King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 540 - Computer Networks

Term 141

Dr. Ashraf S. Hasan Mahmoud

Rm 22-420

Ext. 1724

Email: ashraf@kfupm.edu.sa

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

1

Lecture Contents

- 1. Data link layer design issues
- 2. Error detection and correction
- 3. Data link protocols and performance
- 4. Example data link protocols

These slides are based on the Tanenbaum's textbook and original author slide

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Data Link Design Issues

- Services provided to the Network layer
- Framing
- Error control
- Flow control

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

3

Data Link Services

- The main services include:
 - Providing well-defined service interface to the network layer
 - Dealing with transmission errors
 - Flow control
- Unit of transmission FRAME

Services Provided to the Network Layer

- Three possibilities:
 - 1. Unacknowledged connectionless service
 - 2. Acknowledged connectionless service
 - . Acknowledged connection-oriented service
- Unacknowledged connectionless service:
 - No logical connection established/released
 - No attempt to detect or correct errors
 - Appropriate for real-time traffic
 - E.g. Ethernet
- Acknowledged connectionless service:
 - No logical connection
 - Each frame is sent individually and is acknowledged
 - E.g. WiFi
- Acknowledged connection-oriented service:
 - Source and destination establish a connection before data is transferred 3 connection phases
 - Each sent frame is numbered and ack-ed
 - DL provides (to the network layer) a reliable bit stream

8/31/2014 Dr. Ashraf S. Hasan Mahmoud

Services Provided to the Network Layer - cont'd

- Questions to contemplate about:
 - 1. Is the ACK function a requirement for the DL layer? Why or why not?
 - Why not move the ACK function to the upper Network layer?

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Framing

- Continuous bit stream (of the physical layer) is broken up to discrete frames
- Some overhead is added to the frame
 - Checksum/CRC error detection;
 - Frame sequencing;
 - Etc.
- How to determine the frame boundary Methods for framing:
 - 1. Bytes count
 - 2. Flag byte with byte stuffing
 - 3. Flag bit with bit stuffing
 - 4. Physical layer coding violation

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

.

Framing - Bytes Count

- A field in the header that determines the frame length
- What happens if the field is corrupted by noise?

A byte stream. (a) Without errors. (b) With one error.

8/31/2014 Dr. Ashraf S. Hasan Mahmoud

Framing - Bytes Count - More

- Length of the length field should be at least Llog₂ K_{max} + 1
 - Kmax is the maximum frame length
 - Similar to the overhead for bit-oriented framing
- Could any other method of encoding frame lengths require smaller expected number of bits?
 - Information theory
 - Given any probability assignment P(K) on frame lengths, then the minimum expected number of bits that can encode such lengths is at least the entropy of that distribution, given by

$$H = \sum P(K) \log_2 P(K)^{-1}$$

- Example let P(K) = 1/Kmax (i.e. all lengths are equally probable)
 → H = log₂ Kmax
- Example let $P(K) = p(1-p)^{K-1}$ where $p = 1/E\{K\} \rightarrow H = log_2E\{K\} + log_2e$ for large $E\{K\}$

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

9

Source Coding for Frame Lengths

- The idea is to
 - map more likely values of K into short bit strings
 - Map less likely values of K into longer bit strings
- That is: map a given K into log₂ P(K)⁻¹ bits
- For geometric distribution of K →
 - Maximum # of required bits
 - The resulting code is called: Unary-binary encoding

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Huffman Source Coding

- Example: Consider the symbols (or frame lengths) occurring with the probabilities shown in figure. Find the coding that results in minimum average number of bits per symbol (or frame length)
- **Solution:** See figure (A \rightarrow 0, B \rightarrow 11, C \rightarrow 100, D \rightarrow 1010, E \rightarrow 1011) Avg # of bits, L_h = 1x0.6 + 2x0.15 + 3x0.13 + 4x0.1 + 4x0.02 = 1.77 bits Entropy, H = Σ P(K) \log_2 P(K)⁻¹ = 1.68

In general $H \le L_h \le H + 1$

Framing - Flag Byte

- Special bytes used to identify the boundaries of the frame
- Use of byte stuffing

8/31/2014

- What if the Flag byte appears in the payload?
 - What if the ESC byte itself appears in the payload?
- E.g. the point-to-point protocol (PPP)

- (a) A frame delimited by flag bytes.
- (b) Four examples of byte sequences before and after byte stuffing.

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Framing - Flag Bits (Unique Pattern)

- Unique bit pattern
 - E.g. 01111110 or 0x7E used by HDLC
- Use of bit stuffing
- Bit stuffing rules at the transmitter/receiver

Bit stuffing. (a) The original data. (b) The data as they appear on the line. (c) The data as they are stored in the receiver's memory after destuffing.

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

13

Framing - Physical Layer Violations

- Example: 4B/5B encoding only 16 valid patterns out of total of 32
- Use some reserved signals (code violations) to indicated the start and end of frame
 - No need to stuff the data!

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Framing - General Comments

- Some data link protocols use a combination of the previous methods
 - 802.11 uses a 72-bit long preample + a length (count) field
- Compare the efficiency of flag byte based framing and the unique bit pattern framing? (For the worst case)

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

15

Error Control

- Essential function for reliable services
- Types of errors:
 - Erroneous frame
 - Lost frame
- Use of +ve/-ve ACKs
- Use of timers
 - May get a frame transmitted multiple times if the corresponding ACK is lost
- Need to manage sequence numbers and timers
- Error control = error detection + error correction

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Flow Control

- Transmitter should not overwhelm receiver with data
- Feedback-based control flow
 - Well-defined rules about when a sender may transmit the next frame; receiver may grant permits allowing sending of frames
 - E.g. ARQ
- Rate-based flow control
 - TCP

