KFUPM - COMPUTER ENGINEERING DEPARTMENT
 COE-241 - Data and Computer Communication Quiz 3 - Due date: Oct $22^{\text {nd }}, 2013$

Student Name:

Student Number:
Problem (100 point) Consider the periodic signal $s(t)$ shown in the figure below. Assume $A=5$ volts and $T=2$ second.
a) (5 points) Write a mathematical representation for $s(t)$.
b) (5 points) Is $s(t)$ analog or discrete and why? What is the period of the function $s(t)$? What is the fundamental frequency for $s(t)$?
c) (5 points) Compute the DC component of $s(t)$.
d) (5 points) Compute fmin and fmax and determine the bandwidth of $s(t)$.
e) (5 points) Compute the power of $s(t)$.
f) (25 points) Find the Fourier series expansion of $s(t)$.
g) (10 points) Compute the power using the Fourier Series expansion and show that is it equal to that obtained in part (e)
h) (20 points) $s(t)$ has infinite bandwidth (line spectrum) and it is required to truncate it such that it has a limited bandwidth but still has 90% of the original power. What terms of the original series expansion should be included? Produce a table similar to that in slides shown in class on Fourier Series Expansion (slide 78). Show the percent of power as the number of terms in $s_{-} e(n=k)$ are increased.
i) (5 points) What is the new bandwidth and power of the new truncated series?
j) (15 points) Specify the power spectral density (PSD) function for $s(t)$.

