King Fahd University of
Petroleum \& Minerals
Computer Engineering Dept

COE 241 - Data and Computer
Communications
Term 141
Dr. Ashraf S. Hasan Mahmoud
Rm 22-420
Ext. 1724
Email: ashraf@kfupm.edu.sa
11/16/2014
Dr. Ashraf S. Hasan Mahmoud

Lecture Contents

1. Background
2. Digital Data, Digital Signals
3. Digital Data, Analog Signals
4. Analog Data, Digital Signals
5. Analog Data, Analog Signals

Background

(a) Encoding onto a digital signal

(b) Modulation onto an analog signal

Background - Digital Signaling

- Data source g(t)
- Analog source - voice
- Digital source - computer data (file)
- ENCODED - to match medium characteristics and optimize transmission - Result is $\mathbf{x}(\mathrm{t})$
- Note that $x(t)$ is digital (discrete voltage levels)

Background - Analog Signaling

- Data source $\mathbf{m}(\mathbf{t})$
- Analog source - voice
- Digital source - computer data (file)
- MODULATED:
- We need a carrier signal: continuous-time constant frequency signal (fc) \{i.e. A $\boldsymbol{\operatorname { c o s }}(2 \pi \mathrm{ft}+\phi$) or $\mathrm{Asin}(2 \pi \mathrm{ft}+\phi)\}$
- Frequency of carrier is chosen to match transmission characteristic of medium
- Modulation: Encoding source data onto carrier:
- Manipulating frequency - phase - Amplitude - or a combination of these elements
- Process of encoding is chosen to optimize transmission

Background - Analog Signaling (2)

- Note that $\mathrm{s}(\mathrm{t})$ is analog (continuous voltage levels)
- Bandwidth of $\mathbf{s}(\mathbf{t})$ is usually centered around fc
- $\mathbf{s}(\mathrm{t})$ is a bandlimited or bandpass signal:
- Finite bandwidth at or around fc

Background - Baseband vs. Bandpass Signals

- Baseband Signal:
- Spectrum not centered around non zero frequency
- May have a DC component
- Bandpass Signal:
- Does not have a DC component
- Finite bandwidth around or at f_{c}

Background

- Digital Data, Digital Signaling:

- Less complex/expensive than digital-to-analog modulation equipment
- Analog Data, Digital Signaling:
- Conversion of analog data to digital allows the use of modern digital tx and switching technology
- Digital Data, Analog Signaling:
- Some transmission media can ONL Y propagate analog signals - such as fiber optics and unguided
- Analog Data, Analog Signaling:
- Analog data can be transmitted as baseband signals cheaply
- Shifting bandwidth of baseband signals to occupy another portion of spectrum - different signals share same medium using frequency division multiplexing

Frequency Division Multiplexing

- Will be visited again in Chapter 8

$x(t)=s_{1}(t) X \cos \left(2 \pi f_{c 1} t\right)+s_{2}(t) X \cos \left(2 \pi f_{c 2} t\right)+$ $S_{3}(t) X \cos \left(2 \pi f_{c 3} t\right)$
$-x(t)$ is transmitted on the media
-The three spectra are not overlapping if $f_{c 1}$, $f_{c 2}$, and $f_{c 3}$ are chosen appropriately
-Original composite signals $s_{1}(t), s 2(t)$, and $s 3(t)$ can be recovered using bandpass filters with appropriate bandwidths centered at $f_{c 1}$, $f_{c 2}$, and $f_{c 3}$, respectively.

Signal Elements, Symbols, or Pulses

- Unit of transmission - repeated to form the overall signal
- Shape of symbol or pulse determines the bandwidth of the transmitted signal
- Digital data is mapped or encoded to the different pulses or units of transmission

Signal Elements, Symbols, or Pulses

Definitions of Pulses Encoded Signal: 01001110

Signal Elements or Pulses

Pluses Definitions Encoded Signal: 01001110

- Note that each symbol or pulse caries 2 bits
- Symbol duration is $T_{s}=2 T_{b}$
- Bit rate R equal to $1 / T_{b}$
- Symbol rate or baud rate R_{s} equal to $1 / T_{s} \rightarrow R=2 R_{s}$
- In general to encode n bits per pulse, you need 2^{n} pulses

Signal Elements, Symbols, or Pulses

Digital Data - Digital Signals

- Digital signal: sequence of discrete, discontinuous voltage pulses
- Digital data (bits) are encoded (or mapped) into signal elements
- Baud-rate: number of signal elements per second
- Mark - Space = 1-0
- Communication Tasks - Receiver must have:
- Transmission elements timings
- Pulse voltage level (to know whether it is $\mathbf{0}$ or $\mathbf{1}$ for example) - Rxer samples at bit times to find voltage level

Key Data Transmission Terms

Term	Units	Definition
Data element	Bits	A single binary one or zero
Data rate	Bits per second (bps)	$\begin{array}{l}\text { The rate at which data } \\ \text { elements are transmitted }\end{array}$
Signal element	$\begin{array}{l}\text { Digital: a voltage pulse of } \\ \text { constant amplitude. }\end{array}$	$\begin{array}{l}\text { That part of a signal that } \\ \text { occupies the shortest interval } \\ \text { of a signaling code }\end{array}$
	$\begin{array}{l}\text { Analog: a pulse of constant } \\ \text { frequency, phase, and } \\ \text { amplitude. }\end{array}$	$\begin{array}{l}\text { Signal elements per second } \\ \text { (baud) }\end{array}$

elements are transmitted\end{array}\right]\)| Signaling rate or |
| :--- |
| modulation rate |

How to Overcome Impairments?

