## King Fahd University of Petroleum \& Minerals Computer Engineering Dept

## COE 540 - Computer Networks

Term 112
Dr. Ashraf S. Hasan Mahmoud
Rm 22-420
Ext. 1724
Email: ashraf@kfupm.edu.sa

## Queuing Model

- Consider the following system:
$\mathrm{A}(\mathrm{t}) \quad \mathrm{N}(\mathrm{t})=\mathrm{A}(\mathrm{t})-\mathrm{D}(\mathrm{t}) \quad \mathrm{D}(\mathrm{t})$



## Little's Formula

- Little's formula:

$$
E[N]=\lambda E[T]
$$

Holds for many service disciplines and for systems with arbitrary number of servers. It holds for many interpretations of the system as well

## Example 2:

- Problem: Let $\mathbf{N s}(\mathbf{t})$ be the number of customers being served at time $t$, and let $\tau$ denote the service time. If we designate the set of servers to be the "system"m then Little's formula becomes:

$$
\mathrm{E}[\mathrm{Ns}]=\boldsymbol{\lambda} \mathbf{E}[\tau]
$$

Where $\mathrm{E}[\mathrm{Ns}]$ is the average number of busy servers for a system in the steady state.

## Example 2: cont'd

Note: for a single server $\mathrm{Ns}(\mathrm{t})$ can be either $\mathbf{0}$ or $\mathbf{1 \rightarrow E} \mathrm{E}[\mathrm{Ns}]$ represents the portion of time the server is busy. If $\mathbf{p}_{0}=$ $\operatorname{Prob}[\mathrm{Ns}(\mathrm{t})=0]$, then we have

$$
\begin{aligned}
\mathbf{1}-\mathbf{p}_{0} & =\mathrm{E}[\mathrm{Ns}]=\lambda E[\tau], \mathbf{O r} \\
\mathbf{p}_{0} & =\mathbf{1}-\lambda E[\tau]
\end{aligned}
$$

The quantity $\lambda E[\tau]$ is defined as the utilization for a single server. Usually, it is given the symbol $\rho$

$$
\rho=\boldsymbol{\lambda}[[\tau]
$$

For a c-server system, we define the utilization (the fraction of busy servers) to be

$$
\rho=\lambda E[\tau] / \mathbf{c}
$$

## Queue System and Parameters

- Queueing system with $\mathbf{m}$ servers
- When m=1-single server system
- Input: arrival statistics (rate $\lambda$ ), service statistics (rate $\mu$ ), number of customers ( m ), buffer size
- Output: E[N], E[T], E[Nq], E[W], Prob[buffer size = x], Prob[W<W], etc.



## The M/M/1 Queue

- Consider m-server system where customers arrive according to a Poisson process of rate $\boldsymbol{\lambda}$
- $\quad \rightarrow$ inter-arrival times are iid exponential r.v. with mean 1/ $\boldsymbol{\lambda}$
- Assume the service times are iid exponential r.v. with mean $1 / \mu$
- Assume the inter-arrival times and service times are independent
- Assume the system can accommodate unlimited number of customers


## The M/M/1 Queue - cont'd

- What is the steady state pmf of $N(t)$, the number of customers in the system?
- What is the PDF of $\mathbf{T}$, the total customer delay in the system?


## The M/M/1 Queue - cont'd

- Consider the transition rate diagram for M/M/1 system

- Note:
- System state - number of customers in systems
- $\boldsymbol{\lambda}$ is rate of customer arrivals
- $\quad \mu$ is rate of customer departure


## The M/M/1 Queue - Distribution of Number of Customers

- Writing the global balance equations for this Markov chain and solving for Prob[N(t) = j], yields (refer to previous example)

$$
\begin{aligned}
\mathbf{p}_{\mathrm{j}} & =\operatorname{Prob}[\mathrm{N}(\mathrm{t})=\mathrm{j}] \\
& =(1-\rho) \rho^{\mathrm{j}}
\end{aligned}
$$

for $\rho=\lambda / \mu<1$

Note that for $\rho=1 \rightarrow$ arrival rate $\boldsymbol{\lambda}=$ service rate $\mu$

## The M/M/1 Queue - Expected Number of Customers

- The mean number of customer is given by

$$
\begin{aligned}
E[N] & =\underset{j}{\sum j} \operatorname{Prob}[N(t)=j] \\
& =\rho /(1-\rho)
\end{aligned}
$$

## The M/M/1 Queue - Mean Customer Delay

- The mean total customer delay in the system is found using Little's formula

$$
\begin{aligned}
E[T] & =E[N] / \lambda \\
& =\rho /[\lambda(1-\rho)] \\
& =1 / \mu(1-\rho) \\
& =1 /(\mu-\lambda)
\end{aligned}
$$

