KING FAHD UNIVERSITY OF PETROLEUM \& MINER ALS COLLEGE OF COMPUTER SCIENCES \& ENGINEERING COMPUTER ENGINEERING DEPARTMENT
 COE 540 - Computer Networks
 Assignment 1 - Due Date Sept 21 ${ }^{\text {st, }}, 2014$

Problem \#	Maximum Mark	Mark
1	20	
2	20	
3	20	
4	10	
5	10	
6	10	
7	100	
Total		

Problem (1):

a) For the client-server model, all N peers must get all the F bits from the server. Therefore, we can note the following:

- The server must transmit one copy of the file to each of the N peers \rightarrow Then $D_{C S}$ must be $\geq \frac{N F}{u_{s}}$.
- Each of the N peers must download the file of F bits using its own download speed d_{i} for the $i^{\text {th }}$ peer $\rightarrow D_{C S}$ must be $\geq \frac{F}{d_{\text {min }}}$.
Combining the above two notes we obtain that $D_{C S} \geq \max \left\{\frac{N F}{u_{s}}, \frac{F}{d_{\text {min }}}\right\}$.
b) For the P2P model, we can make the following notes:
- The server must send all the bits of the file of F bits at least once to the community of N peers $\rightarrow D_{P 2 P}$ must be $\geq \frac{F}{u_{s}}$.
- The $i^{\text {th }}$ peer cannot get the file sooner than $\frac{F}{d_{i}} \rightarrow D_{P 2 P}$ must be $\geq \frac{F}{d_{\text {min }}}$.
- The model requires the F bits be transmitted by the server and then delivered to N peers. Therefore, the total number of bits transmitted is $N F$ while the total upload capacity for the above configuration is given by $u_{\text {total }}=u_{s}+\sum_{i=1}^{N} u_{i} \rightarrow D_{P 2 P}$ must be $\geq \frac{N F}{u_{s}+\sum_{i=1}^{N} u_{i}}$.
Combining the above three notes, one can write that $D_{P 2 P} \geq \max \left\{\frac{F}{u_{s}}, \frac{F}{d_{\text {min }}}, \frac{N F}{u_{s}+\sum_{i=1}^{N} u_{i}}\right\}$.

Problem (2):

a) one can apply the formulas given in textbook or notes and utilize matlab to do the computations.

```
pi = sym('pi');
assume(n, 'integer');
% = 0; % for 0<= t<T/8, 3*T/8<= t< 6*T/8, and 7*T/8<= t< T
%S = A; % from T/8<= t < 3T/8 and 6*T/8<= t < 7*T/8
% the above determines the integral intervals
DC =1/T*(int(A, t, T/8, 3*T/8) + int(A, t, 6*T/8, 7*T/8));
AO = 2*DC;
An = collect (2/T* (int (A* cos (2*pi*n*t/T), t, T/8, 3*T/8) + int (A* cos (2*pi*n*t/T), t, 6*T/8, 7*T/8)));
Bn = collect (2/T* (int (A*sin}(2*\textrm{pi*n*t/T), t, T/8, 3*T/8) + int (A*sin}(2*\textrm{pi}*\textrm{n}*\textrm{t}/\textrm{T}),\textrm{t},6*T/8,7*T/8)))
CnRMS = matlabFunction(sqrt (An^2+Bn^2));
fprintf('A0 = \n'); pretty(A0);
fprintf('An = \n'); pretty(A0);
fprintf((An = \n'); pretty(An);
>> FSE_TextbookExample_01
A0 =
    3 A
    4
An =
```



```
Bn =
                pi n
```

```
A cos| ---- | + A cos| ------ | - A cos| ------ | - A cos| ------ |
```



```
    pi n
```

