King Fahd University of
Petroleum & Minerals
Computer Engineering Dept

COE 540 - Computer Networks
Term 112

Dr. Ashraf S. Hasan Mahmoud
Rm 22-420

Ext. 1724

Email. ashraf@kfupm.edu.sa

5/12/2012 Dr. Ashraf S. Hasan Mahmoud

Lecture Contents

1. Transport Layer Services
Elements of Transport Protocols

Congestion Control

The Internet Transport Protocols: UDP and
TCP

ol o

These slides are based on the Tanenbaum’s
textbook and original author slide

5/12/2012 Dr. Ashraf S. Hasan Mahmoud

Transport Layer Services

e Transport layer should provide efficient, reliable, and
cost-effective data transmission service to its users
(processes in the application layer)

e Transport entity — Refer to figure

» Location — OS kernel, library package for network application, or
on the NIC itself

Host 1 Host 2
Application Application
(or session) Application/transport (or session)
layer Transport | interface layer
o~ address Ve
TPDU
Transport 1 .| Transport
entlly Transpo.rt enllty
protocol
L &
Network — haN
address Transport/network
Network layer interface Network layer
5/12/2012 Dr. Ashraf S. Hasan Mahmoud 3

Transport Layer Services —
cont’d

e Types: connection-oriented and connectionless
e Similar to the services provided by the network layer

e Items to think about:

e Would the transport layer provide a connectionless service over
a connection-oriented network layer? Why?

 If the transport layer is providing services similar to those
provided by the network layer — then why do we have two
layers?
e Transport layer may provide extra reliability (end-to-
end) compared to the underlying network

* Transport layer defines standard set of primitive

e Application layer protocols may be developed in isolation of the
underlying network layer

5/12/2012 Dr. Ashraf S. Hasan Mahmoud

Transport Layer Service
Primitives

* Connection-oriented service — provides reliable transport over unreliable
network

Hides all imperfections in terms of lost packets, acks, timers, congestion, etc.
» Connectionless service similar to datagram service provided by network

laye

r

Some applications such as streaming-streaming

* Transport service must be clearly defined and easy to use
Example — 5 primitives defined below

* Allow an application to establish (listen and connect), use (send & receiver), and
release (disconnect) connections

5/12/2012

Primitive Packet sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA packet arrives
DISCONNECT | DISCONNECTION REQ. | This side wants to release the connection

Dr. Ashraf S. Hasan Mahmoud 5

Transport Layer Service
Primitives — cont’'d
* Nesting of segments, packets, and frames

 Transport Protocol Data Unit (TPDU) — used by
older protocols

* Segment — used by TCP and UDP

Frame Packet TPDU
header header header
/ / ~
[4 i ~

Ld el

TPDU payload

Packet payload

- Frame payload
5/12/2012 Dr. Ashraf S. Hasan Mahmoud

Transport Layer Service Primitives
— Client-Server Example

(1) Client does CONNECT call > CONNECTION REQUEST segment
IS sent to server

(2) Server transport entity blocked on a LISTEN call — receives
segment and processes it

Server sends CONNECTION ACCEPTED segment back to client

(3) Data can now be exchanged between client and server
o SEND and RECEIVE calls

Hidden tools (from transport users):

» ACKs for control segments and data segments — managed by transport
entities

e Timers and retransmission

(4) When connection is no longer needed — DISCONNECT primitive

e Asymmetric — one side sends the DISCONNECT segment; when received by
the other side, the entire connection is released

e Symmetric — each direction is closed separately

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 7

Transport Layer Service —
Connection States

e State diagram for

. Connection request Connect primitive
a simple TPDU received DLE executed
connection Rl bl
management i }
scheme ¢
" PASSIVE ACTIVE
* Transitions ESTABLISHMENT ESTABLISHMENT
labeled in italics PENDING PENDING
are caused by ,
packet arrivals i Connect primitive Connection accepted
1 ,
e The solid lines L. executed | corap| ISHED TPDU received
show the client’s
state sequence ;
° The dashed lines Disconnection i Disconnect
show the server’s SASSIVE request TPDU |! primitive ACTIVE
received |}
State Sequence DISCDNNECT S e __" execu.ted - DlSCDNNECT
PENDING PENDING
Packets received :
:
1
]
vt -~ IDLE -
Disconnect Disconnection request
rimitive executed TPDU received

5/12/2012 r. Ashraf S. Hasan Mahmoud 8

Elements of Transport Protocols

e Transport service implemented by “transport protocol” between two
transport entities

» Similar to data link protocols of chapter 3
* Functions: error control, sequencing, flow control, etc.

» What are the core differences between data link protocols and
transport protocols?
e Point-to-point link versus entire network
» Simple (no) addressing versus explicit addressing of destinations
» Trivial connection establishment versus involved
» Storage capacity of the network — delayed/out-of-order/lost segments

» Buffering and flow control — different/more robust mechanisms required at
transport level to handle bandwidth fluctuations, etc.

| Elements: Addressing, Connection Establishment, Connection
Release, Error Control and Flow Control, Multiplexing, Crash
Recovery

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 9

Elements of Transport Protocols -
Addressing

* Transport Service Access Point (TSAP)
* Required for both connection-oriented or connectionless services

» Application processes can attach themselves to a local TSAP

Example — Mail Server

1. Mail server on Host 2 listens to TSAP
1522

2. Application process on Host 1 uses
TSAP 1208 to establish connection to
mail server (dst TSAP is 1522)

3. Application process on Host 1 sends
mail message to mail server on Host
2

4, Mail server on Host 2 accepts mail
message

5. Transport connection released

5/12/2012

to establish a connection to a remote TSAP

Host 1

Application
process

?‘?P 1208

7

Transport
connection

/

NSAP

- o o

Application
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

Host 2

Server 1

Server 2

I

AN

L)
TSAP ‘1522‘\‘

!

TSAP1836

»
LY

AN

NSAP

L
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
[}

‘ 10

Elements of Transport Protocols -
Addressing - cont’'d

the TSAP for the mail server?

e Stored at /etc/services of UNIXX and/or use
well know ports (TCP port 25 for mail)

e What about the case of thousands of newly
developed services?

portmapper - users sets up

connection to portmapper service

(listens to well-known TSAP) and

obtains the target TSAP for the desiredLayer
service

New service must register with
portmapper

Similar to directory assistance

e Initial connection protocol — process server

5/12/2012

On UNIX — called /netd.

Gets initial request, spawns the
requested server (e.g. mail server) and
allows it to inherit the connection

Valid when servers can be created on
demand!