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

17

Error Detection and Correction

- Added redundancy in the original data stream enables error detection and correction
- Error-detecting codes
- Error-correcting codes
- Error models:
 - Random isolated erroneous bits; due to thermal noise
 - Burst e.g. deep fades in wireless comm; or due to impulse noise
- Erasure channel bit lost due invalid signal level
 - Easier to handle relative to channels that flip bits

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Error-Correcting Codes

- Hamming Codes
- Binary convolutional codes
- Reed-Solomon codes
- Low-density parity check codes

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

19

Error-Correcting Codes - definitions

- m data bits + r redundant bits
- Block code the r bits are computed based on m – i.e. data handled in blocks
 - Total length of block, n = m + r
- Systematic code what is sent is the m data bits plus the r check bits
- Linear code the r check bits are computed as a linear function of the m data bits
- Block of n = m + r bits → codeword
- Code rate is m/n = m/(m+r)

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Hamming Distance and Code Strength

- Hamming distance: number of bit positions in which two codewords differ
- There are 2^m possible data messages →
 2^m valid codewords
- There are 2ⁿ possible patterns of n bit long
- Fraction of used patterns: 2^m/2ⁿ = 2^(-r)

8/31/2014 Dr. Ashraf S. Hasan Mahmoud

Error Detection/Correction Capability

- To detect d errors code with distance d+1
- To correct d errors code with distance 2d+1
 - Assumes a large number of errors is less likely than a low number of errors

Example: Consider the following code:

Valid code words:

000000000, 0000011111, 1111100000, and 1111111111

- Code distance is 5 why?
- Therefore, can correct up to (5-1)/2 = 2 bit errors (i.e. single and double bit errors)
- If 0000000111 is received → Receiver will assume that 00000111111 is transmitted
- If 0000000000 is transmitted and 3 bit errors occur such that 0000000111 is received, then the receiver cannot correct properly.
- Can you detect double bit errors and detect quadruble bit errors at the same time?

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

22

Number of Check Bits (r)

- Consider a code: m data bits r check bits that corrects SINGLE bit errors
 - $n = m + r \rightarrow 2^n$ total number of n bit patterns
- There are 2^m legal messages For each there are n illegal codewords at distance 1 from it Each of the 2^m messages require n+1 bit patterns
- Therefore, we must have

$$(n+1)2^m \le 2^n$$
 or $(m+r+1) \le 2^r$

Given m, this puts a lower limit on the number of check bits r that is needed to correct single bit errors

Example: m = 7, then r must be 4, 5, ... for the above inequality to be satisfied Hamming Codes achieves this theoretical lower limit on r

- i.e. There exists Hamming code with m=11, r=4 that can correct all single bit errors
- Code denoted by (n, m) = (11, 7)

8/31/2014 Dr. Ashraf S. Hasan Mahmoud

How to Construct Hamming Codes - 1

- Bit positions are numbered from left to right starting with bit 1, bit 2, etc.
- Check (parity bits) occupy bit positions that are powers of 2; i.e. 1, 2, 4, 8, 16, etc.
- Data bits occupy the rest of bit positions; i.e. 3, 5, 6, 7, 9, etc.

Example of Hamming Code (11, 7)

B1	B2	В3	В4	В5	В6	В7	В8	В9	B10	B11
P1	P2	М3	P4	M5	M6	M7	P8	М9	M10	M11
	Parity or check bit									
Data bits										
		Dr. Ashr	af S. Ha	asan Ma	hmoud					24

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

How to Construct Hamming Codes - 2

- How to compute parity bits (assuming EVEN parity):
- Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit, etc. (1,3,5,7,9,11,13,15,...) →
 B1 = B3 + B5 + B7 + B9 + ...
- Position 2: check 2 bits, skip 2 bits, check 2 bits, skip 2 bits, etc.
 (2,3,6,7,10,11,14,15,...) → B2 = B3 + B6 + B7 + B10 + B11 + ...
- Position 4: check 4 bits, skip 4 bits, check 4 bits, skip 4 bits, etc.
 (4,5,6,7,12,13,14,15,20,21,22,23,...) → B4 = B5+B6+B7 + B12+B13+B14+B15 + ...
- Position 8: check 8 bits, skip 8 bits, check 8 bits, skip 8 bits, etc. (8-15,24-31,40-47,...)
- Position 16: check 16 bits, skip 16 bits, check 16 bits, skip 16 bits, etc. (16-31,48-63,80-95,...)
- Position 32: check 32 bits, skip 32 bits, check 32 bits, skip 32 bits, etc. (32-63,96-127,160-191,...)
- etc.
- Set a parity bit to 1 if the total number of ones in the positions it checks is odd. Set a
 parity bit to 0 if the total number of ones in the positions it checks is even.

8/31/2014 Dr. Ashraf S. Hasan Mahmoud

Hamming Code (11,7) Example

- Refer to the example in textbook page 226
- Computation of parity bits (refer to figure assumes even parity):

P1 + B3(1)+B5(0)+B7(0)+B9(0)+B11(1) = 0 \rightarrow P1 = 0; P2 + B3(1)+B6(0)+B7(0)+B10(0)+B11(1) = 0 \rightarrow P2 = 0; P4 + B5(0)+B6(0)+B7(0) = 0 \rightarrow P4 = 0; P8 + B9(0) + B10(0)+B11(1) = 0 \rightarrow P8 = 1;

• The check bits P1P2P4P8 = 0001.

