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Queuing Model
• Consider the following system:

A(t) N(t) A(t) D(t) D(t)

Queueing System

ith customer
arrives at time Si

ith customer
departs at time Di

A(t) N(t) = A(t) – D(t) D(t)
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Ti = Di – Ai

A(t) – number of arrivals in (0, t]
D(t) – number of departures in (0, t]
N(t) – number of customers in system in (0,t]
Ti – duration of time spent in system for ith customer
Wi – duration of time spent waiting for service for ith customer

Wi = Ti – Si

= Di – Ai – Si
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Little’s Formula
• Little’s formula: 

E[N] = λE[T]E[N] = λE[T]

Holds for many service disciplines and for 
systems with arbitrary number of 
servers. It holds for many interpretations 
of the system as well
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of the system as well

Example 2: 
• Problem: Let Ns(t) be the number of 

customers being served at time t, and let 
 denote the service time. If we 
designate the set of servers to be the 
“system”m then Little’s formula 
becomes:

E[Ns] = λE[]
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E[Ns] = λE[]

Where E[Ns] is the average number of busy 
servers for a system in the steady state. 
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Example 2: cont’d
Note: for a single server Ns(t) can be either 0 or 1  E[Ns] 

represents the portion of time the server is busy. If p0 = 
Prob[Ns(t) = 0], then we have

1 - p0 = E[Ns] = λE[], Or
p0 = 1 - λE[]

The quantity λE[] is defined as the utilization for a single 
server. Usually, it is given the symbol 

 = λE[] 
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 [ ]

For a c-server system, we define the utilization (the fraction of 
busy servers) to be

 = λE[] / c

Queue System and Parameters
• Queueing system with m servers

• When m = 1 – single server system
• Input: arrival statistics (rate λ), service statistics (rate μ), 

number of customers (m) buffer sizenumber of customers (m), buffer size
• Output: E[N], E[T], E[Nq], E[W], Prob[buffer size = x], 

Prob[W<w], etc.

μ

λ μ
Server 1

Server 2
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μ
Server m

E[Nq], E[W] E[Ns], E[τ]

E[N], E[T]
E[N] = E[Nq] + E[Ns],
E[T] = E[W] + E[τ]

E[N] = mean # of customers in the system
E[T] = mean time spent in the system
E[Nq] = mean number of customers waiting
E[Ns] = mean number of customers in service
E[W] = mean waiting time for a customer
E[τ] = mean service time for a customer
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The M/M/1 Queue
• Consider m-server system where 

customers arrive according to a Poisson 
process of rate λ
•  inter-arrival times are iid exponential r.v. 

with mean 1/λ
• Assume the service times are iid 

exponential r.v. with mean 1/
• Assume the inter-arrival times and
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• Assume the inter arrival times and 
service times are independent

• Assume the system can accommodate 
unlimited number of customers

The M/M/1 Queue – cont’d
• What is the steady state pmf of N(t), the 

number of customers in the system?y

• What is the PDF of T, the total customer 
delay in the system?
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The M/M/1 Queue – cont’d
• Consider the transition rate diagram for M/M/1 

system

0 1









2 3





j j+1





 


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• Note: 
• System state – number of customers in systems
• λ is rate of customer arrivals
•  is rate of customer departure

The M/M/1 Queue – Distribution of 
Number of Customers
• Writing the global balance equations for 

this Markov chain and solving for 
Prob[N(t) = j], yields (refer to previous 
example)

pj = Prob[N(t) = j]
= (1-)j

f λ/
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for  = λ/ < 1 

Note that for  = 1  arrival rate λ = service 
rate  
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The M/M/1 Queue – Expected 
Number of Customers
• The mean number of customer is given 

byy
E[N] = ∑ j Prob[N(t) = j]

j

=  / (1-)
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The M/M/1 Queue – Mean Customer 
Delay
• The mean total customer delay in the 

system is found using Little’s formulay g

E[T] = E[N]/ λ
= ρ /[λ (1- ρ)]
= 1/μ (1-ρ)

/( λ)
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= 1/(μ – λ) 
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The M/M/1 Queue – Mean Queueing 
Time
• The mean waiting time in queue is given 

byy
E[W] = E[T] – E[]

=  / (1-)   E[]
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The M/M/1 Queue – Mean Number in 
Queue
• Again we employ Little’s formula:

E[Nq] = λE[W]

=  / (1-)
Remember: 

server utilization  = λ/ = 1-p0
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server utilization   λ/  1 p0

All previous quantities E[N], E[T], E[W], and 
E[Nq]   as  1
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M/M/1/K – Finite Capacity Queue
• Consider an M/M/1 with finite capacity K 

< 

Variations of M/M/1 queue

• For this queue – there can be at most K 
customers in the system
• 1 being served 
• K-1 waiting
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K 1 waiting

• A customer arriving while the system has 
K customers is BLOCKED (does not wait)!