Host 1

Host2

Host 1

How does a user process (e.g. the mail client) know

Host 2

Process
Server

Process
Server

Mail
server

TSAP

1)

i

)

)]
(
J

1)

g
)]

<

(@)

Dr. Ashraf S. Hasan Mahmoud

11

Elements of Transport Protocols -
Connection Establishment

e Core problem in transport — packets get duplicated and delayed
» Should not be thought of as new packets

e Solutions:

» Throw away addresses — makes it very hard to connect to services in the
first place!

» Connection identifiers table used by the peers to distinguish valid from
obsolete ones — what to do in case of machine crash? Where to start from?

» Packet lifetime: e.g. restricted network design, hop counter, time stamp,
etc.
e Need to guarantee that delay duplicate data packet and their
corresponding ACKs are dead after some time
» Maximum packet life time — 120 sec for the Internet
e Select T = small multiple of 120 sec — multiple is protocol dependent;
makes T larger!
o If we wait T sec after sending a packet > we are certain that all
traces of it are gone
5/12/2012 Dr. Ashraf S. Hasan Mahmoud 12

Elements of Transport Protocols -
Connection Establishment - cont’d

e Solution used for TCP

e Tis defined for the network

* (1) Use sequence #s for sent segments
e Reused only after T seconds
e Only one packet with a given sequence number may be outstanding at any given time

e To handle machine losing memory after a crash — force machine to wait T second
e Sender can then start fresh from any sequence number

e Whatif T is large? recover at t = 70
cannot use this range

e (2) Equip hosts with time-of-the-day clock (form of binary T
counter incremented in uniform intervals) " ~——=
e Number of bits in clock >= or bits in sequence number S 120 / o y
e Clock continues to run even if host is down g @bb:
e Use first k-bits of clock as initial sequence number § - (‘?ﬁo
 Sequence space should be /arge to prevent wrapping before T | 8 -4
e Example (a) if host crashes and restarts at t = 70 seconds 8 |eo = o Restart ot
7] crash with 70
e Itis will use initial sequence number based on clock (70 or > Sending too
higher) much too fast
 Host cannot start with lower sequence numbers in the forbidden | N i I O
region 0O 30 60 90 120 150 180
Time

5/12/2012 Dr. Ashraf S. Hasan Mahmoud (a)

Elements of Transport Protocols -
Connection Establishment - cont’d

How can a host enter the forbidden region of sequence numbers?
(1) Host sends too much data too fast on a newly opened

connection

* Sequence # versus time curve rises too quickly — enters the forbidden

region from below

e Solution — maximum rate = one segment per clock tick!
* Host also waits for at least one clock tick if recovering from a crash

Use fast clock — there is a limit to how fast the clock can tick!

Let C — clock rate, S — sequence
number space size, T — lifetime

Then from geometry S/C must be
greaterthan TorC<=Tx S

e Otherwise, sequence space will run
out very quickly!

5/12/2012 Dr. Ashraf S. Hasan Mahmoud

Sequence numbers

)
>

80
70
60

0
0

L] |
y 5 Y
S actual sequence
FE
<O numbers used

@

Restart after
crash with 70
Sending too
many too fast

30 60 90 120 150 180
Time

(a) 14

Elements of Transport Protocols -
Connection Establishment - cont’d

 How can a host enter the forbidden region of sequence
numbers?

e (2) Host sends data slowly on a newly opened connection
(slower than one segment per clock tick!)

e Actual sequence numbers used curve (versus time) will enter the
forbidden region from the left.

e This limits the minimum send rate on the connection!!
* Or how long the connection may last 2K 1

Sequence #
wrapping

Sequence numbers

Actual sequence
numbers used

5/12/2012 Dr. Ashraf S. Hasan Mahm Time
(b)

Elements of Transport Protocols -
Connection Establishment — Three-Way
Handshake

Clock-based method solves the problem of not being able to
distinguish delayed duplicate segments from new ones

Problem: Sequence numbers are not remembered at the
destination — How would a receiver know that this
CONNECTION REQUEST segment of an initial sequence
number is not a duplicate?

Solution: 7hree-way handshake protocol st Host 2
Why doesn't this problem occur during the connection? %\‘
» Note that during the connection the sliding window
protocol will remember the current (used) sequence X =D
numbers E 007 P
The above issue is for the initiall CONNECTION REQUEST i pot S
segment J
e Assumption — Destination does not remember OAT4 (seq <
sequence numbers between connections - AC;\»:”
case (a)

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 16

Elements of Transport Protocols -
Connection Establishment — Three-Way
Handshake - cont’d

» Three-way handshake in the presence of delayed duplicate control
segments

o Case (b)
* (Case (c) — worst case scenario

* No combination of old segments that can cause the protocol to fail and
have a connection set up by accident when no host wants it.

Host 1 Host 2
Host’ . ost 2 Delayed duplicate of CR Delayed duplicate of
Old duplicate CR appears at %\ CR appears at
CR (seq Host 2 Old duplicate Host 2

N
Host 2 checks with

Host 1 to see if indeed a
new connection is
required

Host 2 checks with
Host 1 to see if indeed
a hew connection is
required — suggests y
as a sequence #

Host 2 receives ACK z
=>» Host 2 knows this

REy Host 1 rejects and Host RE JE is delayed duplicate
cr (ACK = y) 2 does not open new Crmck -
connection) Host 1 rejects new
case (c)

case (b) connection as before

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 17

Elements of Transport Protocols -
Connection Establishment - TCP Three-
Way Handshake

o TCP uses three-way handshake protocol to establish
connections

o Time-stamp to extend the 32-bit sequence number

e Will not wrap within the maximum packet lifetime even for
gigabit/sec connections

e RFC 1323 describes Protection Against Wrapped
Sequence Numbers (PAWS)

e TCP used the clock-based sequence number initially

o Attacker can easily predict the next initial sequence number and
send packets to trick the three-way handshake procedure

o Currently, pseudorandom initial sequence numbers are used
for connections in practice.

e Forbidden region problem still applicable.

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 18

Elements of Transport Protocols -

Connection Release

e Connection release — symmetric versus asymmetric
o Asymmetric release is abrupt and may lead to data loss (as

shown in Figure)

e Host 2 issues DISCONNECT before the second data segment arrives

e Solution — use symmetric release

e Each direction is released independently —
A host can continue to receive data after
it has sent a DISCONNECT segment.

e Works well ONLY if each side has FIXED
amount of data and CLEARLY KNOWS
when it has sent it!

e What to do?

5/12/2012 Dr. Ashraf S. Hasan Mahmoud

@
£
=

Host 1

pCK

DATA
DR e

No data are
delivered after
a disconnect

request

— .