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

26

Hamming Code (11,7) Example 2

 Refer to the example at: http://users.cs.fiu.edu/~downeyt/cop3402/hamming.html

8/31/2014 Dr. Ashraf S. Hasan Mahmoud

Error Syndrome and Correction

- In the previous example, M5 is flipped
- · The received codeword is

$$0_1 0_2 1_3 0_4 1_5 0_6 0_7 1_8 0_9 0_{10} 1_{11} \\$$

- Parity bits are re-computed at the receiver resulting in C4C3C2C1 = $(0101)_2$ = $(5)_{10}$ which is the index of the erroneous bit!
- Used mostly in error-correcting memory

 $\begin{array}{ll} P1+B3(1)+B5(1)+B7(0)+B9(0)+B11(1)=1=C1\\ P2+B3(1)+B6(0)+B7(0)+B10(0)+B11(1)=0=C2\\ P4+B5(1)+B6(0)+B7(0)=1=C3\\ P8+B9(0)+B10(0)+B11(1)=0=C4 \end{array}$

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

28

Convolutional Codes

- Not a block code no natural message size
- See example below:
 - Delay elements S1, S2, ..., S6 are used
 - For every clock cycle one input bit is inserted, two output bits are read out
 - Output bits are function of the input bit as also the state of the coders (S1, S2, ..., S6)
 - Coding rate, $R_c = 1/2$, Constraint length, k = 7

Convolutional Codes - 2

- Constraint length defines the extent of the memory for the coder
- If the input is not included in the output bits, then the code is non-systematic
 - Case for previous example.
- Used widely in Telecomm (e.g. GSM, UMTS, WiMAX, etc.)

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

30

Convolutional Codes - Decoding

- Decoding finding the sequence of input bits that is most likely (fewest number of errors) to have produced the observed sequence of output bit
- Viterbi decoding algorithm Trellis diagram
- Hard-decision decoding versus soft-decision decoding

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

31

Convolutional Codes

- http://oscar.iitb.ac.in/onsiteDocumentsDirectory /674 ConvolutionalCoding/674 ConvolutionalCo ding/index.html
- Excellent animation for encoder and decoder

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Reed-Solomon Code

- Linear block code
 - Often systematic
- Operate on m-bit symbols
- Basic idea n degree polynomial is completely specified by n+1 points.
 - E.g.: line ax + 1 is determined by two points if given 4 (different) points, then any
 two would suffice to specify the line
 - The extra points are redundant useful for error correction
- Uses polynomials that operate over finite field
 - For m-bit symbols, the codewords are 2^m-1 symbols long

Example: m = 8 (i.e. a byte) – RS code (255, 223) is widely used

- Contains 255-223=32 redundant bits
- Excellent introduction on RS codes: http://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed solomon code s.html
- Strong error-correcting properties especially for burst errors
- Used for telecom DSL, satellite communications, etc.
- Used also for CDs, DVDs, and blu-ray discs.

8/31/2014 Dr. Ashraf S. Hasan Mahmoud 33

Low-Density Parity Check (LDPC) Code

- Linear block code invented by R. Gallager
- The output bit if a function of a fraction of the input bits – matrix representation of the code has low density of 1s
- Decoding is done by an approximation algorithm which iteratively converges to the best fit of the received data to a legal codeword
- Practical for large block sizes and have excellent error-correction capabilities
- Used recently in digital video broadcasting, 10G Ethernet, IEEE 802.11n (option), etc.

8/31/2014 Dr. Ashraf S. Hasan Mahmoud

Error Detection Codes

- Parity
- Checksums
- Cyclic redundancy Checks (CRCs)

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

35

Parity

- · Parity bit is appended to data to form codeword
 - Even parity number of 1s in the codeword is even
 - Odd number of 1s in the codeword is odd
- With single parity bit distance of code = 2
 - Can detect single bit errors
- Excellent of low bit error rate channels

Example: Pe = 10^{-6} (1 in megabit!), m = 1000 (data) bits

FEC - to correct single bit errors we need at least r=10 bits For a megabit of data, total overhead = 10,000 check bits

If parity is used to detect the single bit error \Rightarrow 1000 parity bits are needed – With one expected error \Rightarrow

total overhead = 1000 + 1001 (retransmitted block with its parity bit) = 2001 bit

• More efficient than FEC

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Parity - Working Against Error Bursts

- Form the data block as a matrix of n bits wide and k bits high
- Compute the parity bit for every column
- Send the data row wise (starting from the top and left to right) → Interleaving
- Can handle a burst of up to n bits wide

Checksums

- Typically running sum of data words and appending the complement of the sum to the data block
- Rx-er computing the running sum of the entire block including the appended checksum
 - If result is zero → No error or undetected error

Example: 16-bit Internet checksum for the IP Protocols

Checksum is computed in 1's complement

Rx-er must get alls ones (i.e. 1111...111) when all words are added for a correct block Checked on a hop by hop basis

Does not detect deletion of insertion of zero words or swapping of parts of message
No zero representation in 1's complement:

- All zeros

- All ones

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Cyclic Redundancy Checks (CRCs)

- Most popular (very strong) error detection code at data link
 - AKA polynomial code
- Adding r bit CRC bit to m-bit message
- Generator polynomial of degree r, G(x) $G(x) = \mathbf{1} x^r + g_{r-1}x^{r-1} + ... + g_1x + \mathbf{1}$
- m-bit data message represented as M(x) of degree m-1

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

30

CRC Calculation

- M(x) = m-bit data frame M(x) has degree m-1
- G(x) = Generator polynomial of degree r $G(x) = \mathbf{1} x^r + g_{r-1}x^{r-1} + ... + g_1x + \mathbf{1}$ - Note that $g_r = g_0 = 1$.
- C(X) is the remainder polynomial of degree r-1 (i.e. r bits long)
- T(X) is the transmitted frame of (m + r) bits

 $T = (m+r)\text{-bit frame} \qquad \qquad m\text{-bit message} \qquad \qquad r\text{-bit FCS}$ g = (r+1) bit divisor $8/31/2014 \qquad \qquad \text{Dr. Ashraf S. Hasan Mahmoud} \qquad \qquad 40$

CRC Calculation (2)

- <u>Design</u>: frame T such that it divides the pattern G with no remainder?
- <u>Solution:</u> Since the first component of T, M, is the data part, it is required to find C (or the FCS) such that T divides G with no remainder

Using the polynomial equivalent:

 $T(x) = x^r M(x) + C(x)$

One can show that $C(x) = \text{remainder of } [x^rM(x)]/G(x)$ i.e if $x^rM(x)/G(x)$ is equal to Q(x) + r(x)/G(x), then C(x) is set to be equal to r(x).

