The Data Link Layer
Chapter 3

Data Link Layer Design Issues
Error Detection and Correction
Elementary Data Link Protocols
Sliding Window Protocols
Example Data Link Protocols

Revised: August 2011

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

The Data Link Layer

i A Application
Responsible for delivering frames of Tpp' Irt
information over a single link ranspo
* Handles transmission errors and Network

= ik
regulates the flow of data .
Physical

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Data Link Layer Design Issues

* Frames »

* Possible services »
* Framing methods »
* Error control »
 Flow control »

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Frames

Link layer accepts packets from the network layer, and
encapsulates them into frames that it sends using the
physical layer; reception is the opposite process

Sending machine Feceiving machine

N etwork Packet Packet

Frame

Link l Header | Payload field | Trailer \ Header | Payload field | Trailer

Physical L Actual data path J

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Possible Services

Unacknowledged connectionless service
 Frame is sent with no connection / error recovery
 Ethernet is example

Acknowledged connectionless service
« Frame is sent with retransmissions if needed
 Example is 802.11

Acknowledged connection-oriented service
« Connection is set up; rare

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Framing Methods

Byte count »
Flag bytes with byte stuffing »
Flag bits with bit stuffing »

Physical layer coding violations
— Use non-data symbol to indicate frame

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Framing — Byte count

Frame begins with a count of the number of bytes in it
« Simple, but difficult to resynchronize after an error

/ / Byte count \ One byte
Expected \
5121346567898 |0[(1|2|3|4|5(6|8|T7 800|123
CaSe " M &
Frame 1 Frame 2 Frame 3 Frame 4
5 bytes 5 bytes 8 bytes 8 bytes
Error

Error /

(121347 |6(7|8|9|8|0(1]2|3(4|5|6|8|7|8[2|01]2]|3
case - S

Frame 1 Frame 2 Now a byte
(Wrong) count

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Framing — Byte stuffing

Special flag bytes delimit frames; occurrences of flags in
the data must be stuffed (escaped)

« Longer, but easy to resynchronize after error

Frame _ | . .
FLAG| Header Payload field Trailer |FLAG
format
Original bytes After stuffing
Need to escape
A FLAG B —_ | A ESC Fﬁ B | eXtra ESCAPE
—r bytes too!
. A ESC B — | A (ESC | | ESC B
Stuffing
examples A ESC | [FLAG B — | A ESC || ESC | | ESC | [FLAG B
A ESC | | ESC B — | A ESC |[ESC | | ESC | | ESC B

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Framing — Bit stuffing

Stuffing done at the bit level:

« Frame flag has six consecutive 1s (not shown)

« On transmit, after five 1s in the data, a 0 is added
 Onreceive, a 0 after five 1s is deleted

Databits 011011111111111111110010

Transmitted bits 011011111011111011111010010

with stuffing ‘\ T /"

Stuffed bits

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Error Control

Error control repairs frames that are received in error
* Requires errors to be detected at the receiver

« Typically retransmit the unacknowledged frames
« Timer protects against lost acknowledgements

Detecting errors and retransmissions are next topics.

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Flow Control

Prevents a fast sender from out-pacing a slow receiver
* Receiver gives feedback on the data it can accept

« Rare in the Link layer as NICs run at “wire speed”
— Receiver can take data as fast as it can be sent

Flow control is a topic in the Link and Transport layers.

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Error Detection and Correction

Error codes add structured redundancy to data so
errors can be either detected, or corrected.

Error correction codes:
« Hamming codes »
* Binary convolutional codes »

 Reed-Solomon and Low-Density Parity Check codes
— Mathematically complex, widely used in real systems

Error detection codes:

* Parity »

 Checksums »

e Cyclic redundancy codes »

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Error Bounds — Hamming distance

Code turns data of n bits into codewords of n+k bits

Hamming distance is the minimum bit flips to turn one
valid codeword into any other valid one.