The main Matlab code and the correspond result are as shown above. The book results assume A $=1$ volts.
b) The LPF will suppress all components with frequency equal or greater to $\frac{9}{T}=9 f_{0}$ Hz . Therefore, output signal corresponding to the first k harmonics is given by

$$
\begin{aligned}
s_{o}(t)=\frac{3 A}{4}+ & \sum_{n=1}^{k} A_{n} \cos \left(2 \pi n f_{0} t\right) \\
& +\sum_{n=1}^{k} B_{n} \sin \left(2 \pi n f_{0} t\right)
\end{aligned}
$$

The power for $s_{o}(t)$ can be computed using

$$
P_{s_{o}}=\left(\frac{A_{0}}{2}\right)^{2}+\frac{1}{2} \sum_{n=1}^{k}\left(A_{n}^{2}+B_{n}^{2}\right)
$$

Using $A=1$ and $k=8$, the expressions above evaluate to $P_{s_{o}}=0.3504$ Watts.

The plot of $s_{o}(t)$ is as shown in Figure on the side (same as Figure 2-1 part e on textbook).
c) BW is equal to $9 \mathrm{fO}=9 \mathrm{~Hz}$

Noise power, $N=B \times N_{0}=9 \times 10^{-3}$ Watts
Signal power, $S=0.3504$ Watts (from part (b))
$\rightarrow S N R=\frac{S}{N}=38.933$ or 15.9 dB
$\rightarrow C=B \log _{2}(1+S N R)=47.9 \mathrm{~b} / \mathrm{s}$

Problem (3):

a) The F.T for the pulse $p(t)$ is given by:

$$
\begin{aligned}
& P(f)=\int_{-\infty}^{\infty} p(t) e^{-2 \pi j f t} d t=\int_{-T / 2}^{T / 2} A e^{-2 \pi j f t} d t=\left.\frac{A e^{-2 \pi j f t}}{-2 \pi j f}\right|_{t=-T / 2} ^{t=T / 2} \\
& =\frac{A}{\pi f} \times \frac{e^{\pi j f T}-e^{-\pi j f T}}{2 j}=\frac{A}{\pi f} \sin (\pi f T)=A T \operatorname{sinc}(f T)
\end{aligned}
$$

where $\operatorname{sinc}(x)=\sin (\pi x) /(\pi x)$ is the normalized sinc function.

Figure 4: square pulse $p(t)$.
b) The plot for $|P(f)|^{2}$ is as shown in Figure. The function $|P(f)|^{2}$ has zeros for $f=\frac{n}{T}$ where n is an integer not equal to zero.

Figure A5.1: square pulse of width T (not required).

Figure A5.2: the square of F.T. for $p(t)$.
c) The two limiting cases:

- As $\mathrm{T} \rightarrow 0$, the pulse approaches a delta function, $\delta(t)$, in the time domain. The corresponding frequency representation approaches a constant line. That is $p(t)$ now contains all frequencies equally.
- As $T \rightarrow$ infinity, the pulse approaches a constant function in the time domain (i.e. a DC signal). The corresponding frequency representation approaches delta function, $\delta(f)$, where the spectrum is non zero only at (or very close to) $f=0 \mathrm{~Hz}$.

Problem (4):

Refer to textbook pages 93 and 94.

Problem (5):

Refer to discussion in textbook pages 166 and 167.

Problem (6):

Item	Pros	Cons
Fixed payload size	Easy of processing (parsing)	Waste of bandwidth for unfilled payloads
Small payload size	Appropriate for real-time traffic (or delay/jitter sensitive traffic)	Waste for bandwidth when overhead fields are used

Problem (7):

```
>> Assign01_FHD_Problem
```

(a)

```
Size of frame = 49766400 bits or 0.0058 Gbytes
    bit rate = 1492992000 bits/sec or 0.1738 Gbytes/sec
(b)
Size of single-layer blue ray disc is 25 Gbytes
Maximum movie length is 143.838 sec or 2.397 min
(c)
Size of 120 min video is 1251.411 Gbytes
1 byte = 8 bits
1Kbytes = 1024
1Mbytes = 1024x1024 bytes
1Gbytes = 1024x1024x1024 bytes
Size of single-layer blue ray disc = 25 Gbytes
```