Note that:

Polynomial of degree m+r-1

----- = polynomial of degree m + remainder polynomial of degree r-1

Polynomial of degree r

8/31/2014 Dr. Ashraf S. Hasan Mahmoud

41

CRC Calculation Example

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Error Detection with CRC

- Transmitted frame (data plus CRC) is T(x)
- Errors on the channel are represented by E(x)
- Received frame is T(x) + E(x)
 - i.e. bit is flipped in the position where error occurs
- The receiver divides {T(x)+E(x)} / G(x) and checks the remainder, R(x)
 - If R(X) is zero → no error or undetectable error
 - If R(X) is nonzero → error detected
- You can show that remainder of {T(x)+E(x)} / G(x)
 is simply remainder of E(x) / G(x)
 - Error patterns that contain G(x) as a factor will pass UNDETECTED!

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

43

Design of Generator Polynomial

- Single bit errors: E(x) = xⁱ, for i is the bit error location
 If G(x) has at least two non-zero coefficients (coefficient of x^r and coefficient of x⁰), then E(x) CANNOT divide G(x) without remainder → All single bit errors will be detected
- <u>Double bit errors</u>: E(x) = xⁱ+x^j, for i>j
 One can write E(x) = xⁱ+x^j = x^j(x^{i-j}+1)
 G(x) is not divisible by x why?
 If G(x) does not have a factor (x^{i-j}+1) for any poss our frame. Meaning G(x) does not divide (x^k+1)
- If G(x) does not have a factor $(x^{i-j}+1)$ for any possible i and j in our frame. Meaning G(x) does not divide (x^k+1) for any k up to the maximum value of i-j (i.e. up to the maximum frame length)
- Other properties check textbook and references

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

CRC - Shift Register Implementation - General Divisor

- Divisor of degree n → no of delay elements
 = n
- Note role of coefficients A0, A1, A2, ..., An-1, and An.

General CRC architecture to implement divisor

 $G(X) = X^n + A_{n-1}X^{n-1} + \ldots + A_1 \overset{-}{X^1} + 1$ Dr. Ashraf S. Hasan Mahmoud

8/31/2014

45

CRC - Shift Register Implementation - Example

General CRC architecture to implement divisor $G(X) = X^4 + X^1 + 1$ (Note that A1 = A4 = 1 and A2 = A3 = 0)

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Some Popular CRC Polynomials

- CRC-12: $x^{12}+x^{11}+x^3+x^2+x+1$
- CRC-16: $x^{16}+x^{15}+x^2+1$
- CRC-CCITT: x16+x12+x5+1
- CRC-32: $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$
- CRC-12 used for transmission of streams of 6-bit characters and generates a 12-bit FCS
- CEC-16 and CRC-CCITT used for transmission of 8-bit characters in USA and Europe – result in 16-bit FCS
- CRC-32 used in IEEE802 LAN standards hamming distance of only 4!

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

40

Elementary Data Link Protocols

- Flow control Using Automatic Repeat Request (ARQ) Protocol
 - Stop-and-wait
 - Sliding Window Protocols
- Performance Issues
 - Utilization
 - Link throughput
- Error Control Using ARQ Protocols
- Example Data Link Protocols

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

- The destination has a limited buffer space. How will the source know that destination is ready to receive the next frame? Need for flow control
- Two types of damaged frames: erroneous frame or frame lost!
- In case of errors or lost frame, the source need to retransmit frames i.e. a copy of transmitted frames must be kept. How will the source know when to discard copies of old frames?
- Etc.

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

- 5

Timing Diagram for Link Transmission

- Transmission of one frame:
 - T_f: time to transmit frame
 - Tprop: time for signal to propagate
 - Tproc: time for destination to process received frame small delay (usually ignored if not specified)

Very important representation

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Send And Receive Numbers

- Typical frame structure:
 - SN sequence number for the packet being transmitted
 - RN sequence number for the NEXT packet in the opposite direction
 - Packet payload
 - CRC See previous set of notes
- Piggybacking

SN	RN	Packet	CRC
----	----	--------	-----

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

53

What is ARQ?

- Def: to detect frames in error and then request the transmitter to repeat the erroneous frames
 - Using ARQ, systems can automatically request the retransmission of missing packets or packets with errors.
- Error Control:
 - ARQ
 - Forward Error Correction Def = ?
- ARQ Algorithms Figures of Merit
 - Correctness (i.e. only one packet released to upper layer)
 - Efficiency (i.e. throughput)
- Three common schemes
 - Stop & Wait
 - Go Back N
 - Selective

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Stop-and-Wait Algorithm

- The simplest ARQ algorithm!
- Operation Rules:
 - Algorithm at node A for A-to-B transmission:
 - 1. Set the integer variable SN to 0
 - Accept a packet from the next higher layer at A; if no packet is available, wait until it is; assign number SN to the new packet
 - 3. Transmit the SNth packet in a frame containing SN in the sequence number field
 - 4. If an error-free frame is received from B containing a request number RN greater than SN, increase SN to RN and go to step 2, if no such frame is received is received within some finite delay, go to step 3
 - Algorithm at node B for A-to-B transmission
 - 1. Set the integer variable RN to 0 and then repeat step 2 and 3 forever
 - Whenever an error-free frame is received from A containing the sequence number SN equal to RN, release the received packet to the higher layer and increment RN
 - At arbitrary times, but within bounded delay after receiving any error free data from A, transmit a frame to A containing RN in the request number field.
- The Gallager's textbook provides an informal proof for the correctness of the above algorithm:
 - Liveness: can continue for ever to accept new packets at A and release them to B
 - Safety: never produces an incorrect result (i.e. never releases a packet out of the correct order to the higher layer)