The M/M/1 Queue - Mean Queueing Time

- The mean waiting time in queue is given by

$$
\begin{aligned}
\mathrm{E}[\mathbf{W}] & =\mathrm{E}[\mathrm{~T}]-\mathbf{E}[\tau] \\
& =\rho /(1-\rho) \quad \mathbf{E}[\tau]
\end{aligned}
$$

The M/M/1 Queue - Mean Number in Queue

- Again we employ Little's formula:

$$
\begin{aligned}
E[\mathrm{Nq}] & =\lambda E[\mathrm{~W}] \\
& =\rho^{2} /(1-\rho)
\end{aligned}
$$

Remember:
server utilization $\rho=\boldsymbol{\lambda} / \mu=1-\mathbf{p}_{0}$
All previous quantities $\mathrm{E}[\mathrm{N}], \mathrm{E}[\mathrm{T}], \mathrm{E}[\mathrm{W}]$, and $\mathrm{E}[\mathrm{Nq}] \rightarrow \infty$ as $\rho \rightarrow \mathbf{1}$

M/M/1/K - Finite Capacity Queue

- Consider an M/M/1 with finite capacity K $<\infty$
- For this queue - there can be at most $K$ customers in the system
- 1 being served
- K-1 waiting
- A customer arriving while the system has K customers is BLOCKED (does not wait)!


## M/M/1/K - Finite Capacityoriations of M/M/1 queue cont'd

- Transition rate diagram for this queueing system is given by:
- $\mathbf{N}(\mathrm{t})$ - A continuous-time Markov chain which takes on the values from the set $\{0$, 1, ... K\}



## Multi-Server Systems: M/M/c

- The transition rate diagram for a multiserver $M / M / c$ queue is as follows:
- Departure rate $=k \mu$ when $k$ servers are busy
- We can show that the service time for a customer finding $\mathbf{k}$ servers busy is exponentially distributed with mean $1 /(\mathrm{k} \mu)$


(c-1) $\mu \quad \mathrm{c} \mu$


## Variations of M/M/1 queue <br> Multi-Server Systems: |Vnlvic cont'd

- Writing the global balance equations:

入 $\quad \mathbf{p}_{0}=\mu \mathbf{p}_{1}$
$\mathbf{j} \mu \quad \mathrm{p}_{\mathrm{j}}=\lambda \mathrm{p}_{\mathrm{j}-1} \quad$ for $\mathrm{j}=1,2, \ldots, \mathrm{c}$
$\mathrm{c}_{\mu} \quad \mathrm{p}_{\mathrm{j}}=\lambda \mathrm{p}_{\mathrm{j}-1}$ for $\mathrm{j}=\mathrm{c}, \mathrm{c}+\mathbf{1}, \ldots$
$\rightarrow$
Note this distribution is the same as that for M/M/1 when you set c to 1.
$p_{j}=a^{j} / j!p_{0} \quad($ for $j=1,2, \ldots, c)$ and
$p_{j}=\rho^{j-c / c!~} a^{c} p_{0}($ for $j=c, c+1, \ldots)$
where $\mathbf{a}=\lambda / \mu$ and $\rho=a / c$

- From this we note that the probability of system being in state $\mathbf{c}$, $\mathbf{p c}$, is given by

$$
\mathbf{p}_{\mathrm{c}}=\mathrm{a} / \mathrm{c}!\mathrm{p}_{\mathrm{o}}
$$

## Multi-Server Systems: Variations of M/M/1 queue

 cont'd- To find $\mathbf{p}_{\mathbf{0}}$, we resort to the fact that $\boldsymbol{\Sigma} \mathbf{p}_{\mathbf{j}}=\mathbf{1}$
$\rightarrow \quad p_{0}=\left\{\sum_{j=0}^{c-1} \frac{a^{j}}{j!}+\frac{a^{c}}{c!} \frac{1}{1-\rho}\right\}^{-1}$
- The probability that an arriving customer has to wait
$\operatorname{Prob}[W>0]=\operatorname{Prob}[N \geq c]$
$=\mathbf{p}_{\mathrm{c}}+\mathbf{p}_{\mathrm{c}+1}+\mathbf{p}_{\mathrm{c}+2}+\ldots$
$=p_{c} /(1-\rho)$
Erlang-C formula

Question: What is Prob[W>0] for M/M/1 system?

```
                                    Variations of M/M/1 queue
Multi-Server Systems: |Vnlvic -
cont'd
```

- The mean number of customers in queue (waiting):

$$
\begin{aligned}
E\left[N_{q}\right] & =\sum_{j=c}^{\infty}(j-c) \operatorname{Pr}[N(t)=j] \\
& =\sum_{j=c}^{\infty}(j-c) \rho^{j-c} p_{c} \\
& =\frac{\rho}{(1-\rho)^{2}} p_{c} \\
& =\frac{\rho}{1-\rho} \operatorname{Pr}[W>0]
\end{aligned}
$$

