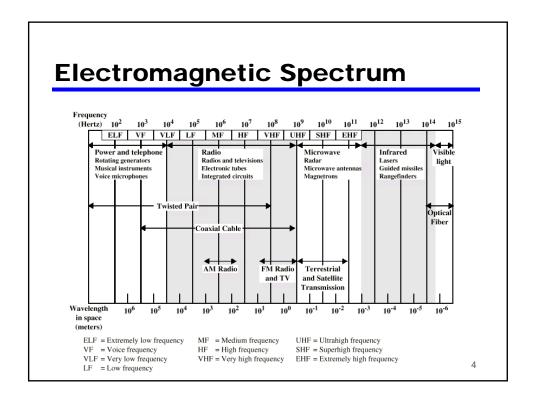
William Stallings Data and Computer Communications

Chapter 4 Transmission Media

These slides are originally for W. Stallings.

Overview

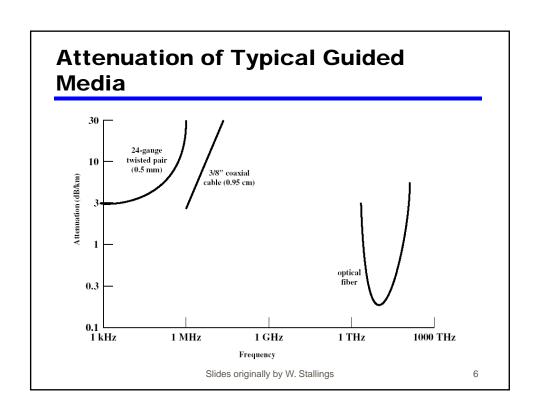

- Guided wire
- Unguided wireless
- Characteristics and quality determined by medium and signal
- For guided, the medium is more important
- For unguided, the bandwidth produced by the antenna is more important
- Key concerns are data rate and distance

Slides originally by W. Stallings

Design Factors

- Bandwidth
 - Higher bandwidth gives higher data rate
- Transmission impairments
 - Attenuation
- Interference
- Number of receivers
 - In guided media
 - More receivers (multi-point) introduce more attenuation

Slides originally by W. Stallings


Guided Transmission Media

- Twisted Pair
- Coaxial cable
- Optical fiber

Table 4.1 Point-to-Point Transmission Characteristics of Guided Media [GLOV98]

	Frequency Range	Typical Attenuation	Typical Delay	Repeater Spacing
Twisted pair (with loading)	0 to 3.5 kHz	0.2 dB/km @ 1 kHz	50 μs/km	2 km
Twisted pairs (multi-pair cables)	0 to 1 MHz	3 dB/km @ 1 kHz	5 μs/km	2 km
Coaxial cable	0 to 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 to 9 km
Optical fiber	180 to 370 THz	0.2 to 0.5 dB/km	5 μs/km	40 km

 $THz = TeraHerz = 10^{12} Hz$

Twisted Pair

- -Separately insulated
- -Twisted together
- —Often "bundled" into cables
- Usually installed in building during construction

(a) Twisted pair

- -Usually more than one pair bundled together
- -Nearby pairs have different twist length to reduce crosstalk
- -Twist length 5 cm to 15cm
- -Wire thickness 0.4 to 0.9 mm

Slides originally by W. Stallings

7

Twisted Pair - Applications

- Most common medium
- Telephone network
 - Between house and local exchange or end-office (subscriber loop)
- Within buildings
 - To private branch exchange (PBX)
- For local area networks (LAN)
 - 10Mbps or 100Mbps (for high rates limited number of devices and distance)

Slides originally by W. Stallings

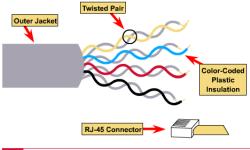
Twisted Pair - Pros and Cons

- Cheap
- · Easy to work with
- Low data rate
- Short range: repeaters required every few hundred meters

Slides originally by W. Stallings

9

Twisted Pair - Transmission Characteristics

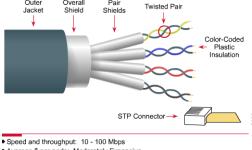

- Analog
 - · Amplifiers every 5km to 6km
- Digital
 - Use either analog or digital signals
 - repeater every 2km or 3km (<u>This may be wrong, few hundred meters is the answer</u>)
- Limited distance: highest attenuation relative to other guided media
- Limited bandwidth (1MHz)
- Limited data rate (100MHz)
- Susceptible to interference and noise