8/31/2014 Dr. Ashraf S. Hasan Mahmoud 55

Modulo 2 Stop-and-Wait ARQ Frame trans-Uses Modulo 2 sequence ACK1 ♠ mission tim numbers (SN and RN) Both frames and ACKs are ACK0 numbered damage Two types of errors: 1. Frame lost or damaged – *Solution*: A retransmits timeout timer 2. Damaged or lost ACK – The timeout timer solves this problem damage Time-out interval ACK0 lost: B discards 8/31/2014 Dr. Ashraf S. Hasan Mahmoud

Stop-and-Wait Protocol: Efficiency

- After every frame, source must wait till acknowledgment → Hence link propagation time is significant
- Total time to for one frame:

T_total = Tf + 2Tprop + Tproc + Tack if we ignore Tproc and Tack (usually very small)

 $T_{total} = Tf + 2Tprop$

Link utilization, U is equal to

$$U = Tf/(T_{total}), or$$

= 1 / (1+2(Tprop/Tf)) = 1 / (1 + 2 a)
where a = Tprop/Tf = length of link in bits

- If a < 1 (i.e. Tf > Tprop when 1st transmitted bit reaches destination, source will still be transmitting → U is close 100%
- If a > 1 (i.e. Tf < Tprop frame transmission is completed before 1st bit reaches destination →U is low

Source Destination

Tr
Tprop

Tprop

Tack

time

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Stop-and-Wait Protocol: Efficiency (2)

- Remember: a = Tprop/Tf = length of link in bits
- If a < 1 (i.e. Tf > Tprop when 1st transmitted bit reaches destination, source will still be transmitting → U is close 100%
- If a > 1 (i.e. Tf < Tprop frame transmission is completed before 1st bit reaches destination →U is low
- Stop-and-Wait is efficient for links where a << 1 (long frames compared to propagation time)

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Stop-and-Wait Protocol: Efficiency With Errors (3)

- Assume a frame is in error with probability P
- · Therefore, average utilization can be written as

$$U = Tf / (Nr x T_total)$$

- Nr is the average number of transmissions of a frame, while T_total is equal to Tf + 2Tprop.
- For stop-and-wait, Nr is given by

Nr = E[no of transmissions] =
$$\Sigma$$
 i x Prob[i transmissions]
= Σ i x Pi-1(1-P)
= 1/(1-P)

· Therefore, utilization is given by

Identities: $\begin{array}{l} \Sigma \ (X^{i-1}, i=1, \infty) = 1/(1-X) \ \text{for} \ -1 < X < 1 \\ \Sigma \ (iX^{i-1}, i=1, \infty) = 1/(1-X)^2 \ \text{for} \ -1 < X < 1 \end{array}$

• Note that for P = 0 (i.e. error free), the expression reduced to the previous result!

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

59

Important Performance Figures

- Utilization (U) fraction of time the link is used for transmitting data
- Throughput (b/s) effective b/s as experienced by user data
 - Throughput = R * U (b/s)
- Throughput (frame/s) average data frames per second the link is supporting
 - Throughput = 1/T_total (frame/sec)
 - = R*U/data_frame_size (frame/sec)

Raw link speed R b/s

A

Stop-and-Wait

В

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Utilization = ? Throughput = ?

Sliding Window Protocol

- Stop-and-Wait can be very inefficient when a > 1
- Protocol:
 - Assumes full duplex line
 - Source A and Destination B have buffers each of size W frames
 - For k-bit sequence numbers:
 - Frames are numbered: 0, 1, 2, ..., 2^k-1, 0, 1, ... (modulo 2^k)
 - ACKs (RRs) are numbered: 0, 1, 2, ..., 2^k-1, 0, 1, ... (modulo 2^k)
 - A is allowed to transmit up to W frames without waiting for an ACK
 - B can receive up to W consecutive frames
 - ACK J (or RR J), where 0<=J<= 2^k-1, sent by B means B is have received frames up to frame J-1 and is ready to receive frame J
- Window size, W can be less or equal to 2^k-1

8/31/2014 Dr. Ashraf S. Hasan Mahmoud 61

Sliding Window Protocol (2)

Example of Sliding-Window-Protocol: k = 3 bits, W = 7

Observations:

- A may tx W = 7 frames (F0, F1, ..., F6)
- After F0, F1, & F2 are txed, window is shrunk (i.e. can not transmit except F3, F4, ..., F6)
- When B sends RR3, A knows F0, F1 & F2 have been received and B is ready to receive F3
- Window is advanced to cover 7 frames (starting with F3 up to F1)
- A sends F3, F4, F5, & F6
- B responds with RR4 when F3 is received – A advances the window by one position to include F2

Source System A Destination System B 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 $w \longrightarrow$ 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 - w --0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 W = distance between first unacknowledged Dr. Ashray S. Hasan Mahmoud frame and last frame that can be sent

8/31/2014

Sliding Window Protocol - Piggybacking

- When using sliding window protocol in full duplex connections:
 - Node A maintains its own transmit window
 - Node B maintains its own receive window
 - A frame contains: data field + ACK field
 - There is a sequence number for the data field, and a sequence number for the ACK field

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

63

Sliding Window Protocol - Efficiency

- Again we can distinguish two cases:
- Case 1: $W \ge 2a + 1$
- Case 2: W < 2a + 1

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Sliding Window Protocol -Efficiency - Case 1 Assume k=3, W = 7 Destination Source (ignoring Tack) Source can continuously keep Tprop transmitting!! WXTf Because the ACK can Tprop arrive to source before the window is completed Utilization = 100% Sending ACK0 as soon as F0 is received is the maximum help the destination can do to increase utilization 8/31/2014 Dr. Ashraf S. Hasan Mahmoud