« Example with 4 codewords of 10 bits (n=2, k=8):
- 0000000000, 0000011111, 1111100000, and 1111111111
— Hamming distance is 5

Bounds for a code with distance:
« 2d+1 — can correct d errors (e.g., 2 errors above)
 d+1—can detect d errors (e.g., 4 errors above)

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Error Correction — Hamming code

Hamming code gives a simple way to add check bits
and correct up to a single bit error:

« Check bits are parity over subsets of the codeword

« Recomputing the parity sums (syndrome) gives the
position of the error to flip, or O if there is no error

Check Syndrome
bits 0101 Flip
bit 5
, ~w__ Check
m 1 bit ‘rﬁ
error
A P1 P2 M3 P4 Mg Mg My Pg Mg Mqg Mqq __ A
1000001=—=0 0100001001 —FOD1DUJDO1DD1+1OODOD1
1 1'] Channel 1 T]
Message Sent Received Message
codeword codeword

(11, 7) Hamming code adds 4 check bits and can correct 1 error

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Error Correction — Convolutional codes

Operates on a stream of bits, keeping internal state
« Output stream is a function of all preceding input bits
« Bits are decoded with the Viterbi algorithm

Popular NASA binary convolutional code (rate = %2) used in 802.11

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Error Detection — Parity (1)

Parity bit is added as the modulo 2 sum of data bits
« Equivalent to XOR; this is even parity

« Ex: 1110000 - 11100001
« Detection checks if the sum is wrong (an error)

Simple way to detect an odd number of errors

« Ex:1error, 11100101; detected, sum is wrong

« Ex:3errors, 11011001; detected sum is wrong

« Ex:2errors, 11101101; not detected, sum is right!
« Error can also be in the parity bit itself
 Random errors are detected with probability 72

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Error Detection — Parity (2)

Interleaving of N parity bits detects burst errors up to N
« Each parity sum is made over non-adjacent bits
* An even burst of up to N errors will not cause it to fail

Transmit

N 1001110 order N 1001110
e 1100101 ¢ 1100077 <— Burst
t 1110100 | maoftoo T
w 1110111 w 1110111
o 1101111 S o 1101111
r 1110010 r 1110010
K 1101011 K 1101011

YYvyvyy YYYYYYY

1011110 1001110

S

Parity bits

Parity errors

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Error Detection — Checksums

Checksum treats data as N-bit words and adds N check
bits that are the modulo 2N sum of the words

 EX: Internet 16-bit 1s complement checksum

Properties:

* Improved error detection over parity bits

e Detects bursts up to N errors

« Detects random errors with probability 1-2N

* Vulnerable to systematic errors, e.g., added zeros

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Error Detection — CRCs (1)

Adds bits so that transmitted frame viewed as a polynomial
IS evenly divisible by a generator polynomial

Frame: 1 1 01011111
) Generator: 1 0 0 1 1
Start by addlng 1100001 11 0-=— Quotient (thrown away)
Os to frame —> 10011 ,"l”| 10101 '] 1 1 1580 0 0 =— Frame with four zeros appended
100114 b vt vy
T ! |I| [T
and try dividing 100 T
10011 ¢ vy v 1
0000 T4 v &} & 1|
00000 7Y it 11}
000113} 1o
00000 ¢ 1t i1
001 11 34 10
00000 {4 |||
01111 |1
D000O04 | ||
T1110 11
10011 ¢y v 1!
117010} |
: 100114 !
Offset by any reminder 10010 |
. 100114
tq r_ngke it evenly R
divisible 00000 _
. 1 0 = Remainder
Transmitted frame: 1 1 0 10 1 1 1 1 1 0 0 1 0 =— Frame with four zeros appended

minus remainder

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Error Detection — CRCs (2)

Based on standard polynomials:
« Ex: Ethernet 32-bit CRC is defined by:

1 1 11 [0 |

> g8 . 7 5
2 xMM x0T x? 21

12 26 2 22 ; 2
x4 x? P x4 x4 +x7+x +1

« Computed with simple shift/XOR circuits
Stronger detection than checksums:

 E.g., can detect all double bit errors
* Not vulnerable to systematic errors

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Elementary Data Link Protocols

* Link layer environment »

« Utopian Simplex Protocol »

« Stop-and-Wait Protocol for Error-free channel »
« Stop-and-Wait Protocol for Noisy channel »

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Link layer environment (1)