Slides originally by W. Stallings

- Unshielded Twisted Pair (UTP)
 - Ordinary telephone wire
 - Cheapest
 - Easiest to install
 - Suffers from external EM interference

Unshielded Twisted Pair (UTP)

- ◆ Speed and throughput: 10 100 Mbps
- ◆ Average \$ per node: Least Expensive
- ◆ Media and connector size: Small
- ◆ Maximum cable length: 100m (short)


Slides originally by W. Stallings

11

Unshielded and Shielded TP

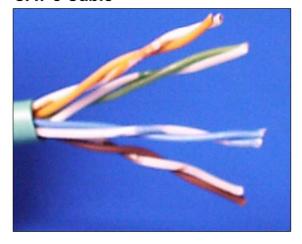
- Shielded Twisted Pair (STP)
 - Metal braid or sheathing that reduces interference
 - More expensive
 - · Harder to handle (thick, heavy)

STP (Shielded Twisted Pair)

- ◆ Average \$ per node: Moderately Expensive
- Media and connector size: Medium to Large Maximum cable length: 100m (short)

Slides originally by W. Stallings

UTP Categories (Recognized by EIA-568)


- Cat 3
 - up to 16MHz
 - · Voice grade found in most offices
 - Twist length of 7.5 cm to 10 cm
- Cat 4
 - up to 20 MHz
- Cat 5
 - up to 100MHz
- Cat 3 and Cat 5 are ones mostly used for LAN applications:
- Differ in number of twists
- Commonly pre-installed in new office buildings
- Twist length 0.6 cm to 0.85 cm

EIA = Electronic Industries Association Stallings

13

UTP Categories

CAT 5 Cable

Slides originally by W. Stallings

RJ-45 Connector

Multiport Repeaters (Hubs)

RJ-45 Front

Slides originally by W. Stallings

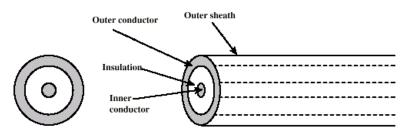
15

Near End Crosstalk

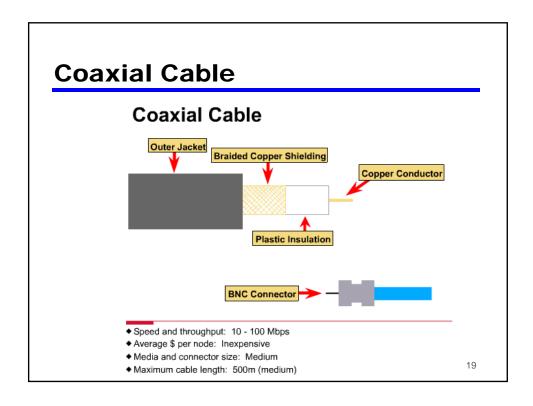
- Coupling of signal from one pair to another
- Coupling takes place when transmit signal entering the link couples back to receiving pair
- i.e. near transmitted signal is picked up by near receiving pair

Slides originally by W. Stallings

STP vs. UTP


Table 4.2 Comparison of Shielded and Unshielded Twisted Pair

	Attenuation (dB per 100 m)			Near-end Crosstalk (dB)		
Frequency (MHz)	Category 3 UTP	Category 5 UTP	150-ohm STP	Category 3 UTP	Category 5 UTP	150-ohm STP
1	2.6	2.0	1.1	41	62	58
4	5.6	4.1	2.2	32	53	58
16	13.1	8.2	4.4	23	44	50.4
25	_	10.4	6.2	_	41	47.5
100	_	22.0	12.3	_	32	38.5
300	_	_	21.4	_	_	31.3


Slides originally by W. Stallings

17

Coaxial Cable

- -Outer conductor is braided shield
- -Inner conductor is solid metal
- -Separated by insulating material
- -Covered by padding
- -To allow operation over wider range of frequencies
- -Diameter of 1 to 2.5 cm
- -Because of shielding, much less susceptible to interference and crosstalk $$^{\rm Nlides\ originally\ by\ W.\ Stallings}$$