Sliding Window Protocol - Efficiency

- Refer to Appendix A
- When window size is W (for error free), link utilization, U, is given by

$$U = \begin{cases} 1 & W \ge (2a+1) \\ \frac{W}{2a+1} & W < (2a+1) \end{cases}$$

where a = Tprop/Tf or length of link in bits

 Sliding window protocol can achieve 100% utilization if W >= (2a + 1)

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

67

Sliding Window Protocol

- Animation for <u>Sliding Window</u> protocol
- <u>Sliding Window Protocol Simulation</u>
 (http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP3.html)

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Go-Back-N ARQ

- Based on the sliding-window flow control procedure <u>Sliding</u> Window Protocol slide
- Three types of errors:
 - 1. ith frame damaged:
 - a. If A send subsequent frames (i+1, i+2, ...), B responds with REJ i →
 A must retransmit ith frame and <u>all subsequent frames</u>

Check for status of B before resending the frame

- b. If A does not send subsequent frames and B does not respond with RR or REJ (since frame was damaged) → timeout timer at A expires

 send a POLL signal to B; B sends an RR i, i.e. it expect the ith frame – A sends the ith frame again
- Damaged RR (B receives ith frame and sends RR i+1 which is lost or damaged):
 - Since ACKs are cumulative A may receive a subsequent RR j (j >i+1) before A times out
 - If A times out, it sends a POLL signal to B if B fails to respond (i.e. down) or its response is damaged subsequent POLLs are sent; procedure repeated certain number of time before link reset
- 3. Damaged REJ same as 1.b

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

69

Go-Back-N ARQ - Efficiency With Errors

```
    Remember that Go-back-N ARQ utilization for error-free channels is given by:
```

```
U = 1 for W > 2a + 1
= W/(2a+1) for W < 2a + 1
```

- Assume a data frame can be in error with probability P
- With Go-back-N if one frame in error, we may retransmit a number of frames, on average K, and NOT only one!
- The average number of transmitted frames to transmit one frame correctly, Nr, is given by

```
Nr = E[number of transmitted frames to successfully transmit one frame] = \Sigma f(i) x Pi-1(1-P)
```

- If a frame is transmitted i times (i.e. first (i-1) times are erroneous while it was received correctly in the ith time), then f(i) is the total number of frame transmissions if our original frame is in error.
- f(i) is given by

```
f(i) = 1 + (i-1)K
```

• Substituting f(i) in the above relation, yields

```
Nr = (1-P+KP)/(1-P)
```

• Examining the operation of Go-back-N, an approximate value for K is 2a+1

Then utilization with errors is given by

```
U = (1-P)/(1+2aP) for W > 2a+1 for W < 2a+1
```

Again, expression reduces to the previous result if you set P = 0

Selective-Reject ARQ

- In contrast to Go-Back-N, the only frames retransmitted are those that receive –ve ACK (called SREJ) or those that time out
- More efficient:
 - Rx-er must have large enough buffer to save post-SREJ frames
 - Buffer manipulation re-insertion of out-of-order frames

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

7

Window Size for Selective-Reject ARQ - Why?

- Window size: should less or equal to half range of sequence numbers
 - For n-bit sequence numbers, Window size is $\leq 2^{n-1}$ (remember sequence numbers range from 0,1, ..., 2^{n-1})
- Why? See next example

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Window Size for Selective-Reject ARQ - Why? (2) Example: Consider 3-bit sequence number and window size of 7 NODE A NODE B 0 1 2 3 4 5 6 7 0 1 2 0 1 2 3 4 5 6 7 0 1 2 Frame 1 Transmitter can only advance its transmit Frame 2 window with the frames it sent are acknowledged Frame 3 Frame 4 Frame 5 timeout Frame 6 for frame 0 Receiver advances its receive window 0 1 2 3 4 5 6 7 0 1 2 Frame 0 Receiver is now confused! This frame zero – is it the new frame or a resend of the old one? 8/31/2014 Dr. Ashraf S. Hasan Mahmoud

Selective Reject ARQ - Efficiency With Errors

Remember that Selective Reject utilization for error-free channels is given by:

```
U = 1 for W > 2a + 1
= W/(2a+1) for W < 2a + 1
```

- Assume a data frame can be in error with probability P
- With Selective Reject if one frame in error, we retransmit only the required frame
- The average number of transmitted frames to transmit one frame correctly, Nr, is given by

Nr = E[number of transmitted frames to successfully transmit one frame] = Σ i x Pⁱ⁻¹(1-P) = 1/(1-P)

Then utilization with errors is given by

```
U = 1-P for W > 2a+1
(1-P)W/(2a+1) for W < 2a+1
```

Identities: $\begin{array}{l} \Sigma \; (X^{i-1}, i=1, \infty) = 1/(1-X) \; \text{for } -1 < X < 1 \\ \Sigma \; (iX^{i-1}, i=1, \infty) = 1/(1-X^2) \; \text{for } -1 < X < 1 \end{array}$

Again, expression reduces to the previous result if you set P = 0

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

75

Important Performance Figures - Again

- Utilization (U) fraction of time the link is used for transmitting data
- Throughput (b/s) effective b/s as experienced by user data
 Throughput = R * U (b/s)
- Throughput (frame/s) average data frames per second the link is supporting
 - If U is equal to 100%
 - → Throughput = 1/Tf (frame/sec)

= R*U/data_frame_size (frame/sec)

If U is LESS than 100%

→ Throughput = W/T_totla (frame/sec)

= R*U/data_frame_size (frame/sec)

Raw link speed R b/s

A Selective Reject

В

76

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Utilization = ?

Throughput =?

