KFUPM - COMPUTER ENGINEERING DEPARTMENT

COE-241 - Data and Computer Communication
Assignment 2 - Due date: March $\mathbf{9}^{\text {th }}, 2013$

Problem \#	Maximum Mark	Mark
1	5	
2	10	
3	20	
4	$30+10$	
5	$35+10$	
Total	100	

Problem 1 (5 points)

$2 \sin (4 \pi \mathrm{t}+\pi) ; \mathrm{A}=2, \mathrm{f}=2, \varphi=\pi$

Problem $2(10$ points)

$(1+0.1 \cos 5 t) \cos 100 t=\cos 100 t+0.1 \cos 5 t \cos 100 t$. From the trigonometric identity $\cos a \cos b$ $=(1 / 2)(\cos (a+b)+\cos (a-b))$, this equation can be rewritten as the linear combination of three sinusoids: $\cos 100 t+0.05 \cos 105 t+0.05 \cos 95 t$.

Component: $\cos (100 \mathrm{t}) \rightarrow \mathrm{A}=1, \mathrm{f}=100 /(2 \pi) \mathrm{Hz}$, phase $=0$.
Component: $0.05 \cos (105 \mathrm{t}) \rightarrow \mathrm{A}=0.05, \mathrm{f}=105 /(2 \pi) \mathrm{Hz}$, phase $=0$.
Component: $0.05 \cos (95 \mathrm{t}) \rightarrow \mathrm{A}=0.05, \mathrm{f}=95 /(2 \pi) \mathrm{Hz}$, phase $=0$.

Problem 3 (20 points):

Consider the periodic signal specified by

$$
s(t)=(4 \cos (t))^{2} \text { for } t \in \mathbb{R}
$$

a) (2 points) Determine the fundamental frequency f_{0} for the periodic signal $s(t)$.
b) (3 points) Compute the DC component for $s(t)$.
c) (3 points) Compute total power for $s(t)$.
d) (2 points) Determine the bandwidth for $s(t)$.
e) (10 points) Compute the Fourier Series Expansion (FSE) for $s(t)$.

Solution:

See the distributed example solved for $s(t)=(10 \cos (t))^{2}$ for $t \in \mathbb{R}$. The problem is identical to this one.

Problem 4 ($\mathbf{3 0}$ points + 10 points bonus):

a) The mathematical expression for $p(t)$ is as follows:

$$
p(t)=\left\{\begin{array}{cc}
\operatorname{Acos}(\pi t / \tau) & |t| \leq \frac{\tau}{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

Note that in general the cosine expression is given by $A \cos (2 \pi f t)$ and for this case, $f=1$ period $=1 /(2 \tau)$. To check let $t=+/-\tau / 2 \rightarrow p(t)=A \cos (+/-\pi / 2)=0$. For $t=0, p(0)=A$.
b) The F.T is given by

$$
\begin{aligned}
P(f)=\int_{-\infty}^{\infty} p(t) e^{-2 \pi j f t} d t & =\int_{-\tau / 2}^{\tau / 2} \operatorname{Acos}(\pi t / \tau) e^{-2 \pi j f t} d t \\
& =\left.\frac{A e^{-2 \pi j f t}}{(\pi / \tau)^{2}+(-2 \pi j f)^{2}}[(\pi / \tau) \sin (\pi t / \tau)+(-2 \pi j f) \cos (\pi t / \tau)]\right|_{t=-\tau / 2} ^{t=\tau / 2}
\end{aligned}
$$

Where the following identity has been used:

$$
\int \cos a x e^{b x} d x=\frac{e^{b x}}{a^{2}+b^{2}}(a \sin a x+b \cos a x)+C
$$

Therefore, $P(f)$ is given by
Assign02_coe_122_241_sol_for_distribution

$$
\begin{aligned}
P(f)=\frac{A}{(\pi / \tau)^{2}+} & (-2 \pi j f)^{2}
\end{aligned} e^{-\pi j f \tau}[(\pi / \tau) \sin (\pi / 2)+(-2 \pi j f) \cos (\pi / 2)] \quad \begin{aligned}
& \left.-e^{\pi j f \tau}[(\pi / \tau) \sin (-\pi / 2)+(-2 \pi j f) \cos (-\pi / 2)]\right\} \\
& =\frac{A(\pi / \tau)}{(\pi / \tau)^{2}+(-2 \pi j f)^{2}}\left\{e^{-\pi j f \tau}+e^{\pi j f \tau}\right\}=\frac{2 A \tau}{\pi} \times \frac{\cos (\pi f \tau)}{\left(1-(2 f \tau)^{2}\right)}
\end{aligned}
$$

c) $P(f)$ is real-valued - i.e. does not have a complex component. It is defined for all frequency i.e. $f \in(-\infty,+\infty)$.