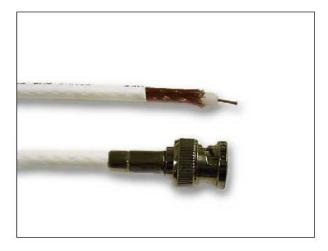
Coaxial Cable Applications

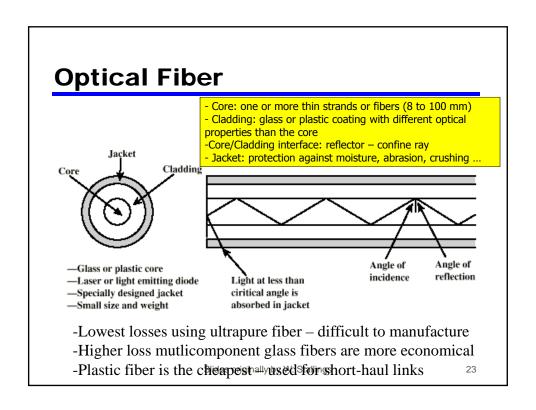
- Most versatile medium
- Television distribution
 - Ariel to TV
 - Cable TV
- Long distance telephone transmission
 - Can carry 10,000 voice calls simultaneously (using FDM)
 - Being replaced by fiber optic
- Short distance computer systems links
- Local area networks

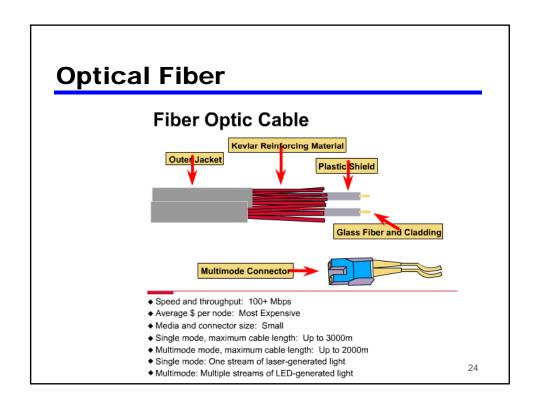
Slides originally by W. Stallings

Coaxial Cable - Transmission Characteristics

- Analog
 - · Amplifiers every few km
 - Closer if higher frequency
 - Up to 500MHz
- Digital
 - Repeater every 1km
 - Closer for higher data rates


Performance limited by attenuation, thermal noise, and intermodulation noise


Slides originally by W. Stallings


21

Coaxial Cable - Transmission Characteristics

10BASE2 50 Ohm Coax Cable

Optical Fiber - Benefits

- Greater capacity
 - Data rates of hundreds of Gbps
- Smaller size & weight
- Lower attenuation
- Electromagnetic isolation
- Greater repeater spacing
 - 10s of km at least

Slides originally by W. Stallings

25

Optical Fiber - Applications

- Long-haul trunks
- Metropolitan trunks
- Rural exchange trunks
- Subscriber loops
- LANs

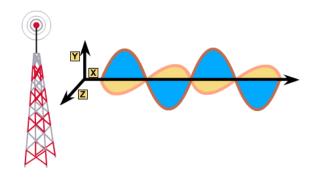
Slides originally by W. Stallings

Optical Fiber - Transmission Characteristics

- Act as wave guide for 10¹⁴ to 10¹⁵ Hz
 - Portions of infrared and visible spectrum
- Light Emitting Diode (LED)
 - Cheaper
 - Wider operating temp range
 - Last longer
- Injection Laser Diode (ILD)
 - More efficient
 - Greater data rate
- Wavelength Division Multiplexing

Slides originally by W. Stallings

27


LED - ILD: semiconductor

devices that emit a beam when voltage is applied

Optical Fiber Transmission Modes Output pulse Input pulse (a) Step-index multimode More than one path for signal - distortion Limits maximum data rate Input pulse Output pulse Intermediate mode (b) Graded-index multimode Input pulse Output pulse One path for signal – superior signal quality (c) Single mode onces originally by vv. or Used for long-haul telephone and TV comm

Wireless Transmission

Encoding Signals as Electromagnetic Waves

Slides originally by W. Stallings

29

Wireless Transmission

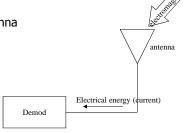
- Unguided media
- Transmission and reception via antenna
- Directional
 - Focused beam
 - Careful alignment required
- Omnidirectional
 - Signal spreads in all directions
 - Can be received by many antennae

Slides originally by W. Stallings

Frequencies

- 2GHz to 40GHz Microwave
 - Highly directional
 - Point to point
 - Satellite
- 30MHz to 1GHz Radio
 - Omnidirectional
 - Broadcast radio
- 3 x 10¹¹ to 2 x 10¹⁴ Infrared
 - Local point-to-point or point-to-multipoint in indoor applications

Slides originally by W. Stallings

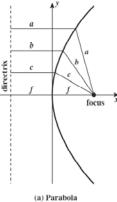

31

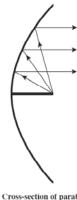
Antenna

- Definition: An electrical conductor or system of conductors used either for radiating electromagnetic energy or for collecting electromagnetic energy.
- General receiver/Transmitter structure
- Receiver/transmit characteristics of an antenna are the same

 Isotropic antenna – is a point in space that radiates power in all directions equally.

