KFUPM - COMPUTER ENGINEERING DEPARTMENT
 COE-540 - Computer Networks
 Quiz 03 - Due March 11 ${ }^{\text {th }}, 2015$ - Take home quiz

Student Name:
 Student Number:

a) The transmitted frame is $T(X)=X^{13}+X^{12}+X^{10}+X^{8}+X^{7}+X^{6}+X^{5}+X^{4}+X$
b) The division is shown - Note that the division shown produce a ZERO remainder.

Division of $T(X)$ by $G(X)$ using binary representation

Division of $T(X)$ by $G(X)$ using polynomial representation
c) The error syndrome is given by 00100000000100 or $E(X)=X^{11}+X^{2}$

The received frame is $T_{R}(X)=T(X)+E(X)=X^{13}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{6}+X^{5}+X^{4}+$ $X^{2}+X$ or $11 \underline{1} 10111110 \underline{110}$. The underlined bits are the ones affected by the error.
d) The division of the received frame $T R(X)$ by $G(X)$ is as shown. Note the division produces a remainder and therefore, the

Division of $T R(X)$ by $G(X)$ using binary representation

Dr. Ashraf S. Hasan Mahmoud
Note that the division process may be done in binary as shown or using the polynomial representation (easier to follow!) - Division in ONE representation form is required ONLY.

Note that the remainder of the division is $X^{\wedge} 3+X$ which is the bit pattern 1010

March $10^{\text {th }}, 2015$

							x^9	x^8	X^7			x^4		x^2	
x^4	\times	1	$\times^{\wedge 13}$	$\mathrm{x}^{\wedge} 12$	$\chi^{\wedge} 11$	$\mathrm{x}^{\wedge 10}$		${ }^{\times \wedge}$	$\times^{\wedge} 7$	${ }^{\times n} 6$	x^5	$\times^{\wedge} 4$		x^{2}	\times
			$\times^{\wedge 13}$			x^10	x^9								
				x^12	x^11		x^9	x^8	X^7	${ }^{\times \times 6}$	${ }^{\times 5}$	x^4		${ }^{\text {^2 }}$	x
				$\mathrm{x}^{\wedge} 12$			x^9	x^8							
					$\chi^{\wedge 11}$				x^7	${ }^{\times \times 6}$	$\times \times 5$	$\times^{\wedge 4}$		\times^{\wedge}	\times
					$\chi^{\wedge 11}$			x^8	x^7						
								x^8		${ }^{\times \times 6}$	$\times^{\wedge 5}$	$\times^{\wedge 4}$		${ }^{\times \wedge}$	x
								x^8			${ }^{\times 5}$	x^4			
										${ }^{\times \wedge}$				x^2	\times
										${ }^{\times \times 6}$			x^{\wedge}	${ }^{\wedge}{ }^{2}$	
													$x^{\wedge} 3$		\times

Division of $T R(X)$ by $G(X)$ using polynomial representation

