King Fahd University of Petroleum \& Minerals Computer Engineering Dept

COE 540 - Computer Networks

Term 121
Dr. Ashraf S. Hasan Mahmoud
Rm 22-420
Ext. 1724
Email: ashraf@kfupm.edu.sa

Queuing Model

- Consider the following system:
$\mathrm{A}(\mathrm{t}) \quad \mathrm{N}(\mathrm{t})=\mathrm{A}(\mathrm{t})-\mathrm{D}(\mathrm{t}) \quad \mathrm{D}(\mathrm{t})$

Example 1: Queueing System

Problem: A data communication line delivers a block of information every 10 microseconds. A decoder check each block for errors and corrects the errors if necessary. It takes 1 microsecond to determine whether the block has any errors. If the block has one error it takes 5 microseconds to correct it and it has more than 1 error it takes $\mathbf{2 0}$ microseconds to correct the error. Blocks wait in the queue when the decoder falls behind. Suppose that the decoder is initially empty and that the number of errors in the first 10 blocks are: $0,1,3,1,0,4,0,1,0,0$.
a) Plot the number of blocks in the decoder as a function of time.
b) Find the mean number of blocks in the decoder
c) What percent of the time is the decoder empty?

Example 1: Queueing System cont'd

Solution:

Interarrival time $=10 \boldsymbol{\mu s e c}$
Service time $=1 \quad$ if no errors 1+5 if 1 error $1+20$ if more than 1 error
The queue parameters (A, D, S, and W) are shown below:

Block \# :	1	2	3	4	5	6	7	8	9	10
Arrivals:	10	20	30	40	50	60	70	80	90	100
Errors:	0	1	3	1	0	4	0	1	0	0
Service:	1	6	21	6	1	21	1	6	1	1
Departs:	11	26	51	57	58	81	82	88	91	101
Waiting :	0	0	0	11	7	0	11	2	0	0
Total:	1	6	21	17	8	21	12	8	1	1

Example 1: Queueing System cont'd

Solution:

Average no of customers in system $=0.950$
Average customer waiting time $=3.100$ microsec
Maximum simulation time $\quad=101.000$ microsec
Duration server busy
$=65.000$
Server utilization
$=0.6436$
Server idle
$=0.3564$

The following Matlab code can be used to solve this queue system (Note the code is general - it solves any system provided The Arrivals vector A, and the service vector \mathbf{S})

Example 1: Queueing System cont'd

```
0001% % Problem 9.3 - Leon Garcia's book
    0 0 0 3 \text { clear all}
    0004 A = [10:10:100];
    05 Errors = llllllllllllll
    0006 S = zeros(size(A));
    0 0 0 9 \% \text { this loop to computes service times}
        if (Errors(i)==0) S(i)=1;
            (Errors(i)==0) S(i) = 1;
            else if (Errors(i)==1) S(i)=6;
            S(i) = 21;
            end
            % this section computes the departure time for
            if (i>1)% this is not the first user
            if (D(i-1)<A(i)) D(i)=A(i)+S(i)
            D(i)}=D(i-1)+S(i
            else end
            D(i)}=A(i)+S(i)
            end
    % compute waiting time
                0033 % Compute N(t)
lol
0035\textrm{T}(1)=0; % time origin
0036 N =[1; % number of cutomers
0038 k =0; % initial condition
lol
0040 i- = 1; % % index for arrivals
041 j=1; % index for departures
0042 t = 0; % system time
0044 while (t < A_max)
045 if min(A(i); D(j),
            if (t == A(1))
                M(k)=t;
```



```
            else % departure occurs
            N(k)=N(k-1)-1;
                N(k)=N(k
                k =k+1;
            j = = j+1; % get next departure
                end en
57 end
55%
59% record remaining departure instants
060 for i=j:1:1 ength (D)
        t=j:1:1ength(D)
    0032 %
        l
            N
end
0067 k=k-1; % decrement k to get real size of N and T
068% % compute means
70 MeanW = mean(W);
071 T_Intervales = = = (2:k)-T(1:\textrm{k}-1);
\,
N(N(1:k-1).*_Intervales) / T(k);
0075%
```


Little's Formula

- Little's formula:

$$
E[N]=\lambda E[T]
$$

Holds for many service disciplines and for systems with arbitrary number of servers. It holds for many interpretations of the system as well

Example 2:

- Problem: Let $\mathbf{N s}(\mathbf{t})$ be the number of customers being served at time t, and let τ denote the service time. If we designate the set of servers to be the "system"m then Little's formula becomes:

$$
\mathbf{E}[\mathbf{N s}]=\boldsymbol{\lambda} \mathbf{E}[\tau]
$$

Where $\mathrm{E}[\mathrm{Ns}]$ is the average number of busy servers for a system in the steady state.

