KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS COLLEGE OF COMPUTER SCIENCES \& ENGINEERING COMPUTER ENGINEERING DEPARTMENT
 COE 540 - Computer Networks
 Assignment 1 - Due Date March 2 ${ }^{\text {nd }}, 2015$

Problem \#	Maximum Mark	Mark
1	40	
2	10	
3	10	
4	10	
5	10	
6	10	
	90	
Total		

Problem (1):

Solution

a) $g(t)=\left\{\begin{array}{ll}1 & \frac{T}{8}<t \leq \frac{3 T}{8} \\ 1 & \frac{6 T}{8}<t \leq \frac{7 T}{8} \\ 0 & \text { otherwise }\end{array}\right.$ for $t \in(0, T]$.
b) Refer to the following table:

(e) 8 harmonics.
c) >> Assign_01_132_COE_540_Problem_2

For number of harmonics $=15-$ Total power $=0.362$ Watts
For number of harmonics $=1-$ Total power $=0.170$ Watts
For number of harmonics $=2-$ Total power $=0.297$ Watts
For number of harmonics $=4-$ Total power $=0.329$ Watts
For number of harmonics $=8$ - Total power $=0.350$ Watts

Note that the total power for the original *unfiltered* $g(t)$ is equal to

$$
P_{g}=\frac{A^{2} \times(2 \times T / 8)+A^{2} \times(1 \times T / 8)}{T}=\frac{3}{8} A^{2} \text { Watts }
$$

Or 0.375 Watts for $A=1$ Volts.
This total power should be also the same as

$$
P_{g}=\left(\frac{c}{2}\right)^{2}+\frac{1}{2} \sum_{n=1}^{\infty} a_{n}^{2}+b_{n}^{2}
$$

d) When $g(t)$ is passed through the ideal LPF, the output signal includes only frequencies less than 9 Hz . That is $g L(t)$ is given by

$$
g_{L}(t)=\frac{c}{2}+\sum_{n=1}^{8} a_{n} \sin \left(\frac{2 \pi n t}{T}\right)+\sum_{n=1}^{8} b_{n} \cos \left(\frac{2 \pi n t}{T}\right)
$$

where the coefficients a_{n}, b_{n} and c are given in textbook. The period T is specified as 1 sec . Note the summation runs up to $n=8$ only.
This is the same signal plotted in Figure 2-1 (e) on page 112 of textbook. The total power for this $g_{L}(t)$ is equal to 0.350 Watts (from part (c)).
e) When $g(t)$ is passed through the ideal HPF, the output signal includes only frequencies equal or higher to 9 Hz . The output $g_{H}(t)$ is given by

$$
g_{H}(t)=\sum_{n=9}^{\infty} a_{n} \sin \left(\frac{2 \pi n t}{T}\right)+\sum_{n=9}^{\infty} b_{n} \cos \left(\frac{2 \pi n t}{T}\right)
$$

Note that the summations now run from $n=$ 9 so that lower harmonics (plus DC) are suppressed.
The total power for this signal is equal to

$$
P_{g_{H}}=\frac{1}{2} \sum_{n=9}^{\infty} a_{n}^{2}+b_{n}^{2}
$$

Now, rather than evaluating the above expression directly, we can see that

$$
P_{g_{H}}=P_{g}-\left(\left(\frac{c}{2}\right)^{2}+\frac{1}{2} \sum_{n=1}^{8} a_{n}^{2}+b_{n}^{2}\right)
$$

which is equal to 0.0244 Watts.

Problem (2):

Let d be equal to 40000 km . The request needs to traverse a distance equal to $2 d$ to reach the server, and the response needs to traverse the same distance. Therefore, the minimum delay is equal to $\frac{4 d}{v}=$ $\frac{4 \times 40000 \times 1000}{3 \times 10^{8}}=0.533$ seconds. Here $v=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$ is the speed of light. There are transmission and processing delays on top of this propagation delay.

Problem (3):

Refer to discussion in textbook pages 146 and 147.

Problem (4): \{to be cancelled\}

Problem (5):

Item	Pros	Cons
Fixed payload size	Easy of processing (parsing)	Waste of bandwidth for unfilled payloads
Small payload size	Appropriate for real-time traffic (or delay/jitter sensitive traffic)	Waste for bandwidth when overhead fields are used

Problem (6):

>> Assign01_FHD_Problem
(a)

| Size of frame $=$ | 49766400 bits or | 0.0058 Gbytes |
| ---: | ---: | ---: | :--- |
| bit rate $=$ | 1492992000 bits $/ \mathrm{sec}$ or | 0.1738 Gbytes $/ \mathrm{sec}$ |

(b)

Size of single-layer blue ray disc is 25 Gbytes
Maximum movie length is 143.838 sec or 2.397 min
(c)

Size of 120 min video is 1251.411 Gbytes

1 byte $=8$ bits
1 Kbytes $=1024$
1Mbytes = 1024x1024 bytes
1Gbytes $=1024 \times 1024 \times 1024$ bytes
Size of single-layer blue ray disc $=25$ Gbytes