DATA

Host 2

19

Elements of Transport Protocols -
Connection Release - The Two-Army
Problem

* Consider the two-army-problem

» White army can defeat each of the blue armies individually. The two blue armies can
defeat the white army if they join forces

* The blue armies want to synchronize attacks and their only communication medium is
to send messengers on foot into the valley where they might be captured or lost

o Is there a protocol that will allow the blue armies to win?

e Run 1: Bl (Time) > B2; B2 agrees Blue
and sends ACK; B2 (ACK) - B1

e Will B2 charge? Probably not
— B2 has no way of knowing
that ACK has been received at
B1!

e Run 2 (using three-way handshake)
— The initiator of the original
proposal must acknowledge the
response

e B2 will get his ACK — but Bl is

now sure that his ACK has _
been received? It can be proven that now protocol exists that would solve the two-

army problem - Proof in textbook — important!!

.@ White army

e Run 3 (using four-way handshake)

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 20

Elements of Transport Protocols -
Connection Release - cont’d

* Normal case — three-way handshake
» Timers associated with DISCONNECT REQUEST
o Connection released when Host 2 receives ACK

(@) normal case

Host 1 Host 2
Send DR -—=_ﬁ_______DR
+ start timer T
Send DR
pR__—1* start timer
-____‘_'_,_4—'-'_'-
Release |«
connection
Send ACK h—u________ACK
= Release
connection
5/12/2012 Dr. Ashraf S. Hasan Mahmoud 21

Elements of Transport Protocols -
Connection Release - cont’d

e Final ACK sent from Host 1 to Host 2 is lost
e Timer at Host 2 expires =» connection released

anyway

5/12/2012

Dr. Ashraf S. Hasan Mahmoud

(b) final ACK lost case

Host 1

Send DR |-

+ start timer

Release
connection

Send ACK

DR

—

T _H""‘W'ZT_

= Lost

Ly

Host 2

Send DR

~| + start timer

]
(Timeout)
release
cond&ction

Elements of Transport Protocols -

Connection Release - cont’'d

o Second DISCONNECT REQUEST lost
e Host 1 will NOT receive the expected response!

e Timer at Host 1 expires =» Restarts all over
e Re-send DISCONNECT REQUEST

5/12/2012

(c) 2" DR lost case

Host 1

Dr. Ashraf S. Hasan Mahmoud

Send DR |—

+ start timer

(Timeout)

send DR |

+ start timer

Release
connection

Send ACK |

Host 2
D
R Send DR &
WA ‘_j. —| start timer
= Lost <
L
_ DR
———___ | Send DR &
DE; | starttimer
.-t""f--_
— AC
=—~i-{ | Release
cc:-Qrgectic:-n

Elements of Transport Protocols -
Connection Release - cont’d

e Response DISCONNECT REQUEST from Host 2 and subsequent
DISCONNECT REQUESTSs from Host 1 are lost

e Host 2 times out and releases connection

 Host 1 will try N times and after N timeouts it will release the

connection

» Host 2 times out well before Host 1
(diagram not to scale!!)

* What if one DISCONNECT REQUEST
from Host 1 makes it to Host 2 after
Host 2 has timed out?

5/12/2012 Dr. Ashraf S. Hasan Mahmo

(d) Response lost and
subsequent DRs lost case

Host 1

Send DR [—

+ start timer

[B N E K X |

‘“\}f A

lostZ =

.fia;,q/\ Y

(Timeout) |

send DR
+ start timer

| E X X N N |

(N Timeouts)
release
connection

DR

i

Host 2

Send DR &

—| start timer

(Timeout)
release
connection

Elements of Transport Protocols -
Connection Release - cont’d

Is it possible for the previous protocol to fail?

Yes — If initial DISCONNECT REQUEST and N retransmissions from Host 1 all fail
e Host 1 will release connection while Host 2 still thinks connection is active!
e Half-open connection

Solution (to half-open connection)

e Force Host 1 to get a response (i.e. N = infinity)

e Butif Host 2 is allowed to time-out, then indeed Host 1 will keep sending DRs for ever!

e If Host 2 is NOT allowed to time-out, the protocol hangs (in case (d))
Modified solution (for half-open connection) — if no segment arrives within X seconds, close
connection

o If one side disconnects - no segments sent = receiver closes connection

e Also if connection is broken (without either end disconnecting) = situation resolved by both sides
closing the connection

e Each host must make sure that inter-segment time is less than the chosen threshold
¢ Send dummy segments when no data segment are available to keep the connection alive
What if automatic disconnect is employed and too many dummy segments get lost?
e First one side will disconnect — then the other

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 25

Elements of Transport Protocols -
Connection Release - cont’d

e Conclusion — Releasing connection without data loss is NOT a simple
problem!!

e The transport user must determine when to disconnect
* Any solution based on the transport entities themselves is not perfect

e Example 1: TCP (normal case)

* Symmetric close — each side sends a FIN segment to close its half of the
connection

e Example 2: Web server

* Web server sends RTS (warning) packet to client; causes abrupt close of
connection

o Server knows the traffic pattern and knows that all what need to be sent on this
connection has already been sent

» Server closes connections

o If client receives the warning it closes the connection; if it does not, it times
out and closes the connection eventually!

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 26

Elements of Transport Protocols -
Error Control and Flow Control

e Managing connections while they are in use

e Error control (EC) — ensuring that all data is delivered
reliably

* Flow control (FC) — preventing sender from
overwhelming receiver

e EC and FC are also functions at the data link layer
e EC - CRC plus ARQ
e FC - stop-and-wait and sliding window protocols
 Why have the same function again on transport layer?
» Differences in function and degree — refer to textbook discussion

e The end-to-end argument and bandwidth-delay product
perspective

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 27

Elements of Transport Protocols — Error
Control and Flow Control — Buffering of
Data

» Transport layer generally may deploy a sliding window
protocol — needs to buffer data
e For each on going connection

e Sender must buffer sent but not yet acked segments

e Receiver may or may not buffer
e Receiver may drop a segment if buffer is not available since
sender is prepared to retransmit!
 What is the best trade-off between buffering at sender
and buffering at receiver? Depends on type of traffic

» Low bandwidth bursty traffic (e.g. terminal) — dynamic buffer
(not pre-reserved) — rely on buffering at sender

» High bandwidth traffic (e.g. file transfer) — dedicated buffers at
receiver — allow data to flow at maximum speed

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 28

Elements of Transport Protocols — Error
Control and Flow Control - Buffering of
Data — cont’d

