.
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Principle-Component Analysis 
(PCA)
• How to find the principle factors?

• Find the parameters correlation matrix, C.
• Find the eigen values, λ’s, of the matrix and sort them in the order of 

decreasing magnitude.
• Find corresponding eigen vectors (q’s). 

• These give the required loadings (aij’s).

• For the set of n parameters {x1, x2, …, xn}, the correlation matrix 
C is an n by n matrix whose srth element is given by Rxs,xr

where Sxs and Sxr are the standard deviations for the parameter xs
and xr, respectively.
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Principle-Component Analysis 
(PCA) – cont’d
• Example 6.1: The number of packets sent and received, denoted by xs

and xr, respectively, by various stations on a local-area network were 
measured. The observed numbers are as follows:

xs = [7718        6958        8551        6924        6298        
6120         6184        6527         5081        4216
5532         5638        4147         3562        2955
4261         3644        2020];

xr = [7258        7232        7062        6526        5251          
5158        5051        4850        4825        4762
4750        4620        4229         3497        3480        
3392       3120        2946];

1) Generate a scatter plot from the data – Comment on the correlation 
between the two sequences

2) Carry on the PCA procedure to produce the principle factors
3) Plot the new (transformed) data – Comment on the correlation between 

the two new sequences
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Principle-Component Analysis 
(PCA) – cont’d
Solution:

1) Scatter plot of original data 
– as shown in figure

It can be observed that the 
data is highly correlated. 
There is almost a linear 
relationship between Xs and 
Xr
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Principle-Component Analysis 
(PCA) – cont’d
Solution:
2) The following are the steps to carry on the PCA 

procedure.
a) Compute the mean and standard deviation for 

Xs and for Xr
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Principle-Component Analysis 
(PCA) – cont’d
Solution:

Similarly for Xr:
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Principle-Component Analysis 
(PCA) – cont’d
Solution:
The corresponding standard deviations are

b) Normalize the variables Xs and Xr to zero mean unit 
standard deviation

Define                  and

Using Matlab Xss can be computed as in (Xs-
mean(Xs))/std(Xs)

same for Xrr – refer to source code.

1741.0
sxs = 1379.5
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Principle-Component Analysis 
(PCA) – cont’d
Solution:
c) Compute the correlation matrix:

Note that           and

The correlation matrix is given by

Using matlab, one can produce the correlation matrix 
using the command “C = corrcoef(Xs, Xr) “
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Principle-Component Analysis 
(PCA) – cont’d
Solution:
d) Compute the eigenvalues of the correlation matrix C by solving the characteristic equation for the matrix C.

This means the eigenvalues are: λ1 = 1.916 and λ2 = 0.084.

Using Matlab, the characteristic equation for the matrix C can be computed using: “poly(C)” – the returned 
result is a vector corresponding to the coefficients of the characteristic equation. i.e. [1.0000   -
2.0000    0.1617]

Note that using Matlab one can obtain the eigenvalues directly without explicitly obtaining the characteristic 
equation. The command “[V, D] = eign(C)” returns a matrix V whose columns are the eigenvectors 
and a diagonal matrix D with the eigenvalues as the diagonal elements are in an ascending order. 
Refer to source code.

 Finally, it should be observed that since the solution in the textbook obtains the eigenvectors in a 
descending order,  then the matlab code needs to reverse order of the eigenvectors to obtain the 
same order for the principle factors in the textbook.
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Principle-Component Analysis 
(PCA) – cont’d
Solution:
d) Compute the eigenvectors of the matrix C: q1 and q2.
Let q1 correspond to λ1, then C q1 = λ1 q1,

Or    q11 = q21

Now if the vector q1 has length equal to 1, then 

Similarly, the vector q2 is given by
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Principle-Component Analysis 
(PCA) – cont’d
Solution:

e) The principle factors are obtained as follows:

f) Compute the values by substituting the in the 
formula above. The values are as shown in the 
table.
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Principle-Component Analysis 
(PCA) – cont’d
Solution:
g) Compute the sum and 

sum of squares of 
the principle 
factors.

- The sum of squares give 
the percentage of 
variation explained.