Example 2: cont'd

Note: for a single server $\mathrm{Ns}(\mathrm{t})$ can be either $\mathbf{0}$ or $\mathbf{1 \rightarrow E} \mathrm{E}[\mathrm{Ns}]$ represents the portion of time the server is busy. If $\mathbf{p}_{0}=$ $\operatorname{Prob}[\mathrm{Ns}(\mathrm{t})=0]$, then we have

$$
\begin{aligned}
\mathbf{1}-\mathbf{p}_{0} & =\mathrm{E}[\mathrm{Ns}]=\lambda E[\tau], \mathbf{O r} \\
\mathbf{p}_{0} & =\mathbf{1}-\lambda E[\tau]
\end{aligned}
$$

The quantity $\lambda E[\tau]$ is defined as the utilization for a single server. Usually, it is given the symbol ρ

$$
\rho=\lambda E[\tau]
$$

For a c-server system, we define the utilization (the fraction of busy servers) to be

$$
\rho=\lambda E[\tau] / \mathbf{c}
$$

Queue System and Parameters

- Queueing system with \mathbf{m} servers
- When m=1-single server system
- Input: arrival statistics (rate λ), service statistics (rate μ), number of customers (m), buffer size
- Output: E[N], E[T], E[Nq], E[W], Prob[buffer size = x], Prob[W<W], etc.

The M/M/1 Queue

- Consider m-server system where customers arrive according to a Poisson process of rate $\boldsymbol{\lambda}$
- $\quad \rightarrow$ inter-arrival times are iid exponential r.v. with mean 1/ $\boldsymbol{\lambda}$
- Assume the service times are iid exponential r.v. with mean $1 / \mu$
- Assume the inter-arrival times and service times are independent
- Assume the system can accommodate unlimited number of customers

The M/M/1 Queue - cont'd

- What is the steady state pmf of $N(t)$, the number of customers in the system?
- What is the PDF of \mathbf{T}, the total customer delay in the system?

The M/M/1 Queue - cont'd

- Consider the transition rate diagram for M/M/1 system

- Note:
- System state - number of customers in systems
- $\boldsymbol{\lambda}$ is rate of customer arrivals
- μ is rate of customer departure

The M/M/1 Queue - Distribution of Number of Customers

- Writing the global balance equations for this Markov chain and solving for Prob[N(t) = j], yields (refer to previous example)

$$
\begin{aligned}
\mathbf{p}_{\mathrm{j}} & =\operatorname{Prob}[\mathrm{N}(\mathrm{t})=\mathrm{j}] \\
& =(1-\rho) \rho^{\mathbf{j}}
\end{aligned}
$$

for $\rho=\lambda / \mu<1$
Note that for $\rho=1 \rightarrow$ arrival rate $\boldsymbol{\lambda}=$ service rate μ

The M/M/1 Queue - Expected Number of Customers

- The mean number of customer is given by

$$
\begin{aligned}
E[N] & =\underset{j}{\sum j} \operatorname{Prob}[N(t)=j] \\
& =\rho /(1-\rho)
\end{aligned}
$$

The M/M/1 Queue - Mean Customer Delay

- The mean total customer delay in the system is found using Little's formula

$$
\begin{aligned}
E[T] & =E[N] / \lambda \\
& =\rho /[\lambda(1-\rho)] \\
& =1 / \mu(1-\rho) \\
& =1 /(\mu-\lambda)
\end{aligned}
$$

The M/M/1 Queue - Mean Queueing Time

- The mean waiting time in queue is given by

$$
\begin{aligned}
\mathrm{E}[\mathrm{~W}] & =\mathrm{E}[\mathrm{~T}]-\mathrm{E}[\tau] \\
& =\rho /(1-\rho) \mathrm{E}[\tau]
\end{aligned}
$$

The M/M/1 Queue - Mean Number in Queue

- Again we employ Little's formula:

$$
\begin{aligned}
E[\mathrm{Nq}] & =\lambda E[W] \\
& =\rho^{2} /(1-\rho)
\end{aligned}
$$

Remember:
server utilization $\rho=\lambda / \mu=1-\mathbf{p}_{0}$
All previous quantities $\mathrm{E}[\mathrm{N}], \mathrm{E}[\mathrm{T}], \mathrm{E}[\mathrm{W}]$, and $\mathrm{E}[\mathrm{Nq}] \rightarrow \infty$ as $\rho \rightarrow \mathbf{1}$

M/M/1/K - Finite Capacity Queue

- Consider an M/M/1 with finite capacity K $<\infty$
- For this queue - there can be at most K customers in the system
- 1 being served
- K-1 waiting
- A customer arriving while the system has K customers is BLOCKED (does not wait)!