Multi-Server Systems: Variations of M/M/1 queue cont'd

- The mean waiting time in queue:

$$
E[W]=E\left[N_{q}\right] / \lambda
$$

- The mean total delay in system:

$$
\begin{aligned}
E[T] & =E[W]+E[\tau] \\
& =E[W]+1 / \mu
\end{aligned}
$$

- The mean number of customers in system:

$$
\begin{aligned}
E[N] & =\lambda E[T] \\
& =E\left[N_{q}\right]+a
\end{aligned}
$$

## Variations of M/M/1 queue

## Example 5:

- A company has a system with four private telephone lines connecting two of its sites. Suppose that requests for these lines arrive according to a Poisson process at rate of one call every 2 minutes, and suppose that call durations are exponentially distributed with mean 4 minutes. When all lines are busy, the system delays (i.e. queues) call requests until a line becomes available.
- Find the probability of having to wait for a line.
- What is the average waiting time for an incoming call?


## Example 5: cont'd

- Solution:
$\lambda=1 / 2,1 / \mu=4, c=4 \rightarrow a=\lambda / \mu=2$
$\Rightarrow \rho=a / c=1 / 2$
$p_{0}=\left\{1+2+2^{2} / 2!+2^{3} / 3!+2^{4} / 4!(1 /(1-\rho))\right\}^{-1}$
$=3 / 23$
$p_{c}=a^{c} / c!p 0$
$=\mathbf{2}^{4} / 4!\times 3 / 23$
(1) Prob $[W>0]=p_{c} /(1-p)$

$$
\begin{aligned}
& =2^{4} / 4!\times 3 / 23 \times 1 /(1-1 / 2) \\
& =4 / 23 \\
& \approx 0.17
\end{aligned}
$$

(2) To find $E[W]$, find $E[N q]$...
$E[N q]=\rho /(1-\rho) * \operatorname{Prob}[W>0]=0.1739$
$E[W]=E[N q] / \lambda=0.35 \mathrm{~min}$

- The transition rate diagram for a multiserver with no waiting room (M/M/c/c) queue is as follows:
- Departure rate $=\mathbf{k} \boldsymbol{\mu}$ when $\mathbf{k}$ servers are busy

(c-1) $\mu \quad \mathrm{c} \mu$
- Writing the global balance equations, one can show:

$$
p_{j}=a^{j} / j!p_{0} \quad(\text { for } j=0,1, \ldots, c)
$$

where $a=\lambda / \mu$ (the offered load)

- To find $p_{0}$, we resort to the fact that $\boldsymbol{\Sigma} \mathbf{p}_{j}$ $=1$

$$
p_{0}=\left\{\sum_{j=0}^{c} \frac{a^{j}}{j!}\right\}^{-1}
$$

## Erlang-B Formula

- Erlang-B formula is defined as the probability that all servers are busy:

$$
\begin{aligned}
\operatorname{Pr}[N=c] & =p_{c} \\
& =\frac{a^{c} / c!}{1+a+a^{2} / 2!+\ldots+a^{c} / c!}
\end{aligned}
$$

Expected Number of cuistomers in
M/M/c/c

- The actual arrival rate into the system:

$$
\lambda_{a}=\lambda\left(1-p_{c}\right)
$$

- Average total delay figure:

$$
E[T]=E[\tau]
$$

Why?

- Average number of customers:

$$
E[N]=\lambda_{a} E[\tau]
$$

> Variations of M/M/1 queue

## Example 6:

- A company has a system with four private telephone lines connecting two of its sites. Suppose that requests for these lines arrive according to a Poisson process at rate of one call every 2 minutes, and suppose that call durations are exponentially distributed with mean 4 minutes. When all lines are busy, the system BLOCKS the incoming call and generates a busy signal.
- Find the probability of being blocked.


## Variations of M/M/1 queue

## Example 6:

- Solution:

$$
\begin{aligned}
\lambda=1 / 2,1 / \mu=4, c=4 & \rightarrow a=\lambda / \mu=2 \\
& \rightarrow \rho=a / c=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { ac/c! } \\
& p_{c}= \\
& 1+a+a^{2} / 2!+a^{3} / 3!+a^{4} / 4! \\
& \text { 24/4! } \\
& =----------------------------2^{2} / 2!+2^{3} / 3!+2^{4} / 4!
\end{aligned}
$$

Therefore, the probability of being blocked is $\mathbf{0 . 0 9 5}$.