* How to organize the buffer pool?
» Three possible strategies are shown below

* (a) — Simple — but will have problems if segment sizes differ widely; may
lead to low memory utilization

o (b) — better memory utilization — complex buffer management

* (c) —good memory utilization especially when connections are heavily
loaded }
TPDU 1

~ TPDU 2

}-TPDU3

\

(a) (b)
> TPDU 4

Unused
space

(a) Chained fixed-size buffers
(b) Chained variable-sized buffers N
(c) One large circular buffer per connection

(c)
5/12/2012 Dr. Ashraf S. Hasan Mahmoud 29

Elements of Transport Protocols — Error
Control and Flow Control — Buffering of
Data — cont’d

e Transport protocol should allow a sending host to
request buffer space from receiver (i.e. dynamic buffer
allocation)

» Buffers may be allocated: collectively or per connection

e General steps:
e Sender request certain number of buffer (based on expectation)
e Receiver grants as many as it can afford

e Every time sender sends a segment, it decrements from
allocated buffer; stops when it reaches zero

e Receiver piggybacks acks and buffer allocations onto reverse
traffic
* The above policy is used by TCP

» Allocated buffer space — WindowsSize field in TCP segment

header
5/12/2012 Dr. Ashraf S. Hasan Mahmoud 30

Elements of Transport Protocols — Error
Control and Flow Control - Buffering of
Data — cont’d

Flow of data
segments from
Host A to Host B

Flow of ACKs and
buffer allocations
from Bto A

Line 10 — B acks
all segments but
freezes A

Line 16 — if buffer
allocation
segment is lost >
deadlock

e To prevent —
control
segments may
be sent
periodically!

5/12/2012

Example — Datagram network with 4-bit sequence numbers

0~ O kW N =

—% % & & & & &
o o Pk WM = O Ww

Message

—= < request 8 buffers>
- <ack = 15, buf = 4>
—= <seq =0, data = m0>

— <seq =1, data=m1l>
—= <seq = 2, data = m2>
-— <ack =1, buf = 3>
—= <seq = 3, data = m3>
— <seq = 4, data = m4>
—> <seq = 2, data = m2>
-— <ack = 4, buf = 0>
-~ <ack =4, buf=1>
-~ <ack =4, buf = 2>
—= <seq = 5, data = m5>
— <seq = 6, data = mé>

-— <ack =6, buf=0>

* <ack =6, buf= 4=

Comments

A wants 8 buffers

B grants messages 0-3 only

A has 3 buffers left now

A has 2 buffers left now

Message lost but A thinks it has 1 left
B acknowledges 0 and 1, permits 2-4
A has 1 buffer left

A has 0 buffers left, and must stop

A times out and retransmits
Everything acknowledged, but A still blocked
A may now send 5

B found a new buffer somewhere

A has 1 buffer left

A'is now blocked again

A is still blocked

Potential deadlock

Dr. Ashraf S. Hasan Mahmoud

31

Elements of Transport Protocols — Error
Control and Flow Control — Buffering of
Data — cont’d

* The previous material assumes memory space is
premium and thus buffer space limits the maximum flow

» Nowadays, memory space is not that expensive — can afford to
allocated large (if not huge) buffer spaces

e Another bottleneck — The network bandwidth

e Sender should not send more than the carrying capacity of the
network = congestion

e We need a mechanism to limit the sender rate based on
the network bandwidth (not the receiver buffer only)

e Dynamic sliding window at sender can implement both: flow
control and congestion control

e Network capacity — c segments/sec; round trip time = r
seconds =» Sender window should ¢ X r - segments

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 32

Elements of Transport Protocols -
Multiplexing

e Multiplexing — several transport connections are carried over one
network connection

e TCP uses single network connection
» Inverse multiplexing — several network connections exist

» May be used for load balancing or bandwidth expansion

e Stream Control Transmission Protocol (SCTP) is a transport protocol that is
able to operate over multiple network connections TTSW address

Layer _ _ _
- " - Network
/ address

L

Router lines

To router
(a) (b)
(a) Multiplexing. (b) Inverse multiplexing.

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 33

Elements of Transport Protocols -
Crash Recovery

» Recovery from network and router crashes is trivial IF transport entity resides entirely at
the end host system
e Transport protocol expects lost segments
 What is the case when hosts crash?
* Would a client be able to continue to work if the server crashes and quickly reboots?
» Consider the client-server scenario shown in Figure.
e Assuming no simultaneous (i.e. A and W) events

Strategy used by receiving host

° Assuming stop-and-wait _ First ACK, then write B First write, then ACK
o Six different combinations Strategy used by
° (A) — Acknowledge sending host AC(W) AWC C(AW) C(WA) W AC WC(A)
(W) - write segment Always retransmit oK | Dup OK OK DUP | DUP
to application
o (C) — crash Never retransmit LOST OK LOST LOST OK OK

o Client states: SO — no

. Retransmitin S0 OK DUP LOST LOST DUP OK

segment outstanding, S1 —

segment outstanding Retransmit in S1 LOST OK OK OK oK DUP
. Four different strategies for

client . OK = Protocol functions correctly
° For any strategy — there exist DUP = Protocol generates a duplicate message

a sequence of events at LOST = Protocol loses a message

server that makes the

protocol fail! Different combinations of client and server strategy

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 34

Elements of Transport Protocols -
Crash Recovery - cont’'d

» Recovery from a layer N crash can only be done by
layer N+1

e Only if higher layer retains enough information to
reconstruct

e In light of the previous example — what does
receiving an end-to-end ack mean?

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 35

Congestion Control

Focus — congestion control mechanism at the
transport layer

Goals of the congestion control

How can hosts regulate the rate at which they
send packets into the network

The Internet relies heavily on the transport
layer congestion control and the specific
algorithms built into the TCP

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 36

Desirable Bandwidth Allocation

* Find a good allocation of network bandwidth
» Deliver good performance; uses all available bandwidth
* Avoid congestion
e Fair amongst competing transport entities

o Refer to Goodput/load versus load curves
» Onset of congestion occurs well before maximum capacity is reached

» Practical range — just before the delay starts to climb rapidly

* A new performance metric A A
— POWer o | Capacity
power = load / delay 2 0 G(?n”g*"’:s‘{i"gn
- Power will initially rise £ "\ Desired 8 o
with offered load, will & response 2
reach a maximumand 3 !\COHG@S“C'" g |~
falls as delay grows g collapse 1 practical
rapidly G . range .
o Efficient load €-> max Offered load (packets/sec) Offered load (packets/sec)
power

(a) (b)
5/12/2012 Dr. Ashraf S. Hasan Mahmoud 37

Max-Min Falirness

e Three considerations:

1. How is allocated portions of BW related to congestion control —
reservations versus getting available BW

2. What fair portion to allocate for flows?

3. Level over which to consider fairness?

e Per host, per connection
* WFQ

e The next two slides elaborate on fairness issue

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 38

Max-Min Fairness — cont’'d

How to divide bandwidth (BW) amongst different transport senders?