Commonly implemented as NICs and OS drivers;
network layer (IP) is often OS software

Application

«—— Computer

Operating System

Driver

Network Interface
Card (NIC)

Cable (medium)

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Link layer environment (2)

Link layer protocol implementations use library functions
See code (protocol .h) for more details

Group Library Function Description
from_network _layer(&packet) Take a packet from network layer to send
Network | to_network layer(&packet) Deliver a received packet to network layer
layer enable _network layer() Let network cause “ready” events
disable network layer() Prevent network “ready” events
Physical | from_physical layer(&frame) Get an incoming frame from physical layer
layer to_physical layer(&frame) Pass an outgoing frame to physical layer
wait_for_event(&event) Wait for a packet / frame / timer event
start_timer(seq_nr) Start a countdown timer running
Events & : : :
fimers stop_timer(seq_nr) Stop a countdown timer from running

start_ack_timer()
stop_ack_timer()

Start the ACK countdown timer
Stop the ACK countdown timer

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Utopian Simplex Protocol

An optimistic protocol (p1) to get us started
« Assumes no errors, and receiver as fast as sender
« Considers one-way data transfer

void sender1(void) void receiveri(void)
{ {
frame s; framer;
packet buffer; event type event;
while (true) { while (true) {
from network layer(&buffer); wait for event(&event);
s.info = buffer; from physical layer(&r);
to physical layer(&s); to network layer(&r.info);
} }
} }
Sender loops blasting frames Receiver loops eating frames

« That's it, no error or flow control ...

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Stop-and-Wait — Error-free channel

Protocol (p2) ensures sender can’t outpace receiver:

Receiver returns a dummy frame (ack) when ready
Only one frame out at a time — called stop-and-wait
We added flow control!

‘E’Oid sender2(void) void receiver2(void)
{
frame s; framer, s;
packet buffer; event type event;
event type event; while (true) {
wait for event(&event);
while (true) { from physical layer(&r);
from network layer(&buffer); to network layer(&r.info);
s.info = buffer; to physical layer(&s);
to physical layer(&s); }
wait for event(&event); }
}
}
Sender waits to for ack after Receiver sends ack after passing
passing frame to physical layer frame to network layer

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Stop-and-Wait — Noisy channel (1)

ARQ (Automatic Repeat reQuest) adds error control
* Receiver acks frames that are correctly delivered
« Sender sets timer and resends frame if no ack)

For correctness, frames and acks must be numbered

« Else receiver can't tell retransmission (due to lost
ack or early timer) from new frame

« For stop-and-wait, 2 numbers (1 bit) are sufficient

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Stop-and-Wait — Noisy channel (2)

Sender loop (p3):

void sender3(void) {

seq nr next frame to send;
frame s;

packet buffer;

event type event;

next frame to send = 0;
from network layer(&buffer);
while (true) {

s.info = buffer;

s.seq = next frame to send;

Send frame (or retransmission) ——> to physical layer(&s);

Set timer for retransmission
Wait for ack or timeout

If a good ack then set up for the
next frame to send (else the old
frame will be retransmitted)

}

—> start timer(s.seq);
—> wait for event(&event);

— if (event == frame arrival) {

from physical layer(&s);

if (s.ack == next frame to send){
stop timer(s.ack);
from network layer(&buffer);
inc(next frame to send);

b=

}
}

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Stop-and-Wait — Noisy channel (3)

void receiver3(void)
Receiver | : {
ecelve Oop (p3) seq nr frame expected;
framer, s;
event type event;

frame expected = 0;
while (true) {
wait for event(&event);
Wait for a frame ——> If (event == frame arrival) {
from physical layer(&r):

If it's new then take if (r.seq == frame expected) {
it and advance to network layer(&r.info);
expected frame inc(frame expected);

}

s.ack = 1 — frame expected;

Ack current frame —— _
to physical layer(&s);

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Sliding Window Protocols

Sliding Window concept »
One-bit Sliding Window »
Go-Back-N »

Selective Repeat »

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Sliding Window concept (1)

Sender maintains window of frames it can send
* Needs to buffer them for possible retransmission
 Window advances with next acknowledgements

Receiver maintains window of frames it can receive
* Needs to keep buffer space for arrivals
 \Window advances with in-order arrivals

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Sliding Window concept (2)

A sliding window advancing at the sender and receiver
 EXx: window size is 1, with a 3-bit sequence number.