- Faults in detection of received signal register as BIT ERROR RATE at receiver BER
- A good communication channel has small or zero BER
- Factors:
- SNR or Eb/No
- Data bit rate
- Channel/system bandwidth
- Encoding of data bits into signal elements
- Encoding scheme also affects bandwidth of signal

Digital Signal Encoding Formats

- Nonreturn to Zero-Level (NRZ-L)
- 0 = high level
- 1 = low level
- Nonreturn to Zero Inverted (NRZI)
- $\mathbf{0}=$ no transition at beginning of interval
- $1=$ transition at beginning of interval
- Bipolar-AMI
- $\mathbf{0}=$ no line signal
- 1 = +ve or -ve level; alternating successive ones
- Pseudoternary
- 0 = +ve or -ve level; alternating for successive ones
- $1=$ no line signal
- Manchester
- $\mathbf{0}=$ transition from high to low in middle of interval
- 1 = transition from low to high in middle of interval
- Differential Manchester: Always transition in middle of interval
- $0=$ transition at beginning of interval
- $1=$ no transition at beginning of interval
- Bipolar with 8 Zeros Substitution (B8ZS): same as bipolar AMI, except that any string of 8 zeros is replaced by a string with two code violations
- High Density bipolar-3 Zeros (HDB3): same as bipolar AMI, except that any string of 4 zeros is replaced by a string with one code violation

Digital Signal Encoding Formats

How to Evaluate Encoding Schemes?

- Signal spectrum:(remember this is dependent on pulse shape)
- Lack of high frequency component \rightarrow lesser BW signal does not required large BW - desirable
- Lack of DC component - desirable
- Clocking (Synchronization):
- Rxer needs to determine bit timing
- Provide clock signal at receiver - EXPENSIVE
- Derive clock signal from incoming signal
- E.g. Differentiating a Manchester encoded signal results in the clock signal!

How to Evaluate Encoding Schemes? (2)

- Error detection:

- Capability built into physical layer encoding - e.g. for pseudoternary successive ones have opposite signs
- More sophisticated error detection and correction codes are used (Chapter 7)
- Signal interference and noise immunity
- Certain codes are superior than others in the presence of noise and interference (i.e. give lower BER for same SNR or $\mathrm{Eb} / \mathrm{No}$)
- Cost and complexity:
- Not a major factor compared to the rest of factors
- In general, the higher the data rate the more expensive the hardware is

Nonreturn to Zero (NRZ)

- Nonreturn to Zero - Level (NRZ-L):
- Binary 0 - constant + ve level
- Binary 1 - constant -ve level
- Nonreturn to Zero - Invert on Ones (NRZI):
- Binary 0 - no transition at beginning of bit interval
- Binary 1 - transition at beginning of bit interval
- NRZI is an example of differential encoding:
- If bit is equal to 1 , bit encoding is opposite to previous bit
- Benefits of differential encoding

Nonreturn to Zero (NRZ) (2)

- Differential encoding - Involved memory (similar to sequential circuit design)
- Best represented using a state machine

S_{1} : output constant -ve level for T_{b}
S_{2} : output constant + ve level for T_{b}
Nonreturn to Zero - Invert on Ones
- NO MEMORY For RZ or NRZ-L

Nonreturn to Zero - Level 22

Spectrum Characteristics of NRZ

- Most of the energy in NRZ and NRZI signals is between DC and half of bit rate
- For example: When $\mathbf{R}=\mathbf{9 6 0 0} \mathbf{~ b / s ~ o r ~} \mathbf{T b}=0.104 \mathrm{msec}$, most of energy of the signal is between 0 Hz and 4800 Hz
- Main limitations of NRZ:

1. presence of DC component
2. lack of synchronization capability

- Consider the case of a long string of ones or zeros:
- One constant voltage level for long duration ($\gg \mathrm{T}_{\mathrm{b}}$) may cause drift in clock synchronization
- Applications:
- Digital magnetic recording
- Generally not used for signal transmission

Spectrum Characteristics of NRZ and Other Encoding Schemes

- Note the \mathbf{x}-axis: normalized frequency (f/R)
- E.g. value equal to 1.2 , means $f=$ 1.2 R
- Schemes NRZ-L and NRZI have DC component
- Schemes B8ZS, HDB3, AMI, pseudoternary, Manchester and differential Manchester have no DC component
- NRZ-L, NRZI, B8ZS, HDB3, AMI, and pseudoternary have negligible energy beyond $\mathrm{f}=\mathrm{R}$
- B8ZS, HDB3, AMI, and pseudoternary have their energy concentrated around $f=R / 2$
- Manchester and differential Manchester has significant energy concentration beyond $f=R$ (because of the per bit transitions!)