The zeros can be found as $P(f)=0 \rightarrow \frac{2 A \tau}{\pi} \times \frac{\cos (\pi f \tau)}{\left(1-(2 f \tau)^{2}\right)}=0 \rightarrow \cos (\pi f \tau)=0 \rightarrow \pi f \tau=n(\pi / 2)$ where n is odd. Therefore, $f=\frac{n}{2 \tau}$ for all odd n.
d) The ESDF function is given by

$$
\begin{aligned}
& E S D F(f)=\frac{1}{2 \pi} \times\left\{\frac{2 A \tau}{\pi} \times \frac{\cos (\pi f \tau)}{\left(1-(2 f \tau)^{2}\right)}\right\} \times\left\{\frac{2 A \tau}{\pi} \times \frac{\cos (\pi f \tau)}{\left(1-(2 f \tau)^{2}\right)}\right\}^{*} \\
& =\frac{2 A^{2} \tau^{2}}{\pi^{3}} \times\left\{\frac{\cos (\pi f \tau)}{\left(1-(2 f \tau)^{2}\right)}\right\}^{2}
\end{aligned}
$$

The units of ESDF is Joules per Hz.
e) (bonus part) Plots for $|P(f)|$ and $E S D F(f)$ are as shown.

Plot for $|P(f)|$.

Plot for $E S D F(f)$.

Problem 5 ($\mathbf{3 5}$ points + 10 points bonus):

a) Using the slides - the FSE is given by:

$$
s(t)=\frac{A}{2}+\frac{-4 A}{\pi^{2}} \sum_{n=1,3,5, \ldots}^{\infty} \frac{1}{n^{2}} \cos \left(2 \pi n f_{0} t\right)
$$

For this signal $f_{0}=\frac{1}{T}=2 \mathrm{~Hz}$.
b) The LPF will allow the following components to pass: $0,1 \times f 0=2 \mathrm{~Hz}, 3 \times f 0=6 \mathrm{~Hz}$ only. It will reject $5 \times f 0$ $=10 \mathrm{~Hz}$ and higher frequency components.
Therefore, the output signal is equal to:
Assign02_coe_122_241_sol_for_distribution

$$
s_{o}(t)=\frac{A}{2}+\frac{-4 A}{\pi^{2}} \frac{\cos \left(2 \pi(1) f_{0} t\right)}{(1)^{2}}+\frac{-4 A}{\pi^{2}} \frac{\cos \left(2 \pi(3) f_{0} t\right)}{(3)^{2}}
$$

c) Total power for $s_{o}(t)$ is equal to $\left(\frac{A}{2}\right)^{2}+\frac{1}{2}\left(\frac{-4 A}{\pi^{2}(1)^{2}}\right)^{2}+\frac{1}{2}\left(\frac{-4 A}{\pi^{2}(3)^{2}}\right)^{2}$ which is equal to 1.3326 Watts
d) The PSD function is given by

$$
\begin{aligned}
\operatorname{PSD}(f) & =\left(\frac{A}{2}\right)^{2} \delta(f)+\frac{1}{2}\left(\frac{-4 A}{\pi^{2}(1)^{2}}\right)^{2} \delta(f-2)+\frac{1}{2}\left(\frac{-4 A}{\pi^{2}(3)^{2}}\right)^{2} \delta(f-6) \\
& =\left\{\begin{array}{cc}
\left(\frac{A}{2}\right)^{2}=1.0 & f=0 \mathrm{~Hz} \\
\frac{1}{2}\left(\frac{-4 A}{\pi^{2}(1)^{2}}\right)^{2}=0.3285 & f=1 f_{0}=1 \mathrm{~Hz} \\
\frac{1}{2}\left(\frac{-4 A}{\pi^{2}(3)^{2}}\right)^{2}=0.0041 & f=3 f_{0}=6 \mathrm{~Hz}
\end{array}\right.
\end{aligned}
$$

The plot for the PSD function is as shown below.
e) To compute the dynamic range - see the table below

- highest power at $f=0 \mathrm{~Hz}$ is 1 Watt
$\begin{array}{lllll}\text { - divide all powers with this } 1 \mathrm{Watt} \rightarrow \text { ratios (in } \mathrm{dB} \text {) are equal to } 0.000 & -4.834 & -23.919\end{array}$
Then the dynamic range for $s_{o}(t)$ is 23.9 dB

For parts (d) and (e) - Refer to the calculations shown below:
$>$ Assign2_Problem_5_TraingularFunction
Total power $=1.333$ Watts
Max power at $\mathrm{f}=0.0 \mathrm{~Hz}$ - Power $=1.000(0.000 \mathrm{dBW})$

Power spectral density	function:			
Index	$:$	0	1	3
freq (Hz)	$:$	0	2	6
PSD (W)	$:$	1.000000	0.328511	0.004056
PSD-normalized	$:$	1.000000	0.328511	0.004056
PSD-normalized (dB) :	0.000	-4.834	-23.919	

For parts (f), (g), and (h) we use the following relations:

Noise power $=$ Noise density \times BW
SNR = total signal power / noise power

Capacity $=$ BW $\times \log 2(1+$ SNR $)$
The minimum number of bits per symbol is found through Nyquist formula: Capacity $=2$ BW $\log 2(M)$ $\rightarrow \log 2(M)=$ Capacity / (2 BW)
The corresponding numbers are shown below:

```
Capacity calculations:
Total signal power = 1.333 Watts ( 1.247 dBW)
Total noise power = 0.000 Watts (-60.458 dBW)
    ==> SNR = 1480630.1 (61.704 dB)
Shannon capacity = 184.480 b/s
Min bits/symbol = 10.249 bits per symbol
```