ARQ Utilization as a Function of a Remember a is given by Tprop/Tf – i.e. the length of the link in Figure from Stalling's textbook The curves are for $P = 10^{-3}$ Note for W = 1, go-back-N and selective 0.8 reject degenerate to the case of stop-andwait 0.6 Please note that the previous analyses are only approximate – errors in ACKs were 0.4 ignored. Furthermore, in the case of go-back-N, errors in retransmitted frames other than the frame of interest were also ignored 0.1 100 1000 8/31/2014 Dr. Ashraf S. Hasan Mahmoud

Example:

Problem: In the shown figure, frames are generated at node A and send to node C through node B. The following specifies the two communication links:

- The data rate between node A and node B is 100 kb/s
- The propagation delay is 5 μsec/km for both links
- Both links are full-duplex
- All data frames are 1000 bits long; ACK frames are separate frames of negligible length
- Between A and B sliding window protocol with a window size of 3 is used
- Between B and C, stop-and-wait is used.

There are no errors (lost or damaged frames)

- a) Calculate the utilization for link AB?
- b) What is the throughput for link AB in bits per second? What is the throughput in frames per second?
- c) Calculate the minimum rate required between nodes B and C so that the buffers of node B are not flooded.
- d) What is the efficiency of the communication on link BC?

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Solution:

```
Link AB: T_{f\_AB} = frame length / R_{AB} = 1000/100 = 10 msec
                   T_{prop\_AB} = 4000 km X 5 µsec = 20 msec
        Link BC: T_{f_BC} = frame length / R_{BC} = 1000 / R_{BC}
                  T_{prop\_BC} = 1000 km X 5 µsec = 5 msec
        a) a_{AB} = T_{prop\_AB} / T_{f\_AB} = 20 / 10 = 2
             W = 3 is equal or less than (2 \times a_{AB} + 1) = 5
             → Utilization = W/(2 X a<sub>AB</sub> + 1) = 3/5 = 60%
        b) Throughput = 100 X 0.6 = 60 kb/s;
             Throughput = 60 kb/s / (1000 bit) = 60 frame/second
        c) Throughput for link BC in frames/second = 1/(T_{f_BC} + 2XT_{prop_BC})
                                                           = 1/(1000/R_{BC} + 2X5X10^{-3})
                                                           = 1/(1000/R_{BC} + 10^{-2})
           For not overflowing: frame throughput for link AB should be less or equal to frame
        throughput for link \ensuremath{\mathsf{BC}}
             \rightarrow 60 <= 1/(1000/R<sub>BC</sub> + 10<sup>-2</sup>)
                1/60 >= 1000/ R<sub>BC</sub> + 10<sup>-2</sup>
                1/60 - 10<sup>-2</sup> >= 1000/ R<sub>BC</sub>
             R_{BC} >= 1000/(1/60 - 10^{-2}) = 150 \text{ kb/s}
        d) T_{f_BC} = 1000/150 kb/s = 6.667 msec
            Efficiency (utilization) of link BC: a_{BC} = T_{prop\_BC}/T_{f\_BC} = 5/6.666 = 0.75;
       \rightarrow Efficiency = 1/(2a+1) = 1/(2*0.75+1) = 40%
8/31/2014
                                               Dr. Ashraf S. Hasan Mahmoud
                                                                                                                                  79
```

1000 km

(c)

(B)-

Example Data Link Protocols

- HDLC basis for many of the currently operating data link protocols
- Point-to-Point Protocol (PPP) considered in two scenarios:
 - Packets over SONET optical fiber links Two ISP routers in a WAN configuration
 - ADSL link for a telephone local loop edge of the internet

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

High-Level Data Link Control Protocol (HDLC)

- One of the most important data link control protocols
- Basic Characteristics:
 - Primary Station: issues commands
 - Secondary Station: issues responses operates under the control of a primary station
 - Combined Station: issues commands and responses
- Two link configurations are defined:
 - Unbalanced: one primary plus one or more secondary
 - Balanced: two combined (functions as primary and/or secondary) stations

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Ω1

High-Level Data Link Control Protocol (HDLC) (2)

- Three transfer modes are defined:
 - Normal Response Mode (NRM) used in unbalanced conf.; secondary may only tx data in response to a command from primary
 - Asynchronous Balanced Mode (ABM) used in balanced conf.; either combined station may tx data without receiving permission from other station
 - <u>Asynchronous Response Mode (ARM)</u> used in unbalanced conf.; Secondary may initiate data tx without explicit permission; primary still retains line control (initialization, error recovery, ...)
- Animation for HDLC

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

HDLC - Applications

- NRM:
 - Point-multi-point (multi-drop line): one computer (primary) polls multiple terminals (secondary stations)
 - Point-to-point: computer and a peripheral
- ABM: most widely used (no polling involved)
 - Full duplex point-to-point
- ARM: rarely used

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

83

HDLC - Frame Structure - Flag Field

bits extendable

- Flag Field: unique pattern 011111110
 - Used for synchronization
 - To prevent this pattern form occurring in data → bit stuffing
 - Tx-er inserts a 0 after each 5 1s
 - Rx-er, after detecting flag, monitors incoming bits when a pattern of 5 1s appears; the $6^{th}/7^{th}$ bit are checked:
 - If 0, it is deleted
 - If 10, this is a flag
 - If 11, this is an ABORT
- Pitfalls of bit stuffing: one bit errors can split one frame into two or merge two frames into one

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

HDLC - Frame Structure - Address Field

Extended Address Field

- Address field identifies the secondary station that transmitted or is to receive frame
- Not used (but included for uniformity) for point-to-point links
- Extendable by prior arrangement
- Address = 11111111 (single octet) used for broadcasting; i.e. received by all secondary stations

