KFUPM - COMPUTER ENGINEERING DEPARTMENT
 COE-241 - Data and Computer Communication Quiz 02 Due Monday March 11 ${ }^{\text {th }}, 2013$ - solution key

Student Name:

Student Number:

Problem 1 (20 point) On the subject of Z-transform
Solution:
a) The Z-transform for signal $x(n)$ is given by

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} x(n) z^{-n}=\sum_{n=0}^{\infty}(0.2)^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{0.2}{z}\right)^{n} \\
& =\frac{1}{1-0.2 / z}=\frac{z}{z-0.2}
\end{aligned}
$$

b) Note that $x(n)$ for part (b) is identical to $x(n)$ defined in part (a). Therefore, $X(z)$ is the same as that computed for part (a).
c) The Z-transform for signal $x(n)$ is given by

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} x(n) z^{-n}=2 \sum_{n=4}^{\infty}\left(\frac{0.2}{z}\right)^{n}=2\left\{\left(\frac{0.2}{z}\right)^{4}+\left(\frac{0.2}{z}\right)^{5}+\left(\frac{0.2}{z}\right)^{6}+\cdots\right\} \\
& =2\left(\frac{0.2}{z}\right)^{4}\left\{1+\left(\frac{0.2}{z}\right)^{1}+\left(\frac{0.2}{z}\right)^{2}+\cdots\right\}=2\left(\frac{0.2}{z}\right)^{4} \frac{1}{1-0.2 / z} \\
& =\frac{2(0.2)^{4}}{z^{4}(z-0.2)}
\end{aligned}
$$

d) The inverse Z-transform for $X(z)$ is obtained by matching terms to the pairs given in class. Therefore,

$$
x(n)=5(0.2)^{n} u(n)
$$

e) To find the Z-transform we must write the function $X(z)$ using partial fraction expansion. One can show that $X(z)=\frac{6}{(z-0.8)(z-0.2)}$ may be expanded as follows

$$
X(z)=\frac{20}{(z-0.4)}+\frac{-20}{(z-0.2)}
$$

Also the form $1 /(z-p)$ need to be written as $\frac{1}{p}\{z /(z-p)-1\}$. Therefore, $X(z)$ can be written as

$$
\begin{aligned}
X(z) & =\frac{20}{0.4}\left\{\frac{z}{z-0.4}-1\right\}+\frac{-20}{0.2}\left\{\frac{z}{z-0.2}-1\right\} \\
& =\frac{50 z}{z-0.4}+\frac{-100 z}{z-0.2}+50
\end{aligned}
$$

Now, by inspection, the series $\times(n)$ should be:

$$
x(n)=50(0.4)^{n}-100(0.2)^{n}+50 \delta(n)
$$

Or using Matlab -
>> $\mathrm{B}=\left[\begin{array}{lll}0 & 0 & 4\end{array}\right]$;
$\gg A=\operatorname{conv}([1-0.2],[1-0.4])$;
>> $[r, p, k]=\operatorname{residuez}(B, A)$
$r=$
50.0000
-100.0000
0.4000
0.2000
$\mathrm{k}=$
50.0000
conv() is used to multiply polynomials. This means that

$$
X(z)=\frac{4}{(z-0.2)(z-0.4)}=\frac{50}{\left(1-0.4 z^{-1}\right)}+\frac{-100}{\left(1-0.2 z^{-1}\right)}+50
$$

Which can be inverted directly using the pairs listed in class. i.e.

$$
x(n)=50(0.4)^{n}-100(0.2)^{n}+50 \delta(n)
$$

