King Fa	ahd University of	
Petrole	eum & Minerals	
Compu	ter Engineering De	pt
COF 540	- Computer Networks	
Term 12 [°]		
Dr. Ashra	af S. Hasan Mahmoud	
Rm 22-42	20	
Ext. 1724	1	
Email: as	shraf@kfupm.edu.sa	
11/30/2012	Dr. Ashraf S. Hasan Mahmoud	1

Services Provided to the Transport Layer Transport layer works end-to-end therefore the services should be: • Independent of the router technology • Shielded from the number, type, and topology of the routers preset • The network addresses made available to the transport layer should use uniform numbering plan even across LANs and WANs End-to-End argument • End hosts must perform error control Network layer provides "PACKET SEND" and "PACKET RECEIVE" primitives only ATM/Telephony point of view Connection-oriented evolving features of the internet – e.g. • MPLS and VLANs 11/30/2012 Dr. Ashraf S. Hasan Mahmoud 4

Comparison of Virtual-Circuit and Datagram Networks

• Tradeoffs between virtual circuits and datagrams

	Issue	Datagram network	Virtual-circuit network
	Circuit setup	Not needed	Required
	Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number
	State information	Routers do not hold state information about connections	Each VC requires router table space per connection
	Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it
	Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated
	Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC
	Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC
11/30/2012	Comparison o Dr	of datagram and virtual-circuit Ashraf S. Hasan Mahmoud	t networks

Shortest Path Algorithm (Dijkstra 1959) – cont'd • Example redone using Kurose's notation									
Step	N'	В	c	D	E	5 F	G	н	
0	{A}	(2,A)	(∞,-)	(∞,-)	(∞,-)	(∞,-)	(6, A)	(∞,-)	
1	{A, B}	(2, A)	(9, B)	(∞,-)	(4, B)	(∞,-)	(6, A)	(∞,-)	
2	{A, B, E}	(2, A)	(9, B)	(∞,-)	(4, B)	(6, E)	(5, E)	(∞,-)	
3	{A, B, E, G}	(2, A)	(9, B)	(∞,-)	(4, B)	(6, E)	(5, E)	(9, G)	
4	{A, B, E, G, F}	(2, A)	(9, B)	(∞,-)	(4, B)	(6, E)	(5, E)	(8, F)	
5	{A, B, E, G, F, H}	(2, A)	(9, B)	(10, H)	(4, B)	(6, E)	(5, E)	(8, F)	
6	{A, B, E, G, F, H, C}	(2, A)	(9, B)	(10, H)	(4, B)	(6, E)	(5, E)	(8, F)	
7	{A, B, E, G, F, H, C, D}	(2, A)	(9, B)	(10, H)	(4, B)	(6, E)	(5, E)	(8, F)	
11/3	80/2012		Dr. Ashra	If S. Hasan N	lahmoud			14	

- Reducing load → What packets to drop?
 - Old packets may be more important than new ones for file transfer session
 - New packets may be more critical than old one for real-time applications
- More intelligent load shedding requires cooperation of the source
 - E.g. packets carrying routing info are more important than regular data packets!
 - E.g. video compression; packets carrying reference (full) frames relative to packets carrying delta information
- Application may mark its packet to reflect importance
- Users may be given incentives to mark their not-so critical traffic as low priority

• May be dropped if routers are congested

Dr. Ashraf S. Hasan Mahmoud

46

45

- How to provide quality of service that is matched to application needs
- E.g. Multimedia applications require minimum throughput and maximum latency
 - Very early solution overprovisioning
 - Based on expected traffic
 - Expensive
- QoS mechanism let a network with less capacity meet application requirement just as well at lower cost
- A network supporting QoS can honor performance guarantees even when traffic spikes at the cost of rejecting some requests

47

- Four key issues to be addressed:
 - 1. What applications need from the network
 - 2. How to regulate the traffic that enters the network
 - 3. How to reserve at routers to guarantee performance

11/30/2012 Whether the network camsafely accept more traffic

Quality Of Service - Application Requirements

- Flow stream of packets from src to dst
 - All packets of a connection in a CO network
 - All packets from one src process to dst process in a DG network
- Characterizing flow: (1) Bandwidth, (2) Delay, (3) Jitter,
 (4) Loss