Multilevel Binary - Bipolar - AMI

- Family of codes that uses more than two signal levels
- Bipolar-AMI:
- Binary 0 - no signal level
- Binary 1 - + ve or -ve level; alternating
- Advantages of Bipolar-AMI:
- Synch: long string of 1s is not a problem - but a long string of $0 s$ is
- No net DC component
- Smaller BW compared to NRZ
- Alternating pulses - simple error detection (no two consecutive ones can have same polarity)

Multilevel Binary - Pseudoternary

- Pseudoternary:

- Binary 0 - + ve or -ve level; alternating
- Binary 1 - no signal level
- Same advantages as bipolar-AMI
- To provide clock synch info:
- Insert additional bits to force transition - used in ISDN for low bit rate connections - results in increased bit rate
- Can not be used for already high bit rate connections - expensive
- Use SCRAMBLING

NRZ V.S. Multilevel Binary

- Spectrum:
- NRZ has DC component
- Multilevel binary does not have DC component smaller bandwidth
- Synch:
- NRZ: long strings of 1s AND Os present a problem
- Multilevel binary: long strings of Os for bipolarAMI or long strings of 1 s for pseudoternary present a problem

NRZ V.S. Multilevel Binary (2)

-Efficiency:

- NRZ: two symbols - one for 0 and the other for 1 i.e. $\log _{2} 2=1$ information bit per symbol
- Multilevel binary: three symbols - one for 0 and two for 1 (or the reverse for pseudoternary) - i.e. $\log _{2} 3=1.58$ information bits per symbol
- NRZ is more efficient requires 3 dB less (1/2) signal power to give same BER as Multilevel

Biphase Encoding

- Manchester: transition at the middle of each bit
- Binary 0 - high to low transition in the middle
- Binary 1 - low to high transition in the middle
- Differential Manchester: transition at the middle of each bit
- Binary 0 - transition at beginning of interval
- Binary 1 - no transition at beginning of interval
- THERE IS ALWAYS a TRANSION at midbit - This provides the needed clock signal
- Biphase schemes require at least on transition per bit interval and sometimes two transitions per bit interval \rightarrow Generate signal with higher frequency components compared to NRZ for same rate!!

Advantages of Biphase Encoding

- Synchronization:
- There is a predictable transition during each bit time
- To derive clock signal - differentiate biphase signal
- Biphase = Self clocking codes
- No DC component
- Error Detection:
- A transition must happen at mid bit - if not present \rightarrow ERROR
- Applications:
- Manchester coding: IEEE 802.3 coaxial cable and TP CSMA/CD bus LANs
- Differential Manchester: IEEE 802.5 token ring LANs on STP

Modulation Rate

- Modulation (Baud) Rate - D: number of symbols or signal elements transmitted per second
- Data (or bit) Rate - R: number of bits transmitted per second
- $D=R / b-$ where b is number of bits per symbol

Refer to slide number 12

Transitions Per Bit Time

- The more transitions per bit time, the greater is the required bandwidth of the encoding scheme

Encoding	Minimum	10101010...	Maximum
NRZ-L	$0($ all 0s or 1s)	1.0	1.0
NRZI	$0($ all 0s)	0.5	$1.0($ all 1s)
Bipolar-AMI	$0($ all 0s)	1.0	1.0
Pseudoternary	$0($ all 1s)	1.0	1.0
Manchester	$1.0(10101 . .)$.	1.0	$2.0($ all 0s or
			$1 \mathrm{~s})$
Differential	$1.0($ all 1s)	1.5	$2.0($ all 0s)
Manchester			

Note that Manchester and differential Manchester encoding have the maximum number of transitions per bit time - This is the reason, their spectrum have significant components for f / R greater than 1.0 (refer to slide 24)

Scrambling Techniques

- Want to achieve:
- No DC component \rightarrow media
- No long sequence of zero-level signals \rightarrow clocking/Synch
- No reduction in data rate \rightarrow capacity
- Error-detection capability \rightarrow reliability

Note the removal of the long string of 0s

Bipolar with 8-Zeros Substitution (B8ZS)

- Substitution Rules:

- If an octet of all zeros occurs and the last voltage pulse preceding the this octet was +ve, then the 8 zeros of the octet are encoded as 000+-0-+
- If an octet of all zeros occurs and the last voltage pulse preceding the this octet was -ve, then the $\mathbf{8}$ zeros of the octet are encoded as 000-+0+-
- Cause two code violations (signal patterns that are not allowed in AMI)
- Unlikely to be caused by noise
- Recognized by receiver and interpreted as 8 zeros

High-Density Bipolar-3 Zeros (HDB3)

- Substitution Rules:
- Replaces a string of 4 zeros with a pattern that contains 1 or 2 pulses.
- The fourth zero is replaced with a code violation
- Recognized by receiver and interpreted as 4 zeros

Polarity of Preceding Pulse	Number of Bipolar Pulses (Ones) since Last Substitution	
-	Odd	Even
+	$000-$	$+00+$

B8ZS and HDB3

Digital Data - Analog Signals

- Digital data (bits) transmitted using analog signals:
- E.g. computer-modem-PSTN
- Subscriber-to-PSTN connection designed to carry analog (voice) signal from $\mathbf{3 0 0} \mathbf{~ H z ~ t o ~} 3400$ Hz
- 56K Modem - encodes data and generates a signal occupying the same range for voice signals \rightarrow one line - one signal
- DSL Modem - encodes data and generates signal occupying higher range than that usually occupied by voice \rightarrow one line - two signals