M/M/1/K - Finite Capacityoriations of M/M/1 queue cont'd

- Transition rate diagram for this queueing system is given by:
- $\mathbf{N}(\mathrm{t})$ - A continuous-time Markov chain which takes on the values from the set $\{0$, 1, ... K\}

Multi-Server Systems: M/M/c

- The transition rate diagram for a multiserver $M / M / c$ queue is as follows:
- Departure rate $=\mathbf{k} \mu$ when k servers are busy
- We can show that the service time for a customer finding \mathbf{k} servers busy is exponentially distributed with mean $1 /(k \mu)$

$c \mu$

$\mathrm{c} \mu$

Variations of M/M/1 queue
 Multi-Server Systems: |VInvice cont'd

- Writing the global balance equations:
$\lambda \quad \mathbf{p}_{0}=\mu \mathbf{p}_{1}$
$j \mu \quad p_{j}=\lambda p_{j-1} \quad$ for $\quad j=1,2, \ldots, c$
$c \mu \quad p_{j}=\lambda p_{j-1}$ for $j=c, c+1, \ldots$
\rightarrow
Note this distribution is the same as that for M/M/1 when you set cto 1 .
$p_{j}=a^{j} / j!p_{0} \quad($ for $j=1,2, \ldots, c)$ and
$p_{j}=\rho^{j-c} / c!a^{c} p_{0}($ for $j=c, c+1, \ldots)$
where $a=\lambda / \mu$ and $\rho=a / c$
- From this we note that the probability of system being in state c , pc , is given by

$$
p_{c}=a^{c} / c!p_{0}
$$

Multi-Server Systems: Variations of M/M/1 queue

cont'd

- To find $\mathbf{p}_{\mathbf{0}}$ we resort to the fact that $\boldsymbol{\Sigma} \mathbf{p}_{\mathbf{j}}=\mathbf{1}$
$\Rightarrow \quad p_{0}=\left\{\sum_{j=0}^{c-1} \frac{a^{j}}{j!}+\frac{a^{c}}{c!} \frac{1}{1-\rho}\right\}^{-1}$
- The probability that an arriving customer has to wait
$\operatorname{Prob}[W>0]=\operatorname{Prob}[N \geq c]$
$=\mathbf{p}_{\mathrm{c}}+\mathbf{p}_{\mathrm{c}+1}+\mathbf{p}_{\mathrm{c}+2}+\ldots$
$=p_{c} /(1-\rho)$
Erlang-C formula

Question: What is Prob[W>0] for M/M/1 system?

```
                                    Variations of M/M/1 queue
Multi-Server Systems: |Vnlvic -
cont'd
```

- The mean number of customers in queue (waiting):

$$
\begin{aligned}
E\left[N_{q}\right] & =\sum_{j=c}^{\infty}(j-c) \operatorname{Pr}[N(t)=j] \\
& =\sum_{j=c}^{\infty}(j-c) \rho^{j-c} p_{c} \\
& =\frac{\rho}{(1-\rho)^{2}} p_{c} \\
& =\frac{\rho}{1-\rho} \operatorname{Pr}[W>0]
\end{aligned}
$$

Multi-Server Systems: Variations of M/M/1 queue cont'd

- The mean waiting time in queue:

$$
E[W]=E\left[N_{q}\right] / \lambda
$$

- The mean total delay in system:

$$
\begin{aligned}
E[T] & =E[W]+E[\tau] \\
& =E[W]+1 / \mu
\end{aligned}
$$

- The mean number of customers in system:

$$
\begin{aligned}
E[N] & =\lambda E[T] \\
& =E\left[N_{q}\right]+a
\end{aligned}
$$

Variations of M/M/1 queue

Example 5:

- A company has a system with four private telephone lines connecting two of its sites. Suppose that requests for these lines arrive according to a Poisson process at rate of one call every 2 minutes, and suppose that call durations are exponentially distributed with mean 4 minutes. When all lines are busy, the system delays (i.e. queues) call requests until a line becomes available.
- Find the probability of having to wait for a line.
- What is the average waiting time for an incoming call?