Max-Min Fairness — an allocation is max-min fair if the BW given to one flow can not be
increased without decreasing the BW of another flow with an allocation that is no larger
e i.e. increasing the BW of one flow will make the situation worse for flows that are already at a

disadvantage
* Example — Max-Min BW allocation for four flows
e Flows—-A,B,C,and D
e All links have same capacity — 1 unit
e Three flows (B, C, and D) compete for link R4-R5 — 1/3 is allocated for each flow
e On link R2-R3, flow A gets remaining 2/3 capacity

e Links R1-R2 and R5-R6 J—
have spare capacity w
e Cannot be used to R1

increase the allocation
of any flow without B

decreasing the \ - 1/3 1/3
allocation of another C e \

lower flow =
The allocation is max-min D /\@,/

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 39

2/3 . 2/3 _

1/3 R3 B

1/3 = ad C
1/3

Max-Min Fairness — cont’'d

 How to compute max-min allocations?

e Any suggestions?
» Refer to textbook pages 551 and 552

» At what level to consider fairness — no clear
dNSWeErs
e Connection
» Connections between a pair of hosts
o All connections per host

5/12/2012 Dr. Ashraf S. Hasan Mahmoud

40

Congestion Control - Convergence

e Criterion — congestion control algorithm should converge quickly to
a fair and efficient allocation of BW

e Example — change of BW allocations with time

e Bottom line:

o Total allocated BW is approximately 100%
» Competing flows get equal treatment — but not more than what they need!

5/12/2012

A
1
5
= N
E Flow 1
=
ey
% 0-5 T 1 Flow 2 st
—_ o b — ow 2 stops
© l*\ |
§ || Flow 2 starts {‘J
i ¢ Flow 3 starts ,
0 i { | -
1 4 9
Time (secs)
Changing bandwidth allocation over time
Dr. Ashraf S. Hasan Mahmoud 41

Regulating the Sending Rate

* Sending rate limited by
e Flow control — variable-sized window at receiver
e Congestion control

* How to infer the problem occurring on the connection
e Network layer provides feedback — why type?
e Explicit versus implicit?
e Precise versus imprecise?
o Refer to example congestion control protocol shown in Table
e XCP - router informs source the rate at which it may send
e TCP with ECN — routers set bits to indicate congestion — reduction by how much?
e Fast TCP — depends on round-trip time (RTT) as an indication of congestion
e TCP with drop-tail or RED (e.g. CUBIC TCP) — loss of packets indicate congestion

e Compound TCP — uses both Protocol Signal Explicit? | Precise?
packet loss and delay as XCP Rate to use Yes Yes
feedback S|.gnals _ TCP with ECN | Congestion warning Yes No

e Based on signals given =
Control Law used to adjust FAST TCP End-to-end delay No Yes
how much is sent by CUBIC TCP Packet loss No No
senders TCP Packet loss No No

5/12/2012

User 2’s allocation

Additive Increase Multiplicative
Decrease (AIMD)

e AIMD is the control law used by TCP

* Fairness line — Efficiency line

e Additive increase additive decrease

e Multiplicative increase multiplicative decrease

e Optimal operating point

e AIMD = slowly increase BW allocation and aggressive decrease policy

Fairness line

|“‘ "".r’ ‘-—.
~ Legend:
1.‘“ J‘!_,z
L r

= Additive increase
/ (up at 45°)

/ = Multiplicative decrease

- \‘+-\ . .
. Optimal point : _ -
(line points to origin)

Efficiency line

N,
‘\-
,
-,
s\\‘
o R
it N ‘—J
-
iy *
N

| s -
User 1’'s allocation
5/12/2012 Dr. Ashraf S. Hasan Mahmoud 43

Additive Increase Multiplicative
Decrease (AIMD) - cont’d

e TCP connections adjust their window sizes every
RTT?
e Favors connections with small RTT
o TCP adjust the window size (W) - during RTT =» sender
rate = W/RTT
e This is combined with flow control

» Therefore, can slow down in one RTT or stop is it stops
getting ACKs from receiver

e TCP-friendly congestion control — TCP and non-TCP
transport protocols can be used on same network

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 44

Wireless Issues

e Transport protocols (such as TCP) should be

independent of the underlying network and link
layer technologies

e Two problems:

e (1) Interpretation of lost packets:

» TCP - interprets packet loss as an indication of congestion,

while on wireless links packet loss is often due to signal
fades

» (2) variable capacity of wireless links (variable SNR)!

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 45

Wireless Issues - cont’d

» Possible solution to problem (1): Mask losses on the
wireless link using retransmission before reporting to
upper layer

» Time scale — retransmissions scale of milliseconds; Congestion
control scale of seconds

e Does this work for links with long round-trip times?
e Use FEC
e Possible solution to problem (2): ignore it!

» Congestion control algorithm handles the case of new

connection coming into the network or existing users changing
their sending rates

A third solution is to design a specific transport protocol

for wireless media — pros and cons?
5/12/2012 Dr. Ashraf S. Hasan Mahmoud 46

The Internet Transport Protocol:
UDP

e User datagram protocol (UDP) — connectionless transport protocol
» Applications send IP datagrams without establishing a connection

» Functions not included in UDP: flow control, congestion control, and
retransmissions

e Functions in UDP: interface to IP layer, feature of demultiplexing
multiple process using the ports, and optional error-detection

* Provides application with precise (all) control over the packet flow!
» Simplifies development for client-server programming

e Used by application protocols such DNS and client-server RPC, real-
time multimedia

- 32 Bits -

Source port Destination port

UDP length UDP checksum

The UDP header
5/12/2012 Dr. Ashraf S. Hasan Mahmoud 47

Real-Time Transport Protocol (RTP)

» Real-Time Transport Protocol (RTP) — for transporting audio and video data
packets

* Runs in space user over UDP — a generic transport protocol that happens to
be implemented in the application layer

e Basic function — to multiplex several real-time data streams on to a single
stream of UDP packets
* Unicast — to single destination
e Multicast — to multiple destinations

» No special guarantees for any QoS parameter!