Amplitude Shift Keying (ASK)

- Analog pulses (signal elements) used are:

$$
s(t)=\left\{\begin{array}{ll}
A \cos \left(2 \pi f_{c} t\right) & \text { bit }=1 \\
0 & .
\end{array} \text { bit }=0 .\right.
$$

- Spectrum of overall signal is centered around f_{c}
- Application: on voicegrade lines used up to 1200 bps

This is called BASK

Frequency Shift Keying (FSK)

- Analog pulses (signal elements) used are:

$$
s(t)= \begin{cases}A \cos \left(2 \pi f_{1} t\right) & \text { bit }=1 \\ A \cos \left(2 \pi f_{2} t\right) & \text { bit }=0\end{cases}
$$

- Spectrum of overall signal is centered around f_{1} and f_{2}

This is called BRSK

Frequency Shift Keying (FSK) (2)

- Application: full duplex
- Direction 1: f1 = 1070 Hz, f2 = $\mathbf{1 2 7 0 ~ H z ~}$
- Direction 2: f1 = 2025 Hz, f2 = 2225 Hz
- Less susceptible to errors (compared to ASK) used for rates up to 1200 bps on voice-grade lines
- Also used for high frequency (3 to 30 MHz) radio transmission
- LANs - coaxial cables

4 spectrum of signal
nsmitted in one
transmitued in
pposite direction

Phase Shift Keying (PSK)

- Analog pulses (signal elements) used are:

$$
s(t)=\left\{\begin{array}{lr}
A \cos \left(2 \pi f_{c} t+\pi\right) & \text { bit }=1 \\
A \cos \left(2 \pi f_{c} t\right) & \text { bit }=0
\end{array}\right.
$$

- Spectrum of overall signal is centered around f_{c}
- Example of 2-phase
(binary) system

This is called BPSK

Multi-Level ASK

- ASK is also known as digital PAM - refer to PAM used for PCM encoding
- The transmitted symbols:

$$
s_{i}(t)=A_{i} \cos \left(2 \pi f_{c} t\right), i=1,2, \ldots, M \quad 0 \leq t \leq T_{s}
$$

where

$$
A_{i}=(2 i-1-M) d, \quad i=1,2, \ldots, M
$$

2d is distance between adjacent signal amplitudes
M is number of different signal elements (the alphabet size) $=2^{\text {L }}$
L is number of bits per signal element or symbol
T_{s} is the symbols duration.

- The energy for $s_{i}(t), E_{i}$ is given by $A_{i} \mathbf{2}_{s} / \mathbf{2}$

11/16/2014
Dr. Ashraf S. Hasan Mahmoud

Multi-Level ASK - Examples

- Examples:
 $A_{i} \sqrt{ }\left(T_{s} / 2\right)=V E_{i}$

- $M=2$ - Binary ASK
$A 1=-d, A 2=d$
- M = 4-4-level ASK
$A 1=-3 d, A 2=-d, A 3=d, A 4=3 d$
- $M=8$ - 8 level ASK

$A 5=d, A 6=3 d, A 7=5 d, A 8=7 d$

Note the grey coding!
Adjacent symbols are different by 1 bit only. asan Mahmoud

Example ASK Problem:

- Example:

Multi-Level PSK

- The transmitted symbols:

$$
\begin{aligned}
s_{i}(t) & =A \cos \left(2 \pi f_{c} t+\theta_{i}\right), i=1,2, \ldots, M \quad 0 \leq t \leq T_{s}, \\
& =A\left\{\cos \left(\theta_{i}\right) \cos \left(2 \pi f_{c} t\right)-\sin \left(\theta_{i}\right) \sin \left(2 \pi f_{c} t\right)\right\}
\end{aligned}
$$

where

$$
\theta_{i}=2 n(i-1) / M, \quad i=1,2, \ldots, M .
$$

M is number of different signal elements (the alphabet size) $=\mathbf{2}^{\text {L }}$
L is number of bits per signal element or symbol T_{s} is the symbols duration.

- The energy for $s_{i}(t), E_{i j}$ is given by $A^{2} T_{s} / 2$

Multi-Level PSK - Examples

- $M=2$ - BPSK
$\theta 1=0, \theta 2=n$

- M = 4 - QPSK
$\theta 1=0, \theta 2=n / 2$,
$\theta 3=n, \theta 4=3 n / 2$,

- M = 8-8-PSK
$\theta 1=0, \theta 2=\pi / 4, \quad \theta 3=n / 2, \quad \theta 4=3 \pi / 4$, $\theta 5=n, \theta 6=5 п / 4, \theta 7=3 п / 2, \theta 8=7 п / 4$

Example PSK Problem:

- Example:

Differential PSK Waveform
 - (a) BPSK
 $0-A \cos \left(2 n f f_{c} t+\pi\right)$, 1 - $A \cos \left(2 n f f_{c} t\right)$,

- (b) DBPSK
same (a) symbols but 0 - uses the same phase as previous bit
1 - use opposite phase to the previous bit
- (c) DBPSK
same as (b) except the $\sin ()$ is used instead of $\cos ()$
a)

b)