Example 5: cont'd

- Solution:
$\lambda=1 / 2,1 / \mu=4, c=4 \rightarrow a=\lambda / \mu=2$
$\Rightarrow \rho=a / c=1 / 2$
$p_{0}=\left\{1+2+2^{2} / 2!+2^{3} / 3!+2^{4} / 4!(1 /(1-\rho))\right\}^{-1}$
$=3 / 23$
$p_{c}=a^{c} / c!p 0$
$=\mathbf{2}^{4} / 4!\times 3 / 23$
(1) Prob $[W>0]=p_{c} /(1-p)$

$$
\begin{aligned}
& =2^{4} / 4!\times 3 / 23 \times 1 /(1-1 / 2) \\
& =4 / 23 \\
& \approx 0.17
\end{aligned}
$$

(2) To find $E[W]$, find $E[N q]$...
$\mathrm{E}[\mathrm{Nq}]=\rho /(1-\rho) * \operatorname{Prob}[\mathrm{~W}>0]=0.1739$
$E[W]=E[N q] / \lambda=0.35 \mathrm{~min}$

- The transition rate diagram for a multiserver with no waiting room (M/M/c/c) queue is as follows:
- Departure rate $=\mathbf{k} \boldsymbol{\mu}$ when \mathbf{k} servers are busy

(c-1) $\mu \quad \mathrm{c} \mu$
- Writing the global balance equations, one can show:

$$
p_{j}=a^{j} / j!p_{0} \quad(\text { for } j=0,1, \ldots, c)
$$

where $a=\lambda / \mu$ (the offered load)

- To find p_{0}, we resort to the fact that $\boldsymbol{\Sigma} \mathbf{p}_{j}$ $=1$

$$
p_{0}=\left\{\sum_{j=0}^{c} \frac{a^{j}}{j!}\right\}^{-1}
$$

Erlang-B Formula

- Erlang-B formula is defined as the probability that all servers are busy:

$$
\begin{aligned}
\operatorname{Pr}[N=c] & =p_{c} \\
& =\frac{a^{c} / c!}{1+a+a^{2} / 2!+\ldots+a^{c} / c!}
\end{aligned}
$$

Expected Number of cuistomers in
M/M/c/c

- The actual arrival rate into the system:

$$
\lambda_{a}=\lambda\left(1-p_{c}\right)
$$

- Average total delay figure:

$$
E[T]=E[\tau]
$$

Why?

- Average number of customers:

$$
E[N]=\lambda_{a} E[\tau]
$$

> Variations of M/M/1 queue

Example 6:

- A company has a system with four private telephone lines connecting two of its sites. Suppose that requests for these lines arrive according to a Poisson process at rate of one call every 2 minutes, and suppose that call durations are exponentially distributed with mean 4 minutes. When all lines are busy, the system BLOCKS the incoming call and generates a busy signal.
- Find the probability of being blocked.

Variations of M/M/1 queue

Example 6:

- Solution:

$$
\begin{aligned}
\lambda=1 / 2,1 / \mu=4, c=4 & \rightarrow a=\lambda / \mu=2 \\
& \rightarrow \rho=a / c=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { ac/c! } \\
& \mathbf{p}_{\mathrm{c}}= \\
& 1+a+a^{2} / 2!+a^{3} / 3!+a^{4} / 4! \\
& \text { 24/4! } \\
& =-----------------------------=9.5 \%
\end{aligned}
$$

Therefore, the probability of being blocked is $\mathbf{0 . 0 9 5}$.

M/G/1 Queues

- Poisson arrival process (i.e. exponential r.v. interarrival times)
- Service time: general distribution $f_{\tau}(x)$
- For M/M/1, $f_{\tau}(x)=\mu e^{-\mu x}$ for $x>0$
- The state of the M/G/1 system at time t is specified by

1. $N(t)$
2. The remaining (residual) service time of the customer being served

Mean Waiting Time in M/G/1

- Main result
$\mathrm{E}[\mathrm{W}]=\begin{gathered}\lambda E\left[\tau^{2}\right] \\ 2(1-\rho)\end{gathered}$
$\boldsymbol{\lambda}\left(\mathbf{\delta}^{2}{ }_{\tau}+\mathrm{E}[\tau]^{2}\right)$
= ---------------
$\rho\left(1+C_{\tau}{ }^{2}\right)$
$E[\tau]$ 2(1-p)
(