· Referred to as omni-directional antenna




General Receiver Structure

Slides originally by W. Stallings

Parabolic Reflective Antenna

Used in terrestrial microwave and satellite applications

(b) Cross-section of parabolic antenna showing reflective property

Slides originally by W. Stallings

33

Antenna Gain

- Definition: the power output, in a particular direction, compared to that produced in any direction by a perfect omni-directional antenna.
- It is a measure of directionality.
- Effective Area a concept related to the physical size and shape of antenna
- · Gain is given by

$$G = \frac{4 \text{ n Ae}}{\lambda^2}$$

Where G – antenna gain

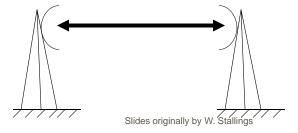
Ae – effective antenna area λ – carrier wavelength

- For an ideal isotropic antenna Ae = $\lambda^2 / (4 \text{ n}) \Rightarrow G = 1 \text{ or } 0 \text{ dB}$
- For a parabolic antenna with face area of A Ae = 0.56A \rightarrow G = 7A/ λ^2

Slides originally by W. Stallings

Antenna Gain - Example

- Problem: Consider a parabolic reflective antenna with a diameter of 2 m operating at 12 GHz, what is the effective area and the antenna gain?
- Solution:


```
face area, A = \pi r^2 \rightarrow \pi m^2
effective area, Ae = 0.56 A = 0.56 \pi m^2
wavelength, \lambda = c/f = 3x10^8/12x10^9 = 0.025 m
then Gain, G = 4 \pi Ae/\lambda^2 = 35,180, or
GdB = 10log10(35,180) = 45.46 dB
```

Slides originally by W. Stallings

35

Terrestrial Microwave

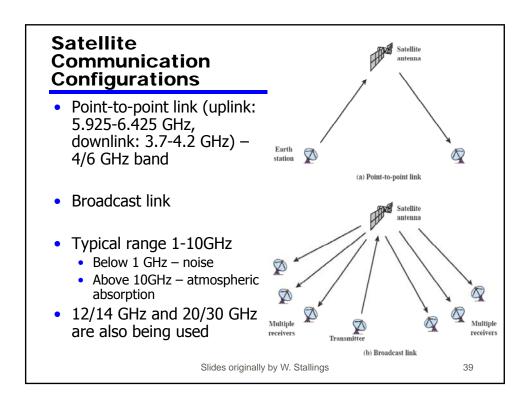
- Parabolic dish
- Focused beam
- Line of sight
- Long haul telecommunications (4-6 GHz and 11 GHz)
- Higher frequencies give higher data rates

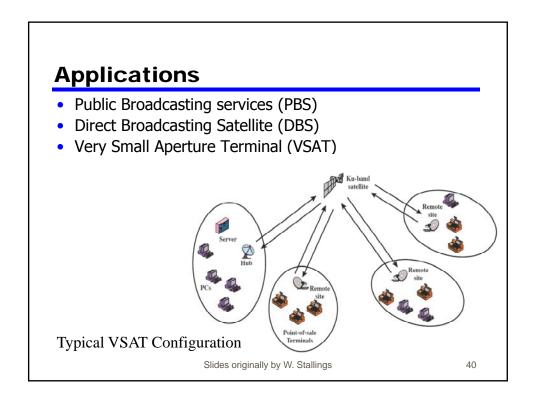
Transmission Characteristic

Free-Space loss model

Pr/Pt = Gt Gr * $[\lambda / (4nd)]^2$ where: Pt – transmitted power level Pr – received power level Gr – receive antenna gain Gt – transmit antenna gain λ – carrier frequency wavelength

- d distance between transmitter and receiver
- Path loss is defined as L = Pt/Pr usually measured in dBs (i.e. $LdB = 10log_{10}(L)=10log_{10}(Pt/Pr)$)
- If Gt and Gr are not given assume Gt = Gr = 1.


