KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COLLEGE OF COMPUTER SCIENCES & ENGINEERING COMPUTER ENGINEERING DEPARTMENT

COE 540 – Computer Networks Assignment 1 – Due Date March 2nd, 2015

Problem #	Maximum Mark	Mark
1	40	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	90	

Problem (1):

Solution

a)
$$g(t) = \begin{cases} 1 & \frac{T}{8} < t \le \frac{3T}{8} \\ 1 & \frac{6T}{8} < t \le \frac{7T}{8} \text{ for } t \in (0,T]. \\ 0 & \text{otherwise} \end{cases}$$

b) Refer to the following table:

c) » Assign_01_132_COE_540_Problem_2 For number of harmonics = 15 - Total power = 0.362 Watts For number of harmonics = 1 - Total power = 0.170 Watts For number of harmonics = 2 - Total power = 0.297 Watts For number of harmonics = 4 - Total power = 0.329 Watts For number of harmonics = 8 - Total power = 0.350 Watts

Note that the total power for the original *unfiltered* g(t) is equal to

$$P_g = \frac{A^2 \times (2 \times T/8) + A^2 \times (1 \times T/8)}{T} = \frac{3}{8}A^2$$
 Watts

Or 0.375 Watts for A = 1 Volts.

This total power should be also the same as

$$P_g = \left(\frac{c}{2}\right)^2 + \frac{1}{2}\sum_{n=1}^{\infty} a_n^2 + b_n^2$$

$$g_L(t) = \frac{c}{2} + \sum_{n=1}^{8} a_n \sin\left(\frac{2\pi nt}{T}\right) + \sum_{n=1}^{8} b_n \cos\left(\frac{2\pi nt}{T}\right)$$

where the coefficients a_n , b_n and c are given in textbook. The period T is specified as 1 sec. Note the summation runs up to n = 8 only.

This is the same signal plotted in Figure 2-1 (e) on page 112 of textbook. The total power for this $g_L(t)$ is equal to 0.350 Watts (from part (c)).

e) When g(t) is passed through the ideal HPF, the output signal includes only frequencies equal or higher to 9 Hz. The output $g_H(t)$ is given by

$$g_H(t) = \sum_{n=9}^{\infty} a_n \sin\left(\frac{2\pi nt}{T}\right) + \sum_{n=9}^{\infty} b_n \cos\left(\frac{2\pi nt}{T}\right)$$

Note that the summations now run from n = 9 so that lower harmonics (plus DC) are suppressed.

The total power for this signal is equal to

$$P_{g_H} = \frac{1}{2} \sum_{n=9}^{\infty} a_n^2 + b_n^2$$

Now, rather than evaluating the above expression directly, we can see that

$$P_{g_H} = P_g - \left(\left(\frac{c}{2}\right)^2 + \frac{1}{2} \sum_{n=1}^8 a_n^2 + b_n^2 \right)$$

which is equal to 0.0244 Watts.

The plot for $g_H(t)$ is as shown. Note that $g_H(t)$ has no resemblance to the original g(t) since the low frequency components are now removed.

Problem (2):

Let *d* be equal to 40000 km. The request needs to traverse a distance equal to 2*d* to reach the server, and the response needs to traverse the same distance. Therefore, the minimum delay is equal to $\frac{4d}{v} = \frac{4 \times 40000 \times 1000}{3 \times 10^8} = 0.533$ seconds. Here $v = 3 \times 10^8$ m/sec is the speed of light. There are transmission and processing delays on top of this propagation delay.

Problem (3):

Refer to discussion in textbook pages 146 and 147.

Problem (4): {to be cancelled}

Problem (5):

Item	Pros	Cons
Fixed payload size	Easy of processing (parsing)	Waste of bandwidth for unfilled payloads
Small payload size	Appropriate for real-time traffic (or delay/jitter sensitive traffic)	Waste for bandwidth when overhead fields are used

Problem (6):

```
>> Assign01_FHD_Problem
(a)
Size of frame = 49766400 bits or 0.0058 Gbytes
    bit rate = 1492992000 bits/sec or 0.1738 Gbytes/sec
(b)
Size of single-layer blue ray disc is 25 Gbytes
Maximum movie length is 143.838 sec or 2.397 min
(c)
Size of 120 min video is 1251.411 Gbytes
1 byte = 8 bits
1Kbytes = 1024
1Mbytes = 1024x1024 bytes
1Gbytes = 1024x1024x1024 bytes
Size of single-layer blue ray disc = 25 Gbytes
```