KFUPM - COMPUTER ENGINEERING DEPARTMENT
 COE-540 - Computer Networks Quiz 01

Student Name:
 Student Number:

a) Sending at the rate of b bits per second \rightarrow we are sending one byte (8 bits) every $T=8 / b$ seconds.
\rightarrow fundamental frequency $f_{0}=1 / T=b / 8 \mathrm{~Hz}$.
Telephone channel bandwidth, $\mathrm{BW}=3 \mathrm{kHz}=3000 \mathrm{~Hz}$.
The question is how many multiples of fO we can fit in the telephone channel BW \rightarrow number of harmonics $=\left\lfloor\frac{3000}{b / 8}\right\rfloor=\left\lfloor\frac{24000}{b}\right\rfloor$, where $\lfloor x\rfloor$ is the largest integer smaller or equal to x. Substitute for b the value of 9600 and you get $f_{0}=1200 \mathrm{~Hz}$ and number of harmonic is 2 .
b) Using Shannon capacity $C=B \log 2(1+S N R)=3000 \log 2\left(1+10^{\wedge}(30 / 10)\right)=29.9 \mathrm{~kb} / \mathrm{s}$
c) When noise is ignored \rightarrow We can use Nyquist criterion \rightarrow Every 1 Hz can do 2 symbols per second, or $C=2 B \log 2(M)$ - where M is the alphabet size.

We can choose M arbitrarily large $\rightarrow C=$ infinity.
d) To achieve $C=29.9 \mathrm{~kb} / \mathrm{s}$ using a bandwidth of 3000 Hz $C=2 B \log 2(M) \rightarrow M=\operatorname{roundup}\left(2^{\wedge}(M / 2 B)\right)=32$ symbols or signaling elements.

