KFUPM - COMPUTER ENGINEERING DEPARTMENT
 COE-540 - Computer Networks
 Quiz 01

Student Name:

Student Number:

Solution:

a) Mathematical expression for $s(t)$ is given by

$$
s(t)=\left\{\begin{array}{cc}
A & 0 \leq t<T / 2 \\
-A & T / 2 \leq t<T
\end{array}\right.
$$

For this signal $T=1 \mathrm{sec} \rightarrow f 0=1 \mathrm{~Hz}$.
b) Total power for signal $s(t)$ is given by

$$
P_{s}=\frac{1}{T} \int_{0}^{T}|s(t)|^{2} d t=\frac{1}{T} \int_{0}^{T} A^{2} d t=\frac{1}{T} \times A^{2} \times T=A^{2} \text { Watts }
$$

Therefore, $P_{s}=A^{2}=4$ Watts.
c) For this signal f_max $=$ infinity \rightarrow Theoretical bandwidth $=$ infinity
d) The FSE is given by

$$
s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos (2 \pi n t / T)+\sum_{n=1}^{\infty} B_{n} \sin (2 \pi n t / T)
$$

The constant AO is obtained as

$$
A_{0}=\frac{2}{T} \int_{0}^{T} s(t) d t=\frac{2}{T}\left(\int_{0}^{T / 2} A d t-\int_{T / 2}^{T} A d t\right)=0
$$

The constants An are obtained as

$$
\begin{aligned}
A_{n} & =\frac{2}{T} \int_{0}^{T} s(t) \cos \left(\frac{2 \pi n t}{T}\right) d t=\frac{2}{T}\left(\int_{0}^{\frac{T}{2}} A \cos \left(\frac{2 \pi n t}{T}\right) d t-\int_{\frac{T}{2}}^{T} A \cos \left(\frac{2 \pi n t}{T}\right) d t\right) \\
& =\frac{2}{T}\left(\left.\frac{A T}{2 \pi n} \sin \left(\frac{2 \pi n t}{T}\right)\right|_{t=0} ^{t=\frac{T}{2}}-\left.\frac{A T}{2 \pi n} \sin \left(\frac{2 \pi n t}{T}\right)\right|_{t=\frac{T}{2}} ^{t=T}\right) \\
& =\frac{2}{T}\left(\frac{A T}{2 \pi n}(\sin (\pi n)-\sin (0))-\frac{A T}{2 \pi n}(\sin (2 \pi n)-\sin (\pi n))\right) \\
& =\frac{2}{T}\left(\frac{A T}{2 \pi n}(0-0)-\frac{A T}{2 \pi n}(0-0)\right)=0
\end{aligned}
$$

The constants Bn are obtained as

$$
\begin{aligned}
B_{n} & =\frac{2}{T} \int_{0}^{T} s(t) \sin \left(\frac{2 \pi n t}{T}\right) d t=\frac{2}{T}\left(\int_{0}^{\frac{T}{2}} A \sin \left(\frac{2 \pi n t}{T}\right) d t-\int_{\frac{T}{2}}^{T} A \sin \left(\frac{2 \pi n t}{T}\right) d t\right) \\
& =\frac{2}{T}\left(\left.\frac{-A T}{2 \pi n} \cos \left(\frac{2 \pi n t}{T}\right)\right|_{t=0} ^{t=\frac{T}{2}}+\left.\frac{A T}{2 \pi n} \cos \left(\frac{2 \pi n t}{T}\right)\right|_{t=\frac{T}{2}} ^{t=T}\right. \\
& =\frac{2}{T}\left(\frac{-A T}{2 \pi n}(\cos (\pi n)-1)+\frac{A T}{2 \pi n}(\cos (2 \pi n)-\cos (\pi n))\right) \\
& =\frac{2 A}{\pi n}(1-\cos (\pi n))= \begin{cases}0 & n=2,4,6, \ldots \\
\frac{4 A}{\pi n} & n=1,3,5, \ldots\end{cases}
\end{aligned}
$$

Therefore, the FSE is given by

$$
\begin{aligned}
s(t) & =\frac{4 A}{\pi} \sum_{n=1,3,5,}^{\infty} \frac{\sin \left(\frac{2 \pi n t}{T}\right)}{n} \\
& =\frac{8}{\pi} \sum_{n=1,3,5}^{\infty} \frac{\sin (2 \pi n t)}{n}
\end{aligned}
$$