Ethernet IP UDP RTP
User Multimedia application header header header header
space | | RTP
Socket interface RTP payload
UDP
0S
Kernel IP ~—— UDP payload ———
Ethernet -« |Ppayload —— =
- Ethernet payload >

(a) (b)

(a) The position of RTP in the protocol stack. (b) Packet nesting.
5/12/2012 Dr. Ashraf S. Hasan Mahmoud 48

RTP - Features and Header Format

* Sequence no incremented on a stream-basis; dst can identify lost packets
— application decides best course of action
* Retransmission, replay, interpolate, etc.
* Defines profiles (e.g. single audio stream) — each profile allows multiple

encoding schemes.

» Payload may contain multiple samples — coded (e.g. 8-bit PCM, GSM encoding, MP3
encoding, etc.)

* Timestamping — relative (to first sample) effect:
» Utilized in buffering and jitter reduction
* May be used to synchronize amongst different streams

32 bits

e 3 32-bit words header with potential extensions

« Fields: Ver, P (padding), X (header extended), CC |~ 71" =% "] "esdvee Seauence numeer
(contributing sources), M (application specific mark Timestamp
blt) Synchreonization source identifier

e Payload Type: coding algorithm
e Sequence number

e Synch source identifier — used to identify the ! Contributing source identifier |
stream the packet belongsto ... === @+—7--+-—+7 - -—H———-———
The RTP header format.

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 49

The Real-Time Transport Control
Protocol: RTCP

Handles feedback, synchronization, and user
interface

Not used for transporting any media samples

Feedback may be used by src to adapt encoding
algorithm to network status

e PayloadType — is used always to tell encoding format for
the sample

RTCP also handles interstream synchronization
Provides a method for naming sources in ASCII text

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 50

Playback with Buffering and Jitter
Control

Jitter — variation in delay
Causes distracting media artifacts

Solution — buffer packets at dst before playback — Refer to example below
» Packets buffered for t = 10 sec
e Packet 8 arrives late!

Deciding on the playback point
» Depends on the severity of the jitter

 The M bit may be used by the application to compute playback points between
talkspurts

Packet depats souce @
Packet arrives at buffer E
Packet removed from buffer I— Time in buffer —B @ 8

< Gap in phyback
| 1 1 | 1 1 | 1 1 | 1 1 1 | 1 |

0 5 10 15 20
Time (sec)

playback
5/12/2012 Dr. Ashraf S. Hasan Mahmoud point 51

Playback with Buffering and Jitter
Control - cont’'d

o If playback point is too far to live applications, then

» Application may have to accept larger fraction of packets
being delayed (not available when playback is occurring)

* Provide a better network capable of providing better QoS —
e.g. expedited forwarding diffServ

Fraction of packets

*J &ow jitter

Minimum Delay > Delay
delay

S(:::dtc;f High jitter Low jitter
light)

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 52

Transport Control Protocol (TCP) -

Introduction

o Defined in 1981 — RFC 793; extended and refined several times (RFC 1122, RFC 1323, RFC
2018, RFC 2581, RFC 2988, RFC 3168, and RFC 4614)

e TCP transport entity

e Manages TCP streams and interfaces to the IP layer
* Accepts user data from application, breaks them to pieces not exceeding 64KB, and sends each

piece as a separate IP packet
 TCP Service Model

e Sockets = IP address + 16-bit port number (or TSAP)

e More than one connection
may terminate at the same
socket

e Connections are identified
by the socket identifiers at
both ends: (socketl,
socket?)

* Well-known ports — ports
below 1024 reserved for
standard services

5/12/2012

Port | Protocol Use
20, 21 FTP File transfer

22 | SSH Remote login, replacement for Telnet
25 | SMTP Email
80 | HTTP World Wide Web

110 | POP-3 Remote email access

143 | IMAP Remote email access

443 | HTTPS Secure Web (HTTP over SSL/TLS)

943 | RTSP Media player control

631 | IPP Printer sharing

Dr. Ashraf S. Hasan Mahmoud

53

Transport Control Protocol (TCP) —
Introduction - cont’d

o ALL TCP connections are FULL-DUPLEX and point-to-point
o TCP DOES NOT support multicasting or broadcasting

e A TCP connection is a byte stream — not message stream!
* Message boundaries are NOT PRESERVED end-to-end

» Example — four 512 Bytes chunks are written by the application to a
TCP stream — they may be delivered to receiving process as four
512 Bytes chunks, two 1024 Bytes chunks, or one 2048 Bytes
chunk.

* “There is no way for the receiver to detect the unit(s) in which the
data were written”

IP header \ / TCP header

e TCP may send data
immediately or buffer it || s B c D AB CD

» Uses of PUSH flag
(a) (b)

\ n
and urgent data (a) Four 512-byte segments sent as separate IP diagrams
(b) The 2048 bytes of data delivered to the application in a single READ call

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 54

TCP Segment and Segment Header

Byte sequence numbers carried for:
e Sliding window position in one directions, and
e Acknowledgments in the reverse direction
Sending and receiving TCP entities exchange “segments”
e 20-Bytes header (plus optional part), and
e Zero or more data bytes
Two limits:
e TCP header plus data must fit in 65,515 byte IP payload

e Maximum Transfer Unit (MTU) for link — to avoid fragmented packets
e E.g. 1500 Bytes for Ethernet

Path MTU discovery — to avoid fragmenting IP packets; utilizes ICMP to find smallest MTU
on the path
Basic protocol — sliding window with a dynamic (i.e. variable) window size
1. Start a timer when segment is sent
2. Dst sends back ACK
3. Src resends segment is timer goes off before ACK is received
Potential problems:
1. Segments may arrive out of order — can not immediately send ACK!

2. Segments may be delayed leading to retransmissions from src; retransmission may include
different byte ranges = required careful administration

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 55

TCP Segment and Segment Header
- cont’d

* Fixed 20-bytes header
e Maximum of 65,515 — 20 = 65,495 bytes data
* Source port and destination port — define the two ends of the connection

» Connection identifier — 5 tuple: protocol (TCP), src IP and port, dst IP and
port.