0011

0100010

Four Level PSK - (QPSK)

On slide 45 we used:
$\theta 1=0, \theta 2=n / 2, \theta 3=n, \theta 4=3 n / 2$

- But we could use (as in the textbook page 146):
$\theta 1=n / 4, \theta 2=3 n / 4, \theta 3=-3 n / 4, \theta 4=-\pi / 4$
- Therefore the transmitted symbols are:

$$
s_{i}(t)=\left\{\begin{array}{cc}
A \cos \left(2 \pi f_{c} t+\pi / 4\right) & 11 \\
A \cos \left(2 \pi f_{c} t+3 \pi / 4\right) & 01 \\
A \cos \left(2 \pi f_{c} t-3 \pi / 4\right) & 00 \\
A \cos \left(2 \pi f_{c} t-\pi / 4\right) & 10
\end{array}\right.
$$

QPSK/OQPSK Modulator

Encoding Techniques - Quadrature Phase Shift Keying (QPSK)

- One can extend this scheme to obtain: 8PSK for example
- One can use ASK together with PSK to get more signal elements - e.g. 9600 kb/s modem uses 12 phase angles four of which have higher amplitude values
- For this example: $L=4$
(i.e. every signal element carries 4 bits)
- In general:
$D=R / L=\log _{2} M$
where D : modulation rate or baud rate
R: data rate, bps
M: \# of signal levels
L: \# of bits per signal element
Signal Constellation for 9600 b/s modem standard

Multi-Level FSK (MFSK)

- Analog pulses (signal elements) used are:

$$
s_{i}(t)=A \cos \left(2 \pi f_{i} t\right) \quad 1 \leq i \leq M
$$

- Where
- $f_{i}=f_{c}+(\mathbf{2 i - 1}-M) f_{d}$
- f_{c} : carrier frequency
- f_{d} : the difference frequency
- M: number of different signal elements (the alphabet size) $=\mathbf{2}^{\text {L }}$
- L: number of bits per signal element or symbol

MFSK Example - M = 4

- Example - $\mathrm{M}=4$
- $\mathbf{f 1}=\mathrm{fc}-\mathbf{3 f d} \rightarrow \mathbf{0 0}$
- $\mathbf{f 2}=\mathbf{f c}-\mathbf{f d} \rightarrow \mathbf{0 1}$
- $\mathbf{f 3}=\mathbf{f c}+\mathbf{f d} \rightarrow \mathbf{1 0}$
- $\mathbf{f 4}=\mathrm{fc}+\mathbf{3 f d} \rightarrow \mathbf{1 1}$

Performance - Bandwidth

- Signal (ASK, PSK, FSK, etc) BW depend on:
- Definition of BW
- Filtering technique
- \mathbf{r} - depends on filtering technique $(0<r<1)$
- For BFSK: $\Delta f=f_{2}-f_{c}=f_{c}-f_{1}$
- For multi-level ASK/PSK

Encoding Scheme	BW (Signal Spectrum)
M-ASK	$B_{\mathrm{T}}=(1+r) \mathrm{D}$
M-PSK	$B_{\mathrm{T}}=(1+r) \mathrm{D}$
FSK $(M=2)$	$B_{\mathrm{T}}=2 \Delta \mathrm{f}+(1+\mathrm{r}) \mathrm{R}$
FSK $(M>2)$	$B_{\mathrm{T}}=(1+r) M D$

$$
B_{T}=(1+r) D=(1+r) R / L=(1+r) / \log _{2} M \times R
$$

- $\mathrm{R} / \mathrm{B}_{\mathrm{T}}=$ data rate to transmission bandwidth \rightarrow Bandwidth Efficiency
- The higher this number the more efficient the scheme is (i.e. less number of Hzs is required to transmit the bits)

Performance - Bit Error Rate (BER)

- In presence of noise and in terms of BER: PSK and QPSK are 3 dB better than ASK And FSK
- Recall that Eb/No is equal to

E_{b}	S/R	S	$B_{\text {T }}$	1
	------	---	--	

$\mathbf{N}_{\mathbf{0}} \quad \mathbf{N} / \mathbf{B}_{\mathbf{T}} \quad \mathbf{N} \quad \mathbf{R} \quad$ BW efficiency

- Hence, one can decrease BER (i.e. increase E_{b} / N_{0}) by either increasing SNR, increasing the transmission bandwidth (B_{T}), or reducing the data rate (R)
${ }_{\text {nin F2014 }}$ multi-level signaling - Replace \mathbf{R} with \mathbf{D}

Performance - Example

- What is the bandwidth efficiency for FSK, ASK, PSK, and QPSK for a BER of 10^{-7} on a channel with SNR = 12 dB
- Solution
- Bandwidth efficiency $=R / B_{T}$ $E_{b} / N_{0}=S N R /\left(R / B_{T}\right)$ or $(E b / N O)_{d B}=S N R_{d B}-\left(R / B_{T}\right)_{d B}$

Therefore,
$\left(R / B_{T}\right)_{d B}=S N R_{d B}-(E b / N O)_{d B}$ $=12-(E b / N O)_{d B}$