Note that for this signal there is NO DC component and the An coefficients are zero.
e) To find k^{*} such that s_e($n=k^{*}$) has 95% of power, we construct a table similar to that in the slides. Note that the total power is $A^{\wedge} 2$.

k value	s_e(n=k)	Power (Watts)	Relative to total power
0	0	0	0
1	$\frac{4 A}{\pi} \sin (2 \pi t)$	$\frac{\left(\frac{4 A}{\pi}\right)^{2}}{2}=0.8106 A^{2}$	$\frac{\left(\frac{8 A^{2}}{\pi^{2}}\right)}{A^{2}}=\frac{8}{\pi^{2}} \text { or } 81.06 \%$
3	$\frac{4 A}{\pi} \sin (2 \pi t)+\frac{4 A}{3 \pi} \sin (2 \pi t)$	$\frac{\left(\frac{4 A}{\pi}\right)^{2}}{2}+\frac{\left(\frac{4 A}{3 \pi}\right)^{2}}{2}=0.9006 A^{2}$	$\frac{0.9006 A^{2}}{A^{2}}=90.06 \%$
5	$\frac{4 A}{\pi} \sin (2 \pi t)+\frac{4 A}{3 \pi} \sin (2 \pi t)++\frac{4 A}{5 \pi} \sin (2 \pi t)$	$\begin{aligned} & \frac{\left(\frac{4 A}{\pi}\right)^{2}}{2}+\frac{\left(\frac{4 A}{3 \pi}\right)^{2}}{2}+\frac{\left(\frac{4 A}{5 \pi}\right)^{2}}{2}= \\ & 0.9331 A^{2} \end{aligned}$	93.31\%
7	$\begin{aligned} & \frac{4 A}{\pi} \sin (2 \pi t)+\frac{4 A}{3 \pi} \sin (2 \pi t)+\frac{4 A}{5 \pi} \sin (2 \pi t)+ \\ & \frac{4 A}{7 \pi} \sin (2 \pi t) \end{aligned}$	$\begin{aligned} & \frac{\left(\frac{4 A}{\pi}\right)^{2}}{2}+\frac{\left(\frac{4 A}{3 \pi}\right)^{2}}{2}+\frac{\left(\frac{4 A}{5 \pi}\right)^{2}}{2}+\frac{\left(\frac{4 A}{\pi}\right)^{2}}{2}= \\ & 0.9496 A^{2} \end{aligned}$	94.96\%
9	$\begin{aligned} & \frac{4 A}{\pi} \sin (2 \pi t)+\frac{4 A}{3 \pi} \sin (2 \pi t)+\frac{4 A}{5 \pi} \sin (2 \pi t)+ \\ & \frac{4 A}{7 \pi} \sin (2 \pi t)+\frac{4 A}{9 \pi} \sin (2 \pi t) \end{aligned}$	$\begin{aligned} & \frac{\left(\frac{4 A}{\pi}\right)^{2}}{2}+\frac{\left(\frac{4 A}{3 \pi}\right)^{2}}{2}+\frac{\left(\frac{4 A}{5 \pi}\right)^{2}}{2}+\frac{\left(\frac{4 A}{7 \pi}\right)^{2}}{2}+ \\ & \frac{\left(\frac{4 A}{9 \pi}\right)^{2}}{2}=0.9596 A^{2} \end{aligned}$	95.96\%

Therefore, k^{*} is equal to 9 , and the expansion s_e $(n=9)$ is given by

$$
s(t)=\frac{4 A}{\pi} \sin (2 \pi t)+\frac{4 A}{3 \pi} \sin (2 \pi t)+\frac{4 A}{5 \pi} \sin (2 \pi t)+\frac{4 A}{7 \pi} \sin (2 \pi t)+\frac{4 A}{9 \pi} \sin (2 \pi t)
$$

f) The bandwidth for $s _e(n=9)$ is $f \max -f \min =9 / T-1 / T=8 / T=8 \mathrm{~Hz}$.
g) The plot is as shown below:

Plot for part (f)
h) The power spectral density function is specified by:

$$
\begin{aligned}
\operatorname{PSD}(f) & =\frac{8 A^{2}}{\pi^{2}} \sum_{n=1,3,5, \ldots}^{\infty} \frac{1}{n^{2}} \delta\left(f-\frac{n}{T}\right), \text { or } \\
& =\left\{\begin{array}{cc}
\frac{8 A^{2}}{\pi^{2} n^{2}} & f=n \times f_{0} ; n=1,3,5, \ldots \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

where $\delta($.$) is the Dirac delta function.$
i) The plot is as shown in Figure.

Plot for part (g)