- Therefore, y1 explains 
32.565/(32.565+1.4
35) = 95.7% of the 
variation, while y1 
explains only 4.3% 
of the variation.

----------------------------------------------------------------
i          x_s         x_r     x_s'     x_r'     y_1      y_2
----------------------------------------------------------------
1          7718        7258   +1.359   +1.717   +2.175   +0.253
2          6958        7232   +0.922   +1.698   +1.853   +0.549
3          8551        7062   +1.837   +1.575   +2.413   -0.186
4          6924        6526   +0.903   +1.186   +1.477   +0.200
5          6298        5251   +0.543   +0.262   +0.570   -0.199
6          6120        5158   +0.441   +0.195   +0.450   -0.174
7          6184        5051   +0.478   +0.117   +0.421   -0.255
8          6527        4850   +0.675   -0.029   +0.457   -0.497
9          5081        4825   -0.156   -0.047   -0.143   +0.077
10          4216        4762   -0.652   -0.092   -0.527   +0.396
11          5532        4750   +0.103   -0.101   +0.002   -0.145
12          5638        4620   +0.164   -0.195   -0.022   -0.254
13          4147        4229   -0.692   -0.479   -0.828   +0.151
14          3562        3497   -1.028   -1.009   -1.441   +0.013
15          2955        3480   -1.377   -1.022   -1.696   +0.251
16          4261        3392   -0.627   -1.085   -1.211   -0.324
17          3644        3120   -0.981   -1.283   -1.601   -0.213
18          2020        2946   -1.914   -1.409   -2.349   +0.357
----------------------------------------------------------------
Sum x       96336      88009   +0.0     +0.000  +0.000    +0.000
Sum x2  567119474  462660973  +17.0    +17.000  +32.565    +1.435
mean     +5352.0     +4889.4  +0.000    +0.000  +0.000    +0.000
std      +1741.0     +1379.5  +1.000    +1.000  +1.384    +0.290
----------------------------------------------------------------



17

1/28/2015 Dr. Ashraf S. Hasan Mahmoud 33

Principle-Component Analysis 
(PCA) – cont’d
Solution:

Using matlab – the previous 
procedure can be done as 
follows:

C     = corrcoef(Xs, Xr);
[V,L] = eig(C); 
Y     = V*[Xss; Xrr]; Y = Y';
Y1    = Y(:,2); Y2 = Y(:,1); 

3) Scatter plot of the 
transformed data – as 
shown in figure

It can be observed that there 
is little correlation between 
PF1 and PF2 (i.e. PF1 does 
not depend on PF2). There is 
almost a zero slope linear 
relationship between PF1 and 
PF2

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

principle factor 1

pr
in

ci
pl

e 
fa

ct
or

 2

1/28/2015 Dr. Ashraf S. Hasan Mahmoud 34

Principle-Component Analysis 
(PCA) – cont’d

0001 %
0002 % Example 6.1 - textbook page 77-80
0003 clear all
0004 FontSize = 14; MarkerSize = 9; LineWidth = 2;
0005 Xs = [7718 6958 8551 6924 6298 6120 6184 6527 5081 4216 5532 5638 4147 3562 
2955 4261 3644 2020];
0006 Xr = [7258 7232 7062 6526 5251 5158 5051 4850 4825 4762 4750 4620 4229 3497 
3480 3392 3120 2946];
0007 
0008 n = length(Xs);
0009 
0010 XsSum = sum(Xs); Xs2Sum = sum(Xs.*Xs);
0011 XrSum = sum(Xr); Xr2Sum = sum(Xr.*Xr);
0012 
0013 Xsbar = mean(Xs); XsVar = var(Xs); XsStd = std(Xs);
0014 Xrbar = mean(Xr); XrVar = var(Xr); XrStd = std(Xr);
0015 
0016 Xss = (Xs - Xsbar)/XsStd;
0017 Xrr = (Xr - Xrbar)/XrStd;
0018 
0019 XssSum = sum(Xss); Xss2Sum = sum(Xss.*Xss);
0020 XrrSum = sum(Xrr); Xrr2Sum = sum(Xrr.*Xrr);
0021 Xssbar = mean(Xss); XssStd = std(Xss);
0022 Xrrbar = mean(Xrr); XrrStd = std(Xrr);
0023 %
0024 % form the correlation matrix and get the eignvalue
0025 C = corrcoef(Xs, Xr);
0026 P = poly(C); % get the coefficients for the characteristic equation
0027 L = roots(P); % this gets the roots for the characteristic equation or the 
0028               % eignvalues - one can simply do L = eig(C);
0029 [V,L] = eig(C); 
0030 %
0031 % Compute the principle factors - To get the same vectors y1 and y2 as in
0032 % the example, the eignvalues/vectors must be sorted from max to min
0033 Y = V*[Xss; Xrr]; Y = Y';
0034 Y1 = Y(:,2); Y2 = Y(:,1); % y1 now corresponds to the largest eign value
0035 Y1Sum = sum(Y1); Y12Sum = sum(Y1.*Y1);
0036 Y2Sum = sum(Y2); Y22Sum = sum(Y2.*Y2);
0037 % Get stats for the principle factors
0038 Y1bar = mean(Y1); Y1Std = std(Y1);
0039 Y2bar = mean(Y2); Y2Std = std(Y2);