٠	The four	Application	Bandwidth	Delay	Jitter	Loss
	parameters determined the required QoS for flow Example: Stringency of applications' QoS requirements	Email	Low	Low	Low	Medium
		File sharing	High	Low	Low	Medium
		Web access	Medium	Medium	Low	Medium
		Remote login	Low	Medium	Medium	Medium
•		Audio on demand	Low	Low	High	Low
		Video on demand	High	Low	High	Low
		Telephony	Low	High	High	Low
		Videoconferencing	High	High	High	Low
11/	30/2012	Dr. Ashrat S. Hasa	an Mahmoud			48

Quality Of Service -Token Bucket -Implementation Bucket level - counter Clock tick every Δt → counter decremented by R/ Δt units Every time a unit of traffic is sent into the network the counter is decremented

- Traffic is sent till the counter reaches zero
- Unit of transmission (or bucket level)
 - Packet what about variable packet sizes
 - Bytes
- Length of maximum burst (i.e. until the bucket empties)
 B + R S = M S

where B is the bucket size, R token arrival rate in bytes/sec, M is the maximum output rate in bytes/sec, and S is the burst length in seconds

- → Length of maximum burst S = B / (M R);
- Token buckets implemented for shaping hosts → Packets queued and delayed until the buckets permit them to be sent

Token bucket implemented for policing at routers → no more packets are
 11/3 sent2than permitted Dr. Ashraf S. Hasan Mahmoud 54

Internetworking								
 Heterogeneous networks – multiple standards Value of network of N nodes – number of connections that may be made between the nodes ~ N². Bigger networks are more valuable Combine multiple smaller networks to get big networks 								
NU U U	Item	Some Possibilities						
 Networks may 	Service offered	Connectionless versus connection oriented						
he different -	Addressing	Different sizes, flat or hierarchical						
De unierent -	Broadcasting	Present or absent (also multicast)						
refer to table	Packet size	Every network has its own maximum						
	Ordering	Ordered and unordered delivery						
	Quality of service	Present or absent; many different kinds						
	Reliability	Different levels of loss						
	Security	Privacy rules, encryption, etc.						
	Parameters	Different timeouts, flow specifications, etc.						
	Accounting	By connect time, packet, byte, or not at all						
11/30/2012	Dr. Ashraf S. Hasan Ma	ahmoud 68						

Internetworking – Interwork Routing

- Two-level routing protocol:
 - Intradomain or Interior gateway protocol
 - Interdomain or Exterior gateway protocol for the Internet BGP is used
- Autonomous System (AS): A network that is operated independently of all the others e.g. some ISP network
- Nontechnical factors → routing policy: method of selecting routes amongst autonomous systems
 - Business agreements
 - Crossing international boundaries
 - Application of different laws in regard to traffic and content
 - Etc.

11/30/2012

Dr. Ashraf S. Hasan Mahmoud

72

	IPv4								
	Header: 20 bytes (fixed) + variable (optional) part								
	 Version - Version + IHL - how many 32-bit words the header is; min = 5 (no options), max = 15 (i.e. 60 bytes → options = 40 bytes) 								
	 Differentiated Services (aka Type of Service) – distinguish between different classes of service Total Length – datagram size in bytes – max = 65,535 bytes Identification – all fragments belonging to same packet have same identification 								
•	DF – don't fragment; MF – more	don't fragment; MF – more							
	fragments	4		32	Bits				
•	Fragment offset – all fragments (except the last) are multiples of								
	8 bytes	Version	IHL	Differentiated Services		Total length			
•	Time-to-Live – limit packet lifetime – max = 255	Identification D M F F Frag			Fragment offset				
•	Protocol – which transport	Time	to live	Protocol	Header checksum				
	protocol	Source address							
•	Header checksum – one's	r Options (0 or more words)							
	16-bit words of the header						1		
Options – allow extensions or						103)	T		
	subsequent version of protocol 11/30/2012	Dr.	Ashraf S	. Hasan Mahmoud			76		