Performance - Example - cont'd

- What is the bandwidth efficiency for FSK, ASK, PSK, and QPSK for a BER of 10^{-7} on a channel with SNR = $\mathbf{1 2 d B}$
- Solution

Using the BER curves (previous slide):
(for ASK \& FSK) BER $=10^{-7} \rightarrow\left(E_{b} / N_{0}\right)_{d B}=14.2 \mathrm{~dB}$
Hence, $\left(R / B_{T}\right)_{d B}=12-14.2=-2.2 d B$, or $R / B_{T}=0.6$
(for PSK) BER $=10^{-7} \rightarrow\left(E_{b} / N_{0}\right)_{d B}=11.2 \mathrm{~dB}$
Hence, $\left(R / B_{T}\right)_{d B}=12-11.2=0.8 \mathrm{~dB}$, or $R / B_{T}=1.2$
(for QPSK) same curve as PSK $\rightarrow\left(E_{b} / N_{0}\right)_{d B}=11.2 \mathrm{~dB}$
Hence, $\left(D / B_{T}\right)_{d B}=12-11.2=0.8 \mathrm{~dB}$, or $D / B_{T}=1.2$ and $R / B_{T}=2.4$ (since $D=R / 2$ for $Q P S K$)

Performance - Bandwidth Efficiency

Bandwidth Efficiency for various digital-toanalog encoding schemes.

	$\mathbf{r = 0}$	$\mathbf{r}=\mathbf{0 . 5}$	$\mathbf{r}=\mathbf{1 . 0}$
ASK	1.0	0.67	0.5
FSK	~ 0	~ 0	~ 0
Wideband $(\Delta F » R)$	1.0	0.67	0.5
Narrowband $\left(\Delta F \approx f_{c}\right)$			
PSK			
Multilevel signaling	2.00	1.33	1.00
$M=4, \mathrm{~L}=2$	3.00	2.00	1.5
$M=8, \mathrm{~L}=3$	4.00	2.67	2.00
$M=16, \mathrm{~L}=4$	5.00	3.33	2.5
$M=32, \mathrm{~L}=5$			

Performance - cont'd

- Theoretical bit error rate for (a) Multilevel FSK and (b) Multilevel PSK.

(a)

Dr. Ashraf S. Hasan Mahmoud
(b)

60

Quadrature Amplitude Modulation (QAM)

- Popular analog signaling technique - used in ADSL
- A combination of ASK and PSK
- Example signal constellations:

16 QAM

4 QAM
(similar to QPSK with
$\theta 1=\pi / 4, \theta 2=3 \pi / 4$,
$\theta 3=-3 \pi / 4, \theta 4=-\pi / 4-$
refer to slide 47
61

Quadrature Amplitude Modulation (QAM)

- Signal given by:

$s(t)=d_{1}(t) \cos \left(2 \pi f_{c} t\right)+d_{2}(t) \sin \left(2 \pi f_{c} t\right)$

Example: Problem 5-17

5-17. The figure below shows the QAM demodulator corresponding to the to the QAM modulator shown in previous slide. Show that this arrangement DOES recover the two signals d1(t) and d2(t), which can be combined to recover the original signal.

Example: Problem 5-17 Solution

Solution:

$$
\mathbf{s}(t)=\mathbf{d 1}(t) \cos \left(\omega_{c} t\right)+d 2(t) \sin \left(\omega_{c} t\right)
$$

Use the following identities:

$$
\cos (2 \alpha)=2 \cos ^{2}(\alpha)-1 ; \sin ^{2}(\alpha)=2 \sin (\alpha) \cos (\alpha)
$$

For upper branch:

$$
\begin{aligned}
s(t) X \cos \left(\omega_{c} t\right) & =d 1(t) \cos \left(2 \omega_{c} t\right)+d 2(t) \sin \left(\omega_{c} t\right) \cos \left(\omega_{c} t\right) \\
& =(1 / 2) d 1(t)+(1 / 2) d 1(t) \cos \left(2 \omega_{c} t\right)+(1 / 2) d 2(t) \sin \left(2 \omega_{c} t\right)
\end{aligned}
$$

Use the following identities:

$$
\cos (2 \alpha)=1-2 \sin ^{2}(\alpha) ; \sin ^{2}(\alpha)=2 \sin (\alpha) \cos (\alpha)
$$

For lower branch:

$$
\begin{aligned}
s(t) X \sin \left(\omega_{c} t\right) & =d 1(t) \cos \left(\omega_{c} t\right) \sin \left(\omega_{c} t\right)+d 2(t) \sin \left(2 \omega_{c} t\right) \\
& =(1 / 2) d 1(t) \sin \left(2 \omega_{c} t\right)+(1 / 2) d 2(t)-(1 / 2) d 2(t) \cos \left(2 \omega_{c} t\right)
\end{aligned}
$$

All terms at $2 \omega_{c}$ are filtered out by the low-pass filter, yielding:

$$
y 1(t)=(1 / 2) d 1(t) ; y 2(t)=(1 / 2) d 2(t)
$$

11/16/2014 Dr. Ashraf S. Hasan Mahmoud

Analog Data - Digital Signal

- Analog Data is "Digitized" i.e converted to digital
- Once in digital form:
- Use Digital signaling (NRZ-L, etc)
- Use Analog Signaling (ASK, FSK, etc) - Shown in figure below
- CODEC: Device for converting analog data to digital for transmission - and for recovering original analog data