* Sequence no and ACK no — flow and error control
e TCP uses cumulative acknowledgments

e TCP header length — to support variable length~Options™ ==

® Elg ht 1 blt ﬂagS Source port Destination port

CWR and ECE — used to signal congestion when ECN

is used Sequence number

J URG — urgent pointer from current sequence # to Acknowledgement number
urgent data
TCP

S|F
Y1 Window size
N|N

e ACK - ACK no is valid — default case for nearly all header
packets length

D=0

E
C
E

[=
=~0¥F
Iwo
— W0

° PSH — pUShEd data Checksum Urgent pointer

J RST - reset connection, reject invalid segment, or

refuse connection open Options (0 or more 32-bit words)

o SYN — to establish connection
o FIN — to terminate connection

Data (optional)

i

i

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 56

TCP Segment and Segment Header

- cont’'d
e Window size — sliding window size used for flow control
* Options —
1. Maximum Segment Size (MSS) — All Internet hosts are required to

5/12/2012

accept TCP segments of 536 + 20 = 556 Bytes

Window scale option — shift window size field by up to 14 bits to
the left = window up to 2(16+14) = 230 Bytes!

Timestamp option —
e Enables sender to estimate RTT

» Used to extend the 32-bit sequence numbers — PAWS scheme discards
arriving packets with old timestamps to prevent confusing between old and
new data due to sequence no wrapping.

Selective Acknowledgment (SACK) — Allows receiver to inform
sender of ranges of sequence numbers it has received
» Used after a packet is lost but subsequent (or duplicate) data has arrived

Dr. Ashraf S. Hasan Mahmoud 57

TCP Connection Establishment

e Three-way handshake protocol — as explained in previous slides
e Server waits for incoming call: LISTEN and ACCEPT primitives

» C(lients issue connection request

» Specifies dst IP-port, MSS, some optional data (e.g. password)

e CONNECT primitive sends a TCP segment with SYN bit on and ACK bit off
and waits for response

Host 1 Host 2 Host 1 Host 2

(a) TCP connection o
establishment in the normal Q=g
case.

* Note that SYN segment

- A
consumes one byte of . L (EEO=Y ack=x+ Y
sequence space! J

(b) Simultaneous connection
establishment on both sides. o

. . Q=
- The result is ONE connection w\m*"ww\b

opened since it is defined by
the two end points.

Time

(a) (b)
5/12/2012 Dr. Ashraf S. Hasan Mahmoud 58

TCP Connection Establishment -
cont’d

e Initial sequence number cycles slowly

e Clock-based scheme — clock tick = 4
microseconds

 SYN flood attack — half open connections!

e Solution — SYN cookies — host chooses a
cryptographically generated seq no and puts in
the outgoing segment and forgets it

o If it receives an ACK (seq + 1), it can regenerate the
same seq no (same input: other host IP/port
addresses, local secret, etc.)

e Host is able to check whether an
acknowledgement seq no is valid without having
to remember it!

e More details available on:
http://en.wikipedia.org/wiki/SYN cookies

SYN

W

SYN-ACK

SYN

M'\J m B@

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 59

TCP Connection Release

e Full-duplex = pair of simplex
connections closing —(1)
e Each released independently

e TCP segment with FIN bit set (2

e Four segments are needed (as (3)_~{closing
shown) to close connections P
e (2) and (3) may be combined
e Two-army problem
» Timers are set when FIN is sent

o If response does not come in twice
maximum packet lifetime, the sender of
the FIN releases connection

e Other side will notice after some time
and time out (and release connection
too)

d wait

closed

Q. time

close

Figure from Kurose’s textbook.

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 60

TCP Connection Management Modeling (1)

State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED | The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to release
TIME WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

The states used in the TCP connection
management finite state machine.

Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

TCP Connection Management Modeling (2)

(Start)

CONMNECT/SYN (Step 1 of the 3-way handshake)

CLOSED
, close- TCP connection management
LISTEN/—- CLOSE/~- o .
. SYNSYN=ACK | finite state machine.
(Step 2 ,of the 3-way handshake) LISTEN
S‘r‘r:l RSTI-) /'+ l-\h_ SEND/SYN - SYN
REVD |7 SYN/SYN + ACK (simultaneous open) SENT The heavy solid line is the
(Data ransier stae) normal path for_a c!lent. The
_______ Aok esmausren leiouioe heavy dashed line is the
1dshake
CLOSEFIN normal path for a server. The

CLOSE/FIN

light lines are unusual events.

------------------------ -

- o . —eeds . Each transition is labeled by
FINJACK ! . .
N | oSG CLOSE the event causing it and the
., . . .
1 | ; action resulting from it,
ACKI- ACKI- | CLOSEFIN
| BN - ACKIACK ' separated by a slash.
FIN - ~| TIME LAST
WAIT 2 — > WAIT ACK
- N (Timeout/) ' N
—> client path v B ACK- .
- => server path (Go back to start) Arc label: event/action))
Event = {system call, segment arrival (SYN, FIN, ACK, RST), or timeout}
—> unusual events path Action = {sending of control segment (SYN, FIN, or RST), or nothing “-"}
Comments are shown between ()

Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

TCP Shiding Window

5/12/2012

See example of window management in TCP
WIN = 0 is used to block sender!

Two exceptions:

* Urgent data (e.g. to kill a
process)

e Window probe — one-byte
segment to force receiver
to announce the next byte
expected and the window
size — used to prevent
deadlocks

Senders are NOT required to
send data as soon it
becomes available

Receivers are NOT required
to send ACKs immediately
after they receive data

Dr. Ashraf S. Hasar

Sen
Application
does a 2K
write

Application
does a 2K —
Wwrite

Senderis
blocked

Sender may
send up fo 2K —

der

-

1 Mah

T sEaryy

R

 TACK = 2048 WIN = 2048} ————

—{K]SEa=zam)

moud

Receiver Receivers
buffer

0

4K

Empty

2K

Full

Application
reads 2K

2K

1K

2K

63

TCP Sliding Window - Delayed
Acknowledgement and Nagle’s Algorithm

* How to improve efficiency

e At receiver side — delayed acknowledgement
» Wait up to 500 msec before sending ACK — to benefit from accumulated
ACK effect
o What if sender sends many short packets
* Use Nagle’s algorithm — only one short packet is outstanding at any time
» Not good for interactive gaming
» May create deadlocks — refer to textbook page 585
e May be disabled — TCP_NODELAY option!

Naagle’s Algorithm:

1 Send 1st piece

2. Buffer all the rest until 15t piece is ACKed
3. Send all buffered data in one TCP segment
4

5

Start buffering again until segment is ACKed
Etc.

(default) New segment is sent if MSS is reached.