Slides originally by W. Stallings


37

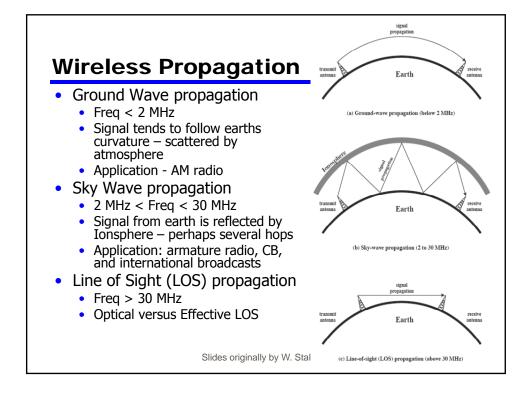
Satellite Microwave

- Satellite is relay station
- Satellite receives on one frequency, amplifies or repeats signal and transmits on another frequency
- Requires geo-stationary orbit
 - Height of 35,784km
- Television
- Long distance telephone
- Private business networks

Slides originally by W. Stallings

Broadcast Radio

- Omnidirectional; 30 MHz ~ 1 GHz
- FM radio
- UHF and VHF television
- Line of sight
- Suffers from multipath interference
 - Reflections


Slides originally by W. Stallings

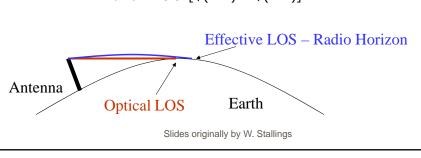
// 1

Infrared

- Modulate noncoherent infrared light
- Line of sight (or reflection)
- Blocked by walls
- e.g. TV remote control, IRD port

Slides originally by W. Stallings

Line Of Sight Propagation


 The optical LOS distance in kilometers, d, is given by d = 3.57√h

where h is the antenna height in meters.

• The effective LOS distance in kilometers, d, is given by $d = 3.57\sqrt{(Kh)}$

where K is an adjustment factor ~ 4/3

• The maximum distance between two towers for LOS is given by $dmax = 3.57[\sqrt{(Kh1)} + \sqrt{(Kh2)}]$

Example

- Problem: Assume an earth station is transmitting 250 Watts directed to an asynchronous satellite at the height of 35,863 km. If the carrier frequency is 4 GHz, calculate:
- a) the path loss assuming isotropic antennas
- b) the path loss assuming the antenna gain for satellite and ground station to be 44 dB and 48 dB, respectively.
- c) what is the power level received at the satellite?

Slides originally by W. Stallings

45

Example - cont'd

```
Solution:
Path Loss, L = Pt/Pr = 1/\{Gt Gr * [\lambda/(4\pi d)]^2\}
wavelength, \lambda = c/f = 3x10^8/4x10^9 = 0.075 \text{ m}
a) for isotropic antennas \rightarrow Gt = Gr = 1;
   L = 1/\{1x1x[0.075/(4x\pi x35853x10^3)]^2\}
      = 3.6087 \times 10^{19}
   L_{dB} = 10xlog_{10}(L) = 195.6 dB
b) for Gr = 44 dB (or 1044/10 = 25,119) and Gt = 48 dB (or 63,096)
   Therefore,
    L = 1/\{25119x63096x x[0.075/(4x\pi x35853x10^3)]^2\}
                                                                                b) LdB = L_{dB\_isotropic} - Gt_{dB} - Gr_{dB}
= 195.6 - 44 - 48
       = 2.2769 \times 10^{10}
    L_{dB} = 10xlog10(L) = 103.6 dB
                                                                                         = 103.6 dB
c) Power received at satellite:
    L = Pt/Pr \rightarrow Pr = Pt/L = 250/2.2769x10^{10}
                       = 1.0980 \times 10^{-8} \text{ Watts}
    Pr_{dBW} = 10xlog10(Pr) = -79.6 dBW
                                                c) Pt = 250 Watts \rightarrow Pt<sub>dBW</sub> = 10xlog10(250) = 24 dBW
                                                   Pr_{dBW} = Pt_{dBW} - L_{dB} = 24 - 103.6 = -79.6 \text{ dBW}
```

Slides originally by W. Stallings

Required Reading

• Stallings Chapter 4

Slides originally by W. Stallings