CODEC Procedures

- Two main procedures are used in CODECs:

1. Pulse Code Modulation (PCM)
2. Delta Modulation

Pulse Code Modulation (PCM)

- A scheme for digitizing ANALOG data
- For flash animation of PCM procedure click HERE
- Procedure:
- SAMPLING: Analog signal is sampled (The rate of sampling SHOULD BE greater than twice the highest frequency - refer to the sampling theorem) \rightarrow Result: Analog Samples
- QUANTIZATION: Analog samples are mapped to discrete levels and each level is given a binary code \rightarrow Result: binary word for each sample
- Example: if we decide to use $\mathbf{2 5 6}$ discrete levels, then every level will have 8-bit word - correspondingly, every analog sample will be translated into 8 bits

Pulse Amplitude Modulation (PAM)

- Sampling Frequency, $f_{s}=\mathbf{2 X f}$
- Sampling Time, $\left.\mathrm{Ts}=\mathbf{1 / f} \mathrm{f}_{\mathrm{s}}=\mathbf{1 / (2 X f} \mathrm{X}_{\mathrm{m}}\right)$

Quantization

- Analog samples are ROUNDED to DISCRETE levels (finite number of levels)

- For \mathbf{N} bits per word \rightarrow we have $2^{\mathbf{N}}$ levels

Quantization - PCM

- N -bit word is then generated for every sample

$\mathbf{+ 0 2 4}$	00011000	$\mathbf{- 0 1 5}$	10001111	$\mathbf{+ 1 2 5}$	011111101
$\mathbf{+ 0 3 8}$	00100110	-080	11010000	$\mathbf{+ 1 1 0}$	01101110
$\mathbf{+ 0 4 8}$	00110000	$\mathbf{- 0 5 0}$	10110010	$\mathbf{+ 0 9 0}$	01011010
$\mathbf{+ 0 3 9}$	00100111	$\mathbf{+ 0 5 2}$	00110110	$\mathbf{+ 0 8 8}$	01011000
$\mathbf{+ 0 2 6}$	00011010	$\mathbf{+ 1 2 7}$	01111111	$\mathbf{+ 0 7 7}$	$\mathbf{0 1 0 0 1 1 0 1}$

Sign bit

+ is $0-$ is 1

PCM - overall picture

Pulse Code Modulation - SNR

- SNR is given by

$$
\text { SNR }=6.02 \mathrm{n}+1.76 \mathrm{~dB}
$$

Where \mathbf{n} is the number of bits per word/sample

- Assumes uniform distribution of signal level
- Errors: difference between quantized samples and original analog samples \rightarrow QUANTIZATION NOISE
- Thermal noise is NOT accounted for
- NOTE:
- As number of bits is increased (less rounding errors), SNR increases by 6 dB every extra bit

Pulse Code Modulation - Linear vs. Nonlinear Quantization

- Linear quantization: equally spaced levels \rightarrow magnitude of quantization error is same for large amplitude samples and small amplitude samples >> low signal levels are more affected by quantization errors
- Solution: to increase "resolution" in the low signal level region \rightarrow
- increase total number of levels OR
- use companding function before quantization
- For shown figure:
- Relative error for $\mathbf{X}_{\mathbf{2}}$ is much greater than that for X_{1}
- Relative error is equal to Δ (quantization error) divided by original signal level

Pulse Code Modulation - Linear vs.

 Nonlinear Quantization (2)

Example: Problem 5-20

5-19: Consider an audio signal with spectral components in the range of 300 to 3000 Hz. Assuming a sampling rate of 7000 samples per second will be used to generate the PCM signal.
a) For SNR = $\mathbf{3 0} \mathbf{~ d B}$, what is the number of uniform quantization levels needed?
b) What data rate is required?

Example: Problem 5-20-Solution

a) $(\mathrm{SNR})_{\mathrm{dB}}=6.02 \mathrm{n}+1.76=30 \mathrm{~dB}$
$n=(30-1.76) / 6.02=4.69$
Rounded off, $\mathrm{n}=5$ bits
This yields $\mathbf{2}^{\mathbf{5}}=\mathbf{3 2}$ quantization levels
b) $\mathbf{R}=\mathbf{7 0 0 0}$ samples/s $\mathbf{X} \mathbf{5}$ bits/sample $=\mathbf{3 5} \mathbf{K b p s}$

Sigma-Delta Modulation

- Approximates the signal by a staircase function that moves up or down one quantization level (δ) every step (sampling time T_{s})
- Transition up or down occurs at sampling instant
- Slope overload: function increasing/decreasing at a rate faster than $\delta / \mathrm{T}_{\mathrm{s}}$ - staircase function can not catch up with original signal
- We still have quantization noise rounding of original signal level

At the sample time: The output of the modulator is just ONE bit (up or down) - compare this with PCM (n bits per sample)

Sigma-Delta Modulation(2)

