KFUPM - COMPUTER ENGINEERING DEPARTMENT

COE-587-Performance Evaluation and Analysis
CSE 642 - Computer Systems Performance
Assignment \# 1 - Due Monday Feb 16 ${ }^{\text {th }}, 2015$

Problem	Points	
1	20	
2	20	
3	10	
Total	50	

a) Plot is as shown in Fig. 1 below.

Figure 1: original data.

Figure 2: principle factor 1 and principle factor 2.
b) The correlation matrix is given by $C=\left[\begin{array}{cc}1.0 & 0.6632 \\ 0.6632 & 1.0\end{array}\right]$. The characteristic equation is given by $(\lambda-1)^{2}-0.6632^{2}=0$ or $\lambda^{2}-2 \lambda+0.5602=0$. The eign values are as follows: $\lambda_{1}=1.6632$, $\lambda_{2}=0.3368$, and the corresponding vectors are: $q_{1}=\left[\begin{array}{l}0.7071 \\ 0.7071\end{array}\right]$, and $q_{2}=\left[\begin{array}{c}-0.7071 \\ 0.7071\end{array}\right]$.

The principle component computations:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
0.7071 & 0.7071 \\
0.7071 & -0.7071
\end{array}\right]\left[\begin{array}{l}
\left(x_{s}-7.4286\right) / 4.6853 \\
\left(x_{r}-454\right) / 1009.3227
\end{array}\right]
$$

c) The table is as follows:

i	x_s	x_r	x_s'	x_r'	Y_1	Y_2
1	14	2735	+1.403	+2.260	+2.590	-0.606
2	13	253	+1.189	-0.199	+0.700	+0.982
3	8	27	+0.122	-0.423	-0.213	+0.385
4	6	27	-0.305	-0.423	-0.515	+0.084
5	6	12	-0.305	-0.438	-0.525	+0.094
6	4	91	-0.732	-0.360	-0.772	-0.263
7	1	33	-1.372	-0.417	-1.265	-0.675
Sum x	52	3178	-0.0	-0.000	+0.000	+0.000
Sum x 2	518	7555206	+6.0	+6.000	+9.979	+2.021
mean	+7.4	+454.0	-0.000	-0.000	$+0.000$	+0.000
std	+4.7	+1009.3	+1.000	+1.000	+1.290	+0.580

The plot for the principle factors is as shown in Fig. 2.
d) The \% of variation explained by $1^{\text {st }}$ factor is $9.979 /(9.979+2.021)=83.2 \%$. The second factor explains 16.8%.

Problem 2 (20 points):

Executing the Spanning Tree algorithm:
Step 1: Minimum distance $=2$ between 3 and 4
Assign_01_coe_142_587_sol_for_distribution

Step 2: Minimum distance $=8.49$ between 3-4 and 7
Step 3: Minimum distance $=17.03$ between 3-4-7 and 5
Step 4: Minimum distance $=66.262$ between $3-4-7-5$ and 6
Step 5: Minimum distance $=215.149$ between 3-4-7-5-6 and 2
Step 6: Minimum distance $=2661.2$ between $3-4-7-5-6-2$ and 1

Therefore, the dendrogram is as shown in Fig. 3.

Figure 3: Dendrogram for part (a).

Figure 4: Clustering for Problem 2.
b) The dendrogram provides a mean to cluster the data. It is clear that this particular data is has one or two outlier points; namely the first two pairs. The COBOL and BASIC compilers have very similar performance numbers, therefore they come as the first cluster.
c) The data is as shown below - The required graph is shown in Fig. 4.

You can get the distances and in part (a) directly from the matrix Z. Printing the value of the matrix Z:
>> Z = linkage(Y,'centroid')
$Z=$

3.00	4.00	2.00
7.00	8.00	8.49
5.00	9.00	17.03
6.00	10.00	66.26
2.00	11.00	215.15
1.00	12.00	2661.18

You can see that 3 and 4 are combined first since the distance is 2 , call this cluster 8 . Next point 7 is grouped with cluster 8 since the distance (using the centroid option) is 8.49; call this new cluster 9. Etc.

The plot for the clusters (up to 4 -distinguished by color) is as shown in Figure:

The draft work is shown in Fig. 5 while the corresponding Gantt chart is shown in Fig. 6.

A			A^{\prime}				
40			60				
B^{\prime}		B		B		B^{\prime}	
20		20		25		35	
C^{\prime}	C	C	C^{\prime}	C^{\prime}	C	C	C^{\prime}
5	15	15	5	20	5	10	25

Draft of Gantt chart.

The corresponding Gantt chart.