M/M/1/K – Finite Capacity Queue –
cont’d
• Transition rate diagram for this queueing 

system is given by:

Variations of M/M/1 queue

y g y
• N(t) - A continuous-time Markov chain 

which takes on the values from the set {0, 
1, …, K}

   
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0 1

 

2 3



K-1 K


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Multi-Server Systems: M/M/c
• The transition rate diagram for a multi-

server M/M/c queue is as follows:

Variations of M/M/1 queue

/ / q
• Departure rate = k when k servers are busy
• We can show that the service time for a 

customer finding k servers busy is 
exponentially distributed with mean 1/(kμ)
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0 1





c-1 c



c

j j+1



cc

 

c



 (c-1)



Multi-Server Systems: M/M/c –
cont’d
• Writing the global balance equations:

λ p0 = p1
jpj = λpj-1 for   j=1, 2, …, c

Variations of M/M/1 queue

 j j 1
c pj = λpj-1 for   j= c, c+1, …



pj= aj/j! p0 (for j=1, 2, …, c) and
pj= j-c/c! ac p0 (for j=c, c+1, …)

where a = λ/ and  = a/c

Note this distribution is the 
same as that for M/M/1 when 
you set c to 1.
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• From this we note that the probability of system being in 
state c, pc, is given by

pc = ac/c! p0
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Multi-Server Systems: M/M/c –
cont’d
• To find p0, we resort to the fact that ∑ pj = 1



1
1 1










c cj aa

Variations of M/M/1 queue



• The probability that an arriving customer has to wait

P b[W > 0] P b[N ≥ ]

0
0 1!! 



 

  j cj
p

E l C
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Prob[W > 0] = Prob[N ≥ c]
= pc + pc+1 + pc+2 + …
= pc/(1-)

Question: What is Prob[W>0] for M/M/1 system?

Erlang-C 
formula

Multi-Server Systems: M/M/c –
cont’d
• The mean number of customers in queue 

(waiting):

Variations of M/M/1 queue

( g)

 





cj

q jtNcjNE ])(Pr[][

 





cj

c
cj pcj 

3/20/2012 Dr. Ashraf S. Hasan Mahmoud 20

  cp21 





]0Pr[
1




 W



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Multi-Server Systems: M/M/c –
cont’d
• The mean waiting time in queue:

Variations of M/M/1 queue

• The mean total delay in system:

/][][ qNEWE 

][][][ EWETE 
/1][  WE
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• The mean number of customers in 
system: ][][ TENE 

aNE q  ][ Why?

Example 5:
• A company has a system with four private 

telephone lines connecting two of its sites. 

Variations of M/M/1 queue

Suppose that requests for these lines arrive 
according to a Poisson process at rate of one 
call every 2 minutes, and suppose that call 
durations are exponentially distributed with 
mean 4 minutes. When all lines are busy, the 
system delays (i.e. queues) call requests until a 
line becomes available
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line becomes available. 
• Find the probability of having to wait for a line.
• What is the average waiting time for an 

incoming call?
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Example 5: cont’d
• Solution: 

λ = ½, 1/ = 4, c = 4  a = λ/ = 2
  = a/c  = ½

Variations of M/M/1 queue

p0 = {1+2+22/2!+23/3!+24/4! (1/(1-))}-1

= 3/23

pc = ac/c! p0
= 24/4! X 3/23

(1) Prob[W > 0] = pc/(1-ρ)
= 24/4! X 3/23 X 1/(1-1/2)
= 4/23
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= 4/23
≈ 0.17

(2) To find E[W], find E[Nq] …
E[Nq] = ρ/(1- ρ) * Prob[W>0] = 0.1739
E[W]  = E[Nq]/ λ = 0.35 min

Multi-Server Systems: M/M/c/c
• The transition rate diagram for a multi-

server with no waiting room (M/M/c/c) 

Variations of M/M/1 queue

g ( / / / )
queue is as follows:
• Departure rate = kμ when k servers are 

busy

  
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0 1



c-1 c

c (c-1)
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PMF for Number of Customers for 
M/M/c/c

• Writing the global balance 
equations one can show:

Variations of M/M/1 queue

equations, one can show:
pj= aj/j! p0 (for j=0, 1, …, c) 

where a = λ/μ (the offered load)
• To find p0, we resort to the fact that ∑ pj
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To find p0, we resort to the fact that ∑ pj
= 1 1

0
0 !