Sender Bf[\/\'1 62(’11 XD\ 64_2(}?11
S S A A

Receiver X D\ E’-XT _DD\-1 /(z af 21
N

At the start First frame First frame Sender gets
is sent Is received first ack

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Sliding Window concept (3)

Larger windows enable pipelining for efficient link use
« Stop-and-wait (w=1) is inefficient for long links

« Best window (w) depends on bandwidth-delay (BD)
« Wantw 2 2BD+1 to ensure high link utilization

Pipelining leads to different choices for errors/buffering
« We will consider Go-Back-N and Selective Repeat

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

One-Bit Sliding Window (1)

Transfers data in both directions with stop-and-wait
« Piggybacks acks on reverse data frames for efficiency
« Handles transmission errors, flow control, early timers

Each node is sender

and receiver (p4):

Prepare first frame 4{

Launch it, and set timer —-[

void protocold (void) {

seq nr next frame to send;
seq nr frame expected,;
framer, s;

packet buffer;

event type event;

next frame to send = 0;
frame expected = 0;

from network layer(&buffer);
s.info = buffer;

s.seq = next frame to send;
s.ack = 1 — frame expected;
to physical layer(&s);

start timer(s.seq);

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

One-Bit Sliding Window (2)

while (true) {
Wait for frame or timeout —> wait for event(&event);
if (event == frame arrival) {
from physical layer(&r);

: if (r.seq == frame expected) {
Ifa fram.e W'T[h new data to network layer(&r.info);
then deliver it

inc(frame expected);

}

if (r.ack == next frame to send) {
If an ack for last send then ’ stop timer(r.ack);

prepare for next data frame from network layer(&buffer);
inc(next frame to send);

}
- _ }
(Otherwise it was a timeout) s.info = buffer:
s.seq = next frame to send;
Send next data frame or s.ack =1 —frame expected,
retransmit old one; ack —{ to_physical layer(&s);
’ start timer(s.seq);

the last data we received

}

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

One-Bit Sliding Window (3)

Two scenarios show subtle interactions exist in p4-:

— Simultaneous start [right] causes correct but slow operation
compared to normal [left] due to duplicate transmissions.

Asends (0, 1, AD
gets (0, 1, AD)*

)
\\ E

B sends (0, 0, BO)
//

A gets (0, O, BO)®

Asends (1,0, A1) — B gets (1, 0, A1)
ges __1) E R

Agets (1,1, By = B sends (1, 1, B1)
A sends (0, 1, AE}““'--._____ B gets (0, 1, A2)*
Agets (0,0, B2)" = B sends (0, 0, B2)
A sends (1, 0, AS}"“‘*--..__ et (10, A3y

/ B sends (1, 1, B3)

A sends (0, 1, AD) B sends (0, 1, BO)

B gets (0, 1, AD)*
B sends (0, 0, BO)

A gets (0, 1, BO)"
A sends (0, 0, AD)
B gets (0, 0, AD)

B sends (1,0, B1)
A gets (0, 0, BO)
Asends (1,0, Al)
B gets (1, 0, A1)”
B sends (1,1, B1)

NN

Agets (1,0, B1)"
Asends (1,1, Al)
B gets (1, 1, A1)

B sends (0, 1, B2)

Notation is (seq, ack, frame number). Asterisk indicates frame accepted by network layer .

Normal case

Correct, but poor performance

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Go-Back-N (1)

Receiver only accepts/acks frames that arrive in order:
« Discards frames that follow a missing/errored frame
« Sender times out and resends all outstanding frames

- [Imeout interval——

4 6 |7 8

3| |4 5 6| |7 8| |2 3 5
’ NN XX

e,

= T T A

Sk ?E-;f ?E-lf QEH ?Eu ?9; /

Fi /! ! ! /! !