## M/G/1 Queues

- Poisson arrival process (i.e. exponential r.v. interarrival times)
- Service time: general distribution $f_{\tau}(x)$
- For M/M/1, $f_{\tau}(x)=\mu e^{-\mu x}$ for $x>0$
- The state of the M/G/1 system at time $t$ is specified by

1. $N(t)$
2. The remaining (residual) service time of the customer being served

## Mean Waiting Time in M/G/1

- Main result
$\mathrm{E}[\mathrm{W}]=\begin{gathered}\lambda E\left[\tau^{2}\right] \\ 2(1-\rho)\end{gathered}$
$\boldsymbol{\lambda}\left(\boldsymbol{\delta}^{2}{ }_{\tau}+\mathrm{E}[\tau]^{\mathbf{2}}\right)$
$=-------------$
$\rho\left(1+C_{\tau}{ }^{2}\right)$
------------- E[ $\tau]$ 2(1-p)

Mean Delay in M/G/1 - cont'd

- The mean waiting time, $E[T]$ is found by adding mean service time to $E[W]$ :

$$
\begin{aligned}
\mathbf{E}[\mathbf{T}] & =\mathbf{E}[\tau]+\mathbf{E}[\mathbf{W}] \\
& =\mathbf{E}[\tau]+\frac{\rho\left(\mathbf{1}+\mathbf{C}_{\tau}^{2}\right)}{\mathbf{2 ( 1 - \rho )}}
\end{aligned}
$$

## Example 7:

- Problem: Compare E[W] for M/M/1 and M/D/1 systems.
- Answer:

M/M/1: service time, $\tau$, is exponential r.v. with parameter $\mu$
$\Rightarrow \mathbf{E}[\tau]=\mathbf{1} / \mu, \mathbf{E}\left[\tau^{2}\right]=\mathbf{2} / \mu^{2}, \boldsymbol{\delta}^{2}{ }_{\tau}=\mathbf{1} / \mu^{2}, \mathbf{C}^{2}=\mathbf{1}$
M/D/1: service time, $\tau$, is constant with value $\tau=$ $1 / \mu$
$\rightarrow E[t]=1 / \mu, E\left[\tau^{2}\right]=1 / \mu^{2}, \delta^{2}=0, C^{2}=0$

## Example 7: cont'd

- Answer: cont'd

Substitute in P-K mean value formula
M/M/1:

$$
E\left[W_{M / M / 1}\right]=\frac{\lambda E\left[\tau^{2}\right]}{2(1-\rho)}=\frac{\rho}{(1--\rho)}
$$

M/D/1:

$$
E\left[W_{M / D / 1}\right]=\frac{\lambda E\left[\tau^{2}\right]}{2(1-\rho)}=\frac{\rho}{2(1-\rho)} \mathrm{E}[\tau]
$$

$$
=\frac{\mathbf{1}}{\mathbf{2}} \mathrm{E}\left[\mathbf{W}_{\mathrm{M} / \mathrm{M} / \mathbf{1}}\right] \quad \begin{aligned}
& \text { The waiting time in an } \\
& \mathrm{M} / \mathrm{D} / 1 \text { queue is half of } \\
& \text { that of an } \mathrm{M} / \mathrm{M} / 1 \text { system }
\end{aligned}
$$

## Example 8:

- Problem: Assume traffic is arriving at the input port of a router according to a Poisson arrival process of rate $\boldsymbol{\lambda}=\mathbf{1 0 0}$ packets/sec. If the traffic distribution is as follows: 30\% of packets are 512 Bytes long, 50\% of packets are 1024 Bytes long, 20\% of packets are 4096 Bytes long If the transmit speed of the router output port is $1.5 \mathrm{Mb} / \mathrm{s}$
a) What is the average packet transmit time?
b) What is the average packet waiting time before transmit?
c) What is the average buffer size in the router?


## Example 8: cont'd

- Solution:
a) Average packet size,
$E[L]=0.3 \times 512+0.5 \times 1024+0.2 \times 4096$
= 1484.8 Bytes
average transmit time $=E[L] / R=1484.8 \times 8 / 1.5 \times 10^{6}=$ 0.0079 sec
b) $\mathrm{E}\left[L^{2}\right]=0.3 \times(512 \times 8)^{2}+0.5 \times(1024 \times 8)^{2}+0.2 \times(4096 \times 8)^{2}=$
$2.5334 \mathrm{e}+008$ Bits $^{2}$
$E\left[\tau^{2}\right]=E\left[L^{2}\right] / R^{2}=1.1259 \mathrm{e}-004 \mathbf{~ s e c}^{2}$
$\rho=\lambda E[\tau]=0.7919$
$E[W]=0.5 \lambda E\left[\tau^{2}\right] /(1-\rho)$
$=0.0271 \mathrm{sec}$
c) $\mathrm{E}[\mathrm{Nq}]=\lambda \mathrm{E}[\mathrm{W}]$
$=2.705$ packet