8/31/2014 Dr. Ashraf S. Hasan Mahmoud 85

HDLC - Frame Structure - Control Field

$$\begin{split} N(S) &= Send \ sequence \ number \\ N(R) &= Receive \ sequence \ number \\ S &= Supervisory \ function \ bits \\ M &= Unnumbered \ function \ bits \\ P/F &= Poll/final \ bit \end{split}$$

- First 2 bits of field determine the type of frame
 - <u>Information frame (I)</u>: carry user data (upper layers) flow and error control info is piggybacked on these frames as well
 - <u>Supervisory frame (S)</u>: carry flow and error control info when there is no user data to tx
 - Unnumbered frame (U): provide supplementary link control
- Poll/Final (P/F) bit:
 - In command frames (P): used to solicit response from peer entity
 - In response frames (F): indicate response is the result of soliciting command

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

HDLC - Frame Structure - Control Field (2)

- "Set-mode" command → extends control field to 16 bit for S and I frames
- Extension: 7-bit sequence numbers rather than 3-bit ones
- Unnumbered frames always use 3-bit sequence numbers

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

87

HDLC - Frame Structure - Information/FCS Fields

Information field:

- Present ONLY in I-frames and some U-frames
- Contains integer number of octets
- Length is variable up to some system defined maximum
- FCS field:
 - Error detecting code
 - Calculated from ALL remaining bits in frame
 - Normally 16 bits (CRC-CCITT polynomial = $X^{16}+X^{12}+X^5+1$)
 - 32-bit optional FCS

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

HDLC Operation

- Initialization
 - One side signals to the other the need for initialization
 - · Specifies which of the three modes to use: NRM, ABM, or ARM
 - Specifies 3- or 7-bit sequence numbers
 - The other side can accept by sending unnumbered acknowledgment (UA)
 - The other side can reject by sending A disconnected mode (DM) frame is sent
- Data Transfer
 - Exchange of I-frames: data and can perform flow/error control
 - S-frames can be used as well: RR, RNR, REJ, or SREJ
- Disconnect
 - DISC frame → UA

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Packet Over SONET

- Runs on wide-area optical fiber links backbone of communications networks
- Bit stream at a well defined rate e.g. 2.4Gb/s for OC-48 link
 - Organized as fixed-size byte payloads every 125 microsec where there is data or not
- PPP provides a mechanism of carry IP packets over these links

Packet over SONET. (a) A protocol stack. (b) Frame relationships

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

Point-to-Point Protocol (PPP)

- Defined in RFC 1661 and RFC 1662
- Extension to an earlier protocols called Serial Line **Internet Protocol**
- PPP handles link configuration, support of multiple protocols, authentication, etc.
- Main features:
 - Unambiguous framing with error detection capability
 - Link control for bringing lines up, testing them, negotiating options, etc. → Link Control Protocol (LCP)
 - Allows to negotiate network-layer options → Network Control Protocol (NCP)
- PPP is similar to HDLC
 - PPP is byte oriented
 - "Unnumbered mode" in PPP is commonly used to provide connectionless unacknowledged service.

8/31/2014 Dr. Ashraf S. Hasan Mahmoud 93

PPP Frame Structure

- Flag byte 0x7E similar to HDLC
 - Escape character 0x7D for byte stuffing
 - Escaped byte (i.e. the non legitimate flag is XORed with 0x20 resulting flipping the 5^{th} bit) therefore 0x7E will not appear in the payload Facilitates scanning for start and end of frame
- If no activity on the link send flags
- Address field
 - 0xFF broadcast
- Control field
 - Default 00000011 → unnumbered frame
- LCP may negotiate to eliminate the address and control fields (if they are constants)
- Protocol: Code specifying the nature of the payload
 - Codes starting with 0-IPv4, IPv6, IPx, AppleTalk, etc. Codes starting with 1-PPP configuration protocols including LCP and different NCP for each network layer protocol supported
- Payload variable length to some negotiated maximum sum
 - Default max is 1500 Bytes
- Checksum 4 bytes CRC or 2 bytes CRC

The PPP full frame format for unnumbered mode operation

Dr. Ashraf S. Hasan Mahmoud 8/31/2014

PPP Over SONET

- Specified in RFC 2615
- Recommendations
 - Use of 4-bytes checksums
 - · Not compressing the address and control fields
- PPP payload is scrambled (refer to textbook section 2.5.1) before insertion to SONET
 - Long pseudorandom sequence to eliminate long runs of 0s

8/31/2014

Dr. Ashraf S. Hasan Mahmoud

95

PPP States

- Link starts in DEAD state
- ESTABLISHED physical layer connection is made
- Series of LCP packets to configure the PPP link
- Successful LCP negotiation leads to AUTHENTICATE
- Successful authentication leads to NETWORK
- Series of NCP packets are exchanged depending on the network-layers involved
 - For example for IP protocol, assignment is IP addresses for the two link ends is done at this stage
- Data transport occurs in the OPEN state
- TERMINATE is used to bring down the link

Carrier Both sides Authentication successful

ESTABLISH AUTHENTICATE

DEAD Failed NETWORK

Carrier Done NCP configuration

State diagram for bringing a PPP link up and down

1/2014 Dr. Ashraf S. Hasan Mahmoud

Asymmetric Digital Subscriber Loop (ADSL)

- Link between the ADSL modem (home side) and the DSLAM in the telephone local office
- Physical layer OFDM (DMT signaling)
- PPP provides the link configuration and control

ATM and AAL5

- Asynchronous Transfer Mode (ATM) connection-oriented (fixed payloads of 48 bytes + 5 bytes header)
 - Asynchronous
 - Virtual circuit
- AAL5 ATM adaptation layer 5 used to map data to ATM cells
 - Multiple adaptation layers are defined for ATM depending on the payload type (periodic, circuit, data, etc.)
- 4-byte CRC
- Padding rounds overall length to multiple of 48
- No addresses virtual circuit identifier in the cell header will suffice
- Only the PPP protocol and payload are transported!