\ / \: \J’ \:" \‘J *r\
E D D D D D D |2

w

0 1 2
X
o
R
Fa
;_;
1 3 4 5 6 7 8

0

b

Error Frames discarded by data link layer

Timg —=

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Go-Back-N (2)

Tradeoff made for Go-Back-N:

« Simple strategy for receiver; needs only 1 frame

 Wastes link bandwidth for errors with large
windows; entire window is retransmitted

Implemented as p5 (see code in book)

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Selective Repeat (1)

Receiver accepts frames anywhere in receive window
« Cumulative ack indicates highest in-order frame

 NAK (negative ack) causes sender retransmission of
a missing frame before a timeout resends window

3

\\Aw \

Error Frames buffered
by data link layer

a8 9 10 14

\\\,,.. AARIRK
A\ \ \ \“’\?\?\‘”

7 100 (11 14

E"

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Selective Repeat (2)

Tradeoff made for Selective Repeat:

* More complex than Go-Back-N due to buffering
at receiver and multiple timers at sender

* More efficient use of link bandwidth as only lost
frames are resent (with low error rates)

Implemented as p6 (see code in book)

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Selective Repeat (3)

For correctness, we require:
« Sequence numbers (s) at least twice the window (w)

Error case (s=8, w=7) — too Correct (s=8, w=4) — enough

few sequence numbers sequence numbers
Sender |0123456(7 |01234568|7 0123/4567[0123/4567

l Originals Retransmits l Originals l Retransmits
\ 4
Receiver |0 12345 6|7 Jf:z:;'«qss 01234567 01234567
0
New receive window overlaps New and old receive window

old — retransmits ambiguous don’t overlap — no ambiguity

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Example Data Link Protocols

* Packet over SONET »
* PPP (Point-to-Point Protocol) »
 ADSL (Asymmetric Digital Subscriber Loop) »

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Packet over SONET

Packet over SONET is the method used to carry IP
packets over SONET optical fiber links

« Uses PPP (Point-to-Point Protocol) for framing

ot | IP packet |
outer P IP i
PPP PPP |jl PPPﬂamelL|
: Y ¥
SONET Optical | soNET [SONET payload |[SONET payload

fiber
' 7

PPP frames may be split

Protocol stacks
over SONET payloads

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Bytes

PPP (1)

PPP (Point-to-Point Protocol) is a general method for
delivering packets across links

Framing uses a flag (Ox7E) and byte stuffing

“‘Unnumbered mode” (connectionless unacknow-
ledged service) is used to carry IP packets

Errors are detected with a checksum

1 1 1 1o0r2 Variable 20r4 1
Fi Add Control R F
ag ress ontro ag
01111110 | 11111111 | 00000011 | I rotoco Payr'road rhedsUm N 19480
R

0x21 for IPv4

IP packet

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

PPP (2)

A link control protocol brings the PPP link up/down

Carrier Both sides Authentication
detected agree on options successful

\/—- ESTABLISH -\—"-}AUTHENTICATE /

Failed

DEAD , NETWORK
I Failed
/; TERMINATE / OPEN \
Carrier Done NCP
dropped configuration

State machine for link control

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

ADSL (1)

Widely used for broadband Internet over local loops
 ADSL runs from modem (customer) to DSLAM (ISP)
* |P packets are sent over PPP and AAL5/ATM (over)

P P DSLAM
DSL |
PPP /mc:dem PPP /{wlth router)
o FC AAL5 AAL5)
Ethernet Link — e
ATM ATM A 3
| niernet
== Ethemnet ADSL Local ™ spsiL
loop N
N s — N,
) \ J
I Y

Customer's home ISP’s office

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

ADSL (2)

PPP data is sent in AALS frames over ATM cells:

 ATM s a link layer that uses short, fixed-size cells
(53 bytes); each cell has a virtual circuit identifier

 AALS5 is a format to send packets over ATM
 PPP frame is converted to a AALS frame (PPPOoA)

Bytes 1o0r2 Variable 0 to 47 2 2 4

PPP protocol PPP payload Pad Unused Length CRC

| |

AALS5 payload \ / AALS trailer

AALS frame is divided into 48 byte pieces, each of
which goes into one ATM cell with 5 header bytes

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

End

Chapter 3

CNS5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

