KFUPM - COMPUTER ENGINEERING DEPARTMENT

COE-540 – Computer Networks Quiz 03 – Due March 11th, 2015 – Take home quiz

Student Name: Student Number:

a) The transmitted frame is $T(X) = X^{13} + X^{12} + X^{10} + X^8 + X^7 + X^6 + X^5 + X^4 + X^6$

b) The division is shown - Note that the division shown produce a ZERO remainder.

Division of T(X) by G(X) using binary representation

Note that the division process may be done in binary as shown or using the polynomial representation (easier to follow!) - Division in ONE representation form is required ONLY.

						X^9	X^8					X^3	X^2	х
X^4	х	1	X^13	X^12	X^10		X^8	X^7	X^6	X^5	X^4			х
			X^13		X^10	X^9								
				X^12		X^9	X^8	X^7	X^6	X^5	X^4			х
				X^12		X^9	X^8							
								X^7	X^6	X^5	X^4			х
								X^7			X^4	X^3		
									X^6	X^5		X^3		x
									X^6			X^3	X^2	
										X^5			X^2	х
										X^5			X^2	х
										0	0	0	0	0

Division of T(X) by G(X) using polynomial representation

c) The error syndrome is given by 00 1000 0000 0100 or $E(X) = X^{11} + X^2$

The received frame is $T_R(X) = T(X) + E(X) = X^{13} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^6 + X^5 + X^4 + X^2 + X$ or 11 <u>1</u>101 1111 0<u>1</u>10. The underlined bits are the ones affected by the error.

d) The division of the received frame TR(X) by G(X) is as shown. Note the division produces a remainder and therefore, the

Division of TR(X) by G(X) using binary representation

Dr. Ashraf S. Hasan Mahmoud

Note that the division process may be done in binary as shown or using the polynomial representation (easier to follow!) - Division in ONE representation form is required ONLY.

Note that the remainder of the division is X^3+X which is the bit pattern 1010

							X^9	X^8	X^7			X^4		X^2	
X^4	х	1	X^13	X^12	X^11	X^10		X^8	X^7	X^6	X^5	X^4		X^2	х
			X^13			X^10	X^9								
				X^12	X^11		X^9	X^8	X^7	X^6	X^5	X^4		X^2	х
				X^12			X^9	X^8							
					X^11				X^7	X^6	X^5	X^4		X^2	х
					X^11			X^8	X^7						
								X^8		X^6	X^5	X^4		X^2	х
								X^8			X^5	X^4			
										X^6				X^2	х
										X^6			Х^З	X^2	
													X^3		х

Division of TR(X) by G(X) using polynomial representation

March 10th, 2015