Remember:
$-\mathrm{E}\left[\tau^{2}\right]=\delta^{2}{ }^{2}+\mathrm{E}[\tau]^{2}$
$-\mathrm{C}_{\tau}^{2}=\delta^{2}{ }_{\tau} \mathrm{E}[\tau]^{2}$

Pollaczek-Khinchin (P-K)
Mean Value Formula

Mean Delay in M/G/1 - cont'd

- The mean waiting time, $E[T]$ is found by adding mean service time to $E[W]$:

$$
\begin{aligned}
E[T]= & E[\tau]+E[W] \\
& =E[\tau]+\frac{\rho\left(1+C_{\tau}^{2}\right)}{2(1-\rho)}
\end{aligned}
$$

Example 7:

- Problem: Compare E[W] for M/M/1 and M/D/1 systems.
- Answer:

M/M/1: service time, τ, is exponential r.v. with parameter μ
$\rightarrow \mathrm{E}[\tau]=1 / \mu, \mathrm{E}\left[\tau^{2}\right]=2 / \mu^{2}, \delta^{2}{ }_{\tau}=1 / \mu^{2}, \mathrm{C}_{\tau}^{2}=1$
M/D/1: service time, τ, is constant with value $\tau=$ $1 / \mu$
$\rightarrow \mathrm{E}[\mathrm{t}]=1 / \mu, \mathrm{E}\left[\tau^{2}\right]=1 / \mu^{2}, \mathrm{\delta}^{2}=0, \mathrm{C}^{2}{ }_{\tau}=\mathbf{0}$

Example 7: cont'd

- Answer: cont'd

Substitute in P-K mean value formula
M/M/1:

$$
E\left[W_{M / M / 1}\right]=\frac{\lambda E\left[\tau^{2}\right]}{2(1-\rho)}=\frac{\rho}{(1--\rho)}
$$

M/D/1:

$$
E\left[W_{M / D / 1}\right]=\frac{\lambda E\left[\tau^{2}\right]}{2(1-\rho)}=\frac{\rho}{2(1-\rho)} E[\tau]
$$

$$
=\frac{\mathbf{1}}{\mathbf{2}} \mathrm{E}\left[\mathbf{W}_{\mathrm{M} / \mathrm{M} / \mathbf{1}}\right] \quad \begin{aligned}
& \text { The waiting time in an } \\
& \mathrm{M} / \mathrm{D} / 1 \text { queue is half of } \\
& \text { that of an } \mathrm{M} / \mathrm{M} / 1 \text { system }
\end{aligned}
$$

Example 8:

- Problem: Assume traffic is arriving at the input port of a router according to a Poisson arrival process of rate $\boldsymbol{\lambda}=\mathbf{1 0 0}$ packets/sec. If the traffic distribution is as follows: 30\% of packets are 512 Bytes long, 50\% of packets are 1024 Bytes long, 20\% of packets are 4096 Bytes long If the transmit speed of the router output port is $1.5 \mathrm{Mb} / \mathrm{s}$
a) What is the average packet transmit time?
b) What is the average packet waiting time before transmit?
c) What is the average buffer size in the router?

Example 8: cont'd

- Solution:
a) Average packet size,
$E[L]=0.3 \times 512+0.5 \times 1024+0.2 \times 4096$
= 1484.8 Bytes
average transmit time $=E[L] / R=1484.8 \times 8 / 1.5 \times 10^{6}=$ 0.0079 sec
b) $\mathrm{E}\left[L^{2}\right]=0.3 \times(512 \times 8)^{2}+0.5 \times(1024 \times 8)^{2}+0.2 \times(4096 \times 8)^{2}=$
$2.5334 \mathrm{e}+008$ Bits 2
$E\left[\tau^{2}\right]=E\left[L^{2}\right] / R^{2}=1.1259 \mathrm{e}-004 \mathbf{~ s e c}^{2}$
$\rho=\lambda E[\tau]=0.7919$
$E[W]=0.5 \lambda E\left[\tau^{2}\right] /(1-\rho)$
$=0.0271 \mathrm{sec}$
c) $\mathrm{E}[\mathrm{Nq}]=\lambda \mathrm{E}[\mathrm{W}]$
$=2.705$ packet

