KFUPM - COMPUTER ENGINEERING DEPARTMENT

COE-587 –Performance Evaluation and Analysis CSE 642 – Computer Systems Performance

Assignment # 1 - Due Monday Feb 16th, 2015

Problem	Points	
1	20	
2	20	
3	10	
Total	50	

a) Plot is as shown in Fig. 1 below.

Figure 1: original data.

Figure 2: principle factor 1 and principle factor 2.

b) The correlation matrix is given by $C = \begin{bmatrix} 1.0 & 0.6632 \\ 0.6632 & 1.0 \end{bmatrix}$. The characteristic equation is given by $(\lambda - 1)^2 - 0.6632^2 = 0$ or $\lambda^2 - 2\lambda + 0.5602 = 0$. The eign values are as follows: $\lambda_1 = 1.6632$, $\lambda_2 = 0.3368$, and the corresponding vectors are: $q_1 = \begin{bmatrix} 0.7071 \\ 0.7071 \end{bmatrix}$, and $q_2 = \begin{bmatrix} -0.7071 \\ 0.7071 \end{bmatrix}$.

The principle component computations:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0.7071 & 0.7071 \\ 0.7071 & -0.7071 \end{bmatrix} \begin{bmatrix} (x_s - 7.4286)/4.6853 \\ (x_r - 454)/1009.3227 \end{bmatrix}$$

c) The table is as follows:

>> Problem_6_1							
i	x_s	x_r	x_s'	x_r'	y_1	у_2	
1	14	2735	+1.403	+2.260	+2.590	-0.606	
2	13	253	+1.189	-0.199	+0.700	+0.982	
3	8	27	+0.122	-0.423	-0.213	+0.385	
4	6	27	-0.305	-0.423	-0.515	+0.084	
5	6	12	-0.305	-0.438	-0.525	+0.094	
6	4	91	-0.732	-0.360	-0.772	-0.263	
7	1	33	-1.372	-0.417	-1.265	-0.675	
Sum x	52	3178	-0.0	-0.000	+0.000	+0.000	
Sum x	2 518	7555206	+6.0	+6.000	+9.979	+2.021	
mean	+7.4	+454.0	-0.000	-0.000	+0.000	+0.000	
std	+4.7	+1009.3	+1.000	+1.000	+1.290	+0.580	

The plot for the principle factors is as shown in Fig. 2.

d) The % of variation explained by 1st factor is 9.979/(9.979+2.021) = 83.2%. The second factor explains 16.8%.

Problem 2 (20 points):

Executing the Spanning Tree algorithm: Step 1: Minimum distance = 2 between 3 and 4 Assign_01_coe_142_587_sol_for_distribution

Dr. Ashraf S. Hasan Mahmoud Step 2: Minimum distance = 8.49 between 3-4 and 7
Step 3: Minimum distance = 17.03 between 3-4-7 and 5
Step 4: Minimum distance = 66.262 between 3-4-7-5 and 6
Step 5: Minimum distance = 215.149 between 3-4-7-5-6 and 2
Step 6: Minimum distance = 2661.2 between 3-4-7-5-6-2 and 1

Therefore, the dendrogram is as shown in Fig. 3.

Figure 4: Clustering for Problem 2.

b) The dendrogram provides a mean to cluster the data. It is clear that this particular data is has one or two outlier points; namely the first two pairs. The COBOL and BASIC compilers have very similar performance numbers, therefore they come as the first cluster.

c) The data is as shown below - The required graph is shown in Fig. 4.

You can get the distances and in part (a) directly from the matrix Z. Printing the value of the matrix Z:

>> Z = linkage(Y, 'centroid')

Z =

3.00	4.00	2.00
7.00	8.00	8.49
5.00	9.00	17.03
6.00	10.00	66.26
2.00	11.00	215.15
1.00	12.00	2661.18

You can see that 3 and 4 are combined first since the distance is 2, call this cluster 8. Next point 7 is grouped with cluster 8 since the distance (using the centroid option) is 8.49; call this new cluster 9. Etc.

The plot for the clusters (up to 4 - distinguished by color) is as shown in Figure:

Feb 4th, 2015

The draft work is shown in Fig. 5 while the corresponding Gantt chart is shown in Fig. 6.

A			A'				
40			60				
E	3'	E	3	B B'		3'	
2	20		20		25 35		5
C'	С	С	C	C	С	С	C'
5	15	15	5	20	5	10	25

Draft of Gantt chart.

The corresponding Gantt chart.