0040 %
0041 % Produce the table in the textbook
0042 fprintf('----------------------------------------------------------------\n');
0043 fprintf(' i x_s x_r x_s''     x_r''     y_1      y_2\n');
0044 fprintf('----------------------------------------------------------------\n');
0045 for i=1:n
0046     fprintf('%2d     %9d   %9d   %+5.3f   %+5.3f   %+5.3f   %+5.3f\n', ...
0047         i, Xs(i), Xr(i), Xss(i), Xrr(i), Y1(i), Y2(i));
0048 end
0049 fprintf('----------------------------------------------------------------\n');
0050 fprintf('Sum x   %9d  %9d  %+5.1f     %+5.3f  %+5.3f    %+5.3f\n', XsSum, XrSum, 
XssSum, XrrSum, Y1Sum, Y2Sum);
0051 fprintf('Sum x2  %9d  %9d  %+5.1f    %+5.3f  %+5.3f    %+5.3f\n', Xs2Sum, 
Xr2Sum, Xss2Sum, Xrr2Sum, Y12Sum, Y22Sum);
0052 fprintf('mean     %+5.1f     %+5.1f  %+5.3f    %+5.3f  %+5.3f    %+5.3f\n', 
Xsbar, Xrbar, Xssbar, Xrrbar, Y1bar, Y2bar);
0053 fprintf('std      %+5.1f     %+5.1f  %+5.3f    %+5.3f  %+5.3f    %+5.3f\n', 
XsStd, XrStd, XssStd, XrrStd, Y1Std, Y2Std);
0054 fprintf('----------------------------------------------------------------\n');
0055 %
0056 % Plot the old data
0057 figure(1); set(gca, 'FontSize', FontSize);
0058 h = plot(Xs, Xr,'x');
0059 xlabel('packets sent (x_s)'); ylabel('packets received (x_r)');
0060 set(h,'MarkerSize', MarkerSize); 
0061 axis([0 10000 0 10000]); grid;
0062 %
0063 % Plot the new (transformed) data
0064 figure(2); set(gca, 'FontSize', FontSize);
0065 h = plot(Y1, Y2,'x');
0066 xlabel('principle factor 1'); ylabel('principle factor 2');
0067 set(h,'MarkerSize', MarkerSize); 
0068 line([0 0],[-4 4],'LineWidth', LineWidth, 'LineStyle', '--'); 
0069 line([-4 4],[0 0],'LineWidth', LineWidth, 'LineStyle', '--');
0070 axis([-4 4 -4 4]); grid;

reversing the order 
of the principle factors
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Markov Models
• If the next system state depends only on the current state 

Markov model
• i.e. order of requests is as important as their intensity

• Typically used in queueing analysis
• Characterized by a probability transition matrix
• Example: The table below shows the transition probability matrix 

for a job moving between the CPU, the disk and the terminal.
• After each visit to the CPU, the job moves to the disk with probability 0.3 

or to the terminal with probability equal to 0.1.