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 64

TCP Sliding Window - Silly Window
Syndrome

e Occurs when data is passed to the sending entity in large blocks but
the application on the receiver side is reading 1 byte at a time!
e C(lark’s solution
» Receiver should advertise only reasonable window sizes
» Size to advertise = min (MSS, or half original receiver buffer)

e Sender should also not send /- N
tiny segments — Nagle’s
algorlthm Receiver's buffer is full ‘

* Nagle’s algorithm and Clark’s
solution are complementary

o Receiver may also block READ [_[-—— Roomfor one more byte |

requests from the application i
till large chunks of data are _—

available . = New byte arrives

e Decreases no of calls to TCP
and increases response time —

OK for non-interactive
5/12/2012 applications Dr. Ashraf S. Hasan Mahmoud \ 65 J

Application reads 1 byte

Window update segment sent

1B
yte | Receiver's buffer is full

TCP Timer Management

e RTO (Retransmission TimeOut) — when segment

IS sent a timer is started
o If RTO expires before ACK is received, the segment is
retransmitted

e How to compute RTO?W

02—

2
(¥
I

Probability
Probability

01— 01—

| | |
0 L I | o | L L
0 10 20 30 40 50 0 10 20 30 40 50

Round-trip time (microseconds) Round-trip time (milliseconds)

(a) (b)
(a) Probability density of acknowledgment arrival
times in data link layer.

(b) for TCP
Dr. Ashraf S. Hasan Mahmoud

5/12/2012 66

TCP Timer Management -
Computation of RTO

RTO = SRTT + 4 X RTTVAR -------- (1)
RTTVAR = B RTTVAR + (1- B) | SRTT = R| -----(2)
SRTT = o SRTT + (1-)R ------- (3)

e Ris the time it took the ACK to get back

o SRTT — smoothed round trip time — best current estimate to
the RTT to the destination in question

e @a and B are smoothing factors < 1; typically a=7/8 and B =
3/4.

e RTTVAR - round trip time variation

e Karen’s Algorithm — R is collected for un-retransmitted
segments

e EWMA - Exponentially Weighted Moving Average

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 67

TCP Persistence Timer

e To prevent the following deadlock
» Receiver sends an ACK with WIN = 0
o Later, buffer becomes available

e Receiver sends ACK with WIN = X (some buffer allocation)
— This segment gets lost!

* When persistence timer goes off
e Sender sends probe to receiver
e Receiver responds to probe with WIN size

o If response WIN size = 0, persistence time is reset

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 68

TCP Keepalive and TIME-WAIT
Timers

o Keepalive timer
e Connection idle for long time

o Keepalive timer goes off causes one side to check whether
the other side is still there

o If it fails, connection is terminated
e It may terminate otherwise healthy connections!

o TIME-WAIT timers — used in the TCP connection
close state

o It runs for twice the maximum packet life-time to make
sure that when a connection is closed, all packets created
by it have died off

5/12/2012 Dr. Ashraf S. Hasan Mahmoud 69

Textbook author’s slides

TCP Congestion Control (1)

TCP uses AIMD with loss signal to control congestion

 Implemented as a congestion window (cwnd) for the
number of segments that may be in the network

e Uses several mechanisms that work together

Name Mechanism Purpose
ACK clock | Congestion window (cwnd) | Smooth out packet bursts
Slow-start | Double cwnd each RTT Rapidly increase send rate to
reach roughly the right level
Additive Increase cwnd by 1 packet | Slowly increase send rate to
Increase each RTT probe at about the right level
Fast Resend lost packet after 3 Recover from a lost packet
retransmit | duplicate ACKs; send new without stopping ACK clock

|/ recovery

packet for each new ACK

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Textbook author’s slides

TCP Congestion Control (2)

Congestion window controls the sending rate
Rate is cwnd / RTT; window can stop sender quickly

ACK clock (regular receipt of ACKs) paces traffic
and smoothes out sender bursts

1: Burst of packets 2: Burst_queues at router
sent on fast link Fast link B and drains onto slow link Slow link
D D, f L | S (bottleneck)

==l - g i g e =
Sender \ d .G < < Receiver
4: Acks preserve slow 3: Receive acks packets
link timing at sender Ack clock at slow link rate

ACKs pace new segments into
the network and smooth bursts

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Textbook author’s slides

TCP Congestion Control (3)

Slow start grows congestion window exponentially
e Doubles every RTT while keeping ACK clock going
TCP Sender TCP Receiver

Data

cwnd=1
Acknowledgment >a
cwnd=2 | — 1 RTT, 1 packet

Increment cwnd for
each new ACK

cwnd=3 - 1 RTT, 2 packets

cwnd=4

cwnd=5 - 1 RTT, 4 packets

cwnd=6
cwnd=7
cwnd=8

x— 1 RTT, 4 packets
(pipe is full)

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Textbook author’s slides

TCP Congestion Control (4)

o _ TCP Sender TCP Receiver
Additive increase grows . Data
cwnd slowly ACK — i
e Adds1every RTT cwnd=2 - 1 RTT, 1 packet
« Keeps ACK clock i

P -1 RTT, 2 packets
cwnd=3 |=

5~ 1RTT, 3 packets
cwnd=4 .

o 1RTT, 4 packels

cwnd=5 == T :— 1 RTT, 4 packets

---------- 4 (pipeis full)

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Congestion window (KB or packets)

Textbook author’s slides

TCP Congestion Control (D)

Slow start followed by additive increase (TCP Tahoe)
« Threshold is half of previous loss cwnd

of S "
" Threshold 32 KB ""\Packet

301 loss

25|

a0l ____Threshold 20 KB

Loss causes timeout;
ACK clock has stopped

so slow-start again\

0 2 4 6 8 10 12 14 16 18 20 22 24

Transmission round (RTTs)

15

10

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Textbook author’s slides

TCP Congestion Control (b)

With fast recovery, we get the classic sawtooth (TCP
Reno)

 Retransmit lost packet after 3 duplicate ACKs
e New packet for each dup. ACK until loss Is repaired
'y

Congestion window (KB or packets)

40

[5]
o

30

25

20

15

10

(4]

Thresh.—4~

!

-

Slow

start Additive

S _-=¥ increase
-
Packet
loss

A
Multiplicative
decrease

Fast
recovery

Threshold------—---#=------
Threshold -=;---#--=-=-=-

The ACK clock doesn’t stop,
S0 no need to slow-start

8 12 16 20 24 28 32 36 40 44 48
Transmission round (RTTs)

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Textbook author’s slides

TCP Congestion Control (7)

SACK (Selective ACKs) extend ACKs with a vector to
describe received segments and hence losses

« Allows for more accurate retransmissions / recovery

e

Retransmit 2 and 5!] fLOSt packets\‘
g 6> 5 D [2 [D

Sender |] 4 (] {

ACK: 1 ACK: 1 ACK: 1 ACK: 1
SACK:3 SACK:3-4 SACK: 6, 3-4

No way for us to know that 2 and
5 were lost with only ACKs

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