 







 
c

j

j

j

a
p

Erlang-B Formula
• Erlang-B formula is defined as the 

probability that all servers are busy:

Variations of M/M/1 queue

probability that all servers are busy:

cpcN  ]Pr[

!/...!2/1

!/
2 caaa

ca
c

c



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Expected Number of customers in 
M/M/c/c 

• The actual arrival rate into the 
system:

Variations of M/M/1 queue

system:

• Average total delay figure:

)1( ca p 

][][ ETE  Why?
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• Average number of customers:

][][  ENE a

Example 6:
• A company has a system with four 

private telephone lines connecting two of 

Variations of M/M/1 queue

its sites. Suppose that requests for these 
lines arrive according to a Poisson 
process at rate of one call every 2 
minutes, and suppose that call durations 
are exponentially distributed with mean 
4 minutes. When all lines are busy, the 
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system BLOCKS the incoming call and 
generates a busy signal. 

• Find the probability of being blocked.
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Example 6:
• Solution: 

λ = 1/2, 1/μ = 4, c = 4  a = λ/μ = 2
 ρ a/c 1/2

Variations of M/M/1 queue

 ρ = a/c  = 1/2

ac/c! 
pc = ------------------------------------

1 + a + a2/2! + a3/3! + a4/4!

24/4!
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2 /4!
= ------------------------------------ = 9.5%

1 + 2 + 22/2! + 23/3! + 24/4!

Therefore, the probability of being blocked is 0.095.      

M/G/1 Queues 
• Poisson arrival process (i.e. exponential 

r.v. interarrival times))
• Service time: general distribution f(x)

• For M/M/1, f(x) = e-x for x > 0

• The state of the M/G/1 system at time t 
is specified by
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is specified by
1. N(t)
2. The remaining (residual) service time of the 

customer being served
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Mean Waiting Time in M/G/1
• Main result

λE[2]λE[2]
E[W] = ----------

2(1-)

λ(δ2
E[]2) 

= ----------------
2(1-)

Remember: 
- E[2] = δ2

+E[]2

- C2
 = δ2

/E[]2
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(1 + C
2) 

= ---------------- E[]
2(1-)

Pollaczek-Khinchin (P-K)
Mean Value Formula

Mean Delay in M/G/1 – cont’d 
• The mean waiting time, E[T] is found by 

adding mean service time to E[W]:

E[T] = E[] + E[W]

(1 + C
2) 
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 (  )
= E[] + ---------------- E[]

2(1-)
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Example 7:  
• Problem: Compare E[W] for M/M/1 and M/D/1 

systems. 

• Answer: 
M/M/1: service time, , is exponential r.v. with 

parameter 
 E[] = 1/ , E[2] = 2/2 , δ2

= 1/2 , C2
= 1
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M/D/1: service time, , is constant with value  = 
1/

 E[t] = 1/ , E[2] = 1/2 , δ2
= 0 , C2

= 0

Example 7: cont’d 
• Answer: cont’d 
Substitute in P-K mean value formula
M/M/1:M/M/1:   

λE[2]                
E[WM/M/1] = ---------- =    ---------- E[]

2(1-)           (1-)

M/D/1:                              λE[2]               
E[WM/D/1] = ---------- =   ---------- E[]

2(1 ) 2 (1 )
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2(1-)          2 (1-) 

1
= -- E[WM/M/1] 

2

The waiting time in an 
M/D/1 queue is half of 
that of an M/M/1 system
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Example 8:  
• Problem: Assume traffic is arriving at the input 

port of a router according to a Poisson arrival 
process of rate λ = 100 packets/sec. If theprocess of rate λ  100 packets/sec. If the 
traffic distribution is as follows:
30% of packets are 512 Bytes long,
50% of packets are 1024 Bytes long,
20% of packets are 4096 Bytes long
If the transmit speed of the router output port 

is 1.5 Mb/s
a) What is the average packet transmit time?
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a) What is the average packet transmit time?
b) What is the average packet waiting time before 

transmit?
c) What is the average buffer size in the router?

Example 8: cont’d
• Solution:
a) Average packet size, 

E[L] = 0 3x512 + 0 5x1024 + 0 2x4096E[L] = 0.3x512 + 0.5x1024 + 0.2x4096 
= 1484.8 Bytes

average transmit time = E[L]/R = 1484.8x8/1.5x106 = 
0.0079 sec 

b) E[L2] = 0.3x(512x8)2 + 0.5x(1024x8)2 + 0.2x(4096x8)2 = 
2.5334e+008 Bits2

E[2] = E[L2]/R2 = 1.1259e-004 sec2

ρ = λ E[] = 0.7919
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ρ = λ E[] = 0.7919
E[W] = 0.5 λ E[2] /(1-ρ) 

= 0.0271 sec
c) E[Nq] = λ E[W]

= 2.705 packet