- Ways to improve over Delta Modulation:
- Adaptive step delta modulation

Analog Data - Analog Signals

- Two principle reasons for analog modulation of analog signals:
- High frequency may be more effective for transmission
- Use of FDM (refer to slide 9: Frequency Division Multiplexing)

Amplitude Modulation (AM)

- Simplest form of modulation:

$$
s(t)=\left[1+n_{a} x(t)\right] \cos \left(2 \pi f_{c} t\right)
$$

where $\cos \left(2 \pi f_{c} t\right)$ is the carrier
$x(t)$ is the input signal (carrying data)
n_{a} is modulation index (control parameter)

Bandwidth of AM signal

- $\mathbf{S (t)}$ has a double sided spectrum function centered around fc - in addition to the carrier itself \rightarrow Double sideband transmitted carrier (DSBTC)
- If B is the bandwidth of $x(t)$, the required transmission bandwidth for the $A M$ signal is $B_{T}=2 B$

Power of AM signal

- Total signal power: $P_{t}=P_{c}\left(1+n_{a}^{2} / 2\right)$, where P_{c} is the transmitted power in carrier
- $s(t)$ contains extra info: the carrier itself removal of carrier (i.e $s(t)=m(t) \cos \left(2 \pi f_{c} t\right)$) is referred to as double sideband suppressed carrier (DSBSC)
- DSBSC signal has same BW as DSBTC
- Carrier info is useful in helping receiver lock to exact frequency and phase of carrier

Frequency Modulation (FM)

- Simplest form of modulation:

$$
\begin{gathered}
s(t)=A_{c} \cos \left(2 \pi f_{c} t+\phi(t)\right) \\
\phi^{\prime}(t)=\mathbf{n}_{f} \mathbf{m}(t)
\end{gathered}
$$

where A_{c} / f_{c} are the amplitude/frequency of carrier
$m(t)$ is the input signal (carrying data)
\mathbf{n}_{f} is frequency modulation index (control parameter)

Bandwidth/Power of FM signal

- If B is the bandwidth of $m(t)$, the required transmission bandwidth for the FM signal is

$$
\begin{aligned}
& B_{T}=2(1+\beta) B \\
& \beta=\Delta F / B=n_{f} A_{m} /(2 \pi B)
\end{aligned}
$$

- ΔF is the peak deviation around $f c, A_{m}$ is the maximum amplitude of $m(t)$. Note $\Delta F=n_{f} A_{m} /(2 \pi)$
- Note B_{T} for $P M$ signal is greater than that of $A M$ signal
- Power of FM signal: $\mathbf{A}_{\mathbf{c}}{ }^{\mathbf{2} / 2}$

Phase Modulation (PM)

- Simplest form of modulation:

$$
\begin{gathered}
s(t)=A_{c} \cos \left(2 \pi f_{c} t+\phi(t)\right) \\
\phi(t)=n_{p} m(t)
\end{gathered}
$$

where A_{c} / f_{c} are the amplitude/frequency of carrier
$\mathbf{m}(\mathrm{t})$ is the input signal (carrying data)
\mathbf{n}_{p} is phase modulation index (control parameter)

Instantaneous phase of $\mathrm{s}(\mathrm{t})$, $\phi(\mathrm{t})$, is equal to $\mathrm{n}_{\mathrm{p}} \mathrm{m}(\mathrm{t})$

Bandwidth/Power of PM signal

- If B is the bandwidth of $m(t)$, the required transmission bandwidth for the FM signal is

$$
\begin{aligned}
& B_{T}=2(1+\beta) B \\
& \beta=n_{p} A_{m}
\end{aligned}
$$

- Note B_{T} for $\mathbf{P M}$ signal is greater than that of $A M$ signal
- Power of PM signal: $\mathbf{A}_{\mathbf{c}}{ }^{\mathbf{2}} \mathbf{2}$

Example: Problem 5-24

- Consider the angle modulation signal

$$
s(t)=10 \cos \left(10^{8} \pi t+5 \sin \left(2 \pi\left(10^{3}\right) t\right)\right]
$$

Find the maximum phase deviation and the maximum frequency deviation

Solution:

$s(t)=A_{c} \cos \left[2 \pi f_{c} t+\phi(t)\right]=10 \cos \left[\left(10^{8}\right) \pi t+5 \sin \left(2 \pi\left(10^{3}\right) t\right)\right]$
Therefore,

$$
\phi(t)=5 \sin 2 \pi\left(10^{3}\right) t,
$$

and the maximum phase deviation is 5 radians.
For frequency deviation, recognize that the change in frequency is determined by the derivative of the phase:

$$
\phi^{\prime}(t)=5(2 \pi)\left(10^{3}\right) \cos \left[2 \pi\left(10^{3}\right) t\right]
$$

which yields a frequency deviation of $\Delta f=1 /(2 \pi)[5(2 \pi)$
11/1($\mathbf{1 0}^{3}$) $]=\mathbf{5} \mathbf{~ k H z}$

Textbook Problems of INTEREST

- Textbook Problems of Interest List: 5-4, 5-

5, 5-6, 5-7, 5-8, 5-9, 5-11's, 5-12, 5-13, 5-14, 516, 5-19, 5-20s, 5-21, 5-22, 5-23, 5-24 ${ }^{\text {s }}$, 5-25, and 5-26

