KFUPM - COMPUTER ENGINEERING DEPARTMENT
 COE-341 - Data and Computer Communication Quiz 02 - Feb 11 ${ }^{\text {th }}$, 2012 Due Mon Feb 20 ${ }^{\text {th }}, 2012$
 \section*{Student Name:

 Student Number:}

(25 points +5 bonus) Consider the square wave function $s(t)$ shown in textbook Figure 3.7 (part c). Let the amplitude A be equal to 2 volts, while the period T be equal to 2 second. The textbook states that the Fourier Series Expansion (F.S.E.) for $s(t)$ is given by $s(t)=A \times \frac{4}{\pi} \times \sum_{n=1,3,5, \cdots}^{\infty} \frac{\sin \left(2 \pi n f_{0} t\right)}{k}$ as shown on page 74 .
a) (2 points) write an expression for $s(t)$ for $t \in(0, T)$?
b) (2 points) Compute the total power of $s(t)$?
c) (8 points) Compute the F.S.E. of $s(t)$.
d) (6 points) Specify the power spectral density (PSD) function for $s(t)$?
e) (7 points) Find n^{*} such that power of $s_{-} e\left(n=n^{*}\right)$ at least 95% of the power contained in $s(t)$?
f) (5 points - bonus) If the signal is passed through a high pass filter which suppresses all frequencies in $\left[0,4 f_{0}\right]$, but passes all frequencies in the interval $\left(4 f_{0}, \infty\right)$ - Write an expression for the outputs signal $s_{O}(t)$., and find its total power?

Student must provide the answers first in terms of the amplitude A and the period T, and then substitute to obtain the numerical value.

Appendix: Relations you MIGHT need

$$
\begin{aligned}
& \cos (a)=\cos (-a) \quad \sin (a)=-\sin (a) \\
& \cos (a+/-b)=\cos (a) \cos (b)-/+\sin (a) \sin (b) \\
& \sin (a+/-b)=\sin (a) \cos (b)+/-\cos (a) \sin (b) \\
& \sin (2 a)=2 \sin (a) \cos (b) \\
& \cos (2 a)=\cos ^{2}(a)-\sin ^{2}(b)=2 \cos ^{2}(a)-1=1-2 \sin ^{2}(a) \\
& \cos (a x)^{2}=\frac{1}{2}+\frac{1}{2} \cos (2 a x) \\
& \sin (a x)^{2}=\frac{1}{2}-\frac{1}{2} \cos (2 a x) \\
& \int \cos (a x) d x=\frac{1}{a} \sin (a x)+C \\
& \int \sin (a x) d x=\frac{-1}{a} \cos (a x)+C \\
& \int \cos (a x)^{2} d x=\frac{x}{2}+\frac{1}{4 a} \sin (2 a x)+C \\
& \int \sin (a x)^{2} d x=\frac{x}{2}-\frac{1}{4 a} \sin (2 a x)+C \\
& \int x \cos (a x) d x=\frac{\cos (a x)}{a^{2}}+\frac{x \sin (a x)}{a} C \\
& \int x \sin (a x) d x=\frac{\sin (a x)}{a^{2}}-\frac{x \cos (a x)}{a} C \\
& \int
\end{aligned}
